联合分布与边缘分布

合集下载

联合分布函数与边缘分布函数的关系解读.

联合分布函数与边缘分布函数的关系解读.

例2 一射手进行射击, 每次击中目标的概率为p(0<p<1), 射击到击中目标两次为止. 设以X 表示首次击中目标所进 行的射击次数, 以Y 表示总共进行的射击次数. 试求 X 和 Y 的联合分布律及条件分布律.
二、连续型随机变量的条件分布
【引言】在条件分布中,作为条件的随机变量的取值
是确定的数.但是当Y 是连续型r.v.时, 条件分布不能
P{ X xi ,Y y j } pij pi• , i 1, 2, ...
j 1
j 1
P{Y y j } P{ U( X xi ),Y y j } i 1
P{ X xi ,Y y j } pij p• j , j 1, 2, ...
i 1
i 1
联合分布律及边缘分布律

P{Y yj } P{X xi Y yj }, P{Y yj } 0
i, j 1,2,L
类似全概率公式(求边缘分布律)
P{ X xi } pij P{ X xi ,Y y j }
j 1
j 1
P{ X xi Y y j } P{Y y j }, P{Y y j } 0, i 1, 2,L j1
6, x2 y x,
f (x, y) 0,
其他.
求边缘概率密度 fX ( x), fY ( y).

fX (x)
f (x, y)d y
当 0 x 1时,
y y x●
fX ( x)
f (x, y)d y

O
x
6d y x2
(1,1)
y x2
x
6( x x2 ).
当 x 0 或 x 1时,
联合分布、边缘分布、条件分布的关系

联合分布与边缘分布的关系

联合分布与边缘分布的关系
联合分布与边缘分布的关系
目录
• 联合分布与边缘分布的定义 • 联合分布与边缘分布的应用场景 • 联合分布与边缘分布的实例分析 • 总结与展望
01
联合分布与边缘分布的定义
联合分布的定义
1
联合分布描述了随机变量之间的共同概率分布, 表示多个随机变量同时发生的概率。
2
联合分布函数通常用大写字母表示,例如F(x,y), 表示随机变量X和Y的联合分布函数。
感谢您的观看
THANKS
的影响。
联合分布与边缘分布的关系
• 联合分布和边缘分布在描述随机变量之间的关系时具有互补性。联合分布描述 了多个随机变量的共同概率特性,而边缘分布描述了单个随机变量的概率特性。
• 当一个随机变量是其他随机变量的函数时,该随机变量的边缘分布可以通过对 联合分布进行积分得到。例如,如果X和Y是两个随机变量,且Y=g(X),那么X 的边缘分布可以通过对X和Y的联合分布积分得到。
联合分布和边缘分布在二维正态分布中具有以下关系:联合分布的概率 密度函数是边缘分布概率密度函数的乘积,即f(x, y)=f(x)f(y)。
多维正态分布的联合分布与边缘分布
01
多维正态分布的联合分布表示多个随机变量的概率分布情况,其概率密度函数 由均值向量和协方差矩阵决定。
02
对于多维正态分布,其边缘分布是低维正态分布。对于每个随机变量,其边缘 分布的概率密度函数由该变量的均值和标准差决定,与其他变量的取值无关。
联合分布与边缘分布在金融领域的应用
风险评估
联合分布和边缘分布在金融领域 中用于评估投资组合的风险,例 如计算投资组合的预期收益和风 险。
资产定价
联合分布和边缘分布在资产定价 中用于确定资产的合理价格,例 如通 结构中用于分析市场交易行为和 市场价格形成机制。

维随机变量的联合分布与边缘分布

维随机变量的联合分布与边缘分布
边缘分布的求解方法
针对连续型和离散型随机变量,分别提出了边缘分布的求解方法,包 括积分法、求和法等,并通过实例验证了方法的有效性。
联合分布与边缘分布在统计推断中的应用
将联合分布与边缘分布的理论应用于统计推断中,如参数估计、假设 检验等问题,提高了统计推断的准确性和效率。
对未来研究的展望
• 高维随机变量的联合分布与边缘分布:随着数据维度的增加,高维随机变量的 联合分布与边缘分布研究将成为未来的重要方向,需要探索新的理论和方法来 解决高维数据的挑战。
PART 07
总结与展望
REPORTING
WENKU DESIGN
研究成果总结
联合分布与边缘分布的理论体系
本文构建了多维随机变量联合分布与边缘分布的理论框架,明确了两 者之间的关系和转化方法。
联合分布的性质
深入探讨了联合分布的性质,如联合分布的对称性、可加性、连续性 等,为实际应用提供了理论支持。
维随机变量的联合分 布与边缘分布
https://
REPORTING
• 引言 • 二维随机变量及其联合分布 • 边缘分布及其性质 • 条件分布及其性质 • 二维随机变量的独立性 • 二维随机变量函数的分布 • 总结与展望
目录
PART 01
引言
REPORTING
WENKU DESIGN
二维随机变量函数的分布求法
01
分布函数法
首先求出(X,Y)的联合分布函数F(x,y),然后通过Z=g(X,Y)的关系式求出
Z的分布函数G(z)。
02
概率密度函数法
若(X,Y)的联合概率密度函数为f(x,y)ห้องสมุดไป่ตู้则可以通过Z=g(X,Y)的关系式求
出Z的概率密度函数h(z)。

2.2 多维离散型随机矢量联合分布与边缘分布

2.2  多维离散型随机矢量联合分布与边缘分布

2 0 0
p.m
0 1

1/8 3/8
2
3
pn.
0
0 1/4
1/4
0 1/2
1/8
1/8 1/4
3/8
1/8
例3、分别掷三枚均匀的硬币, 表示前两枚正面出现次数, 表
示三枚正、反面次数之差绝对值,求 , 的联合分布与边缘分布。
ξ η
0 1/8
1 1/2
2 1/8
p.m
1
3/4
3
pn.
pn. p xn m0 pnm , n 0, p.m p ym n0 pnm , m 0,
则称 pn. 和 p.m 为 , 的边缘分布分布列。 例1、若 , 的联合分布表如右:
η ξ
0 q 0
1 0 p
p.m
q
则称 与 相互独立。
P75例2.8
例4、10件产品中有2件一级品,7件二级品和1件三级品,从中任取
出3件。 和 分别表示取出的一级品和二级品件数,求 , 的联合
分布与边缘分布,问 与 独立吗?
ξ η
0
0 0 21/120
1
0 14/120 42/120
2
1/120 7/120 0
第二章 离散型随机变量
§2.2 二维离散型r.v.联合分布与边缘分布
定义 2.3 设 、 皆为离散型随机变量,取值分别为
x0 ,, xn , 和
y0 ,, ym ,, 则称 , 是二维离散型,记
pij p xi , y j , i 0,1, , n, , j 0,1, , m, ,
30/220 4/220

二维随机变量的边缘分布与联合分布关系探讨

二维随机变量的边缘分布与联合分布关系探讨

二维随机变量的边缘分布与联合分布关系探讨摘要本文首先理解二维随机变量的联合分布的概念、性质及其两种基本表达形式:离散型二维随机变量联合概率分布和连续型二维随机变量联合概率密度。

掌握已知两个随机变量的联合分布时分别求它们的边缘分布的方法。

在文献研究的基础上,运用随机事元和随机事元集合,建立了二维随机变量分布和边缘分布的形式化可拓模型。

利用可拓变换和传导变换,结合形式化的可拓推理知识,对二维随机变量在可拓变换下的传导分布模型进行了研究。

将随机事元、随机事元集合、可拓变换、可拓推理知识等引入到二维随机变量分布的研究中,使分析更加形式化,逻辑性更强。

运用随机事元和随机事元集合建立了二维随机变量分布的可拓模型。

本文对这种特例作了深入研究,分析了具有这种性质的二维密度f(x,y)的结构特点与本质,有助于我们更好地了解正态分布的特殊性质。

关键词:二维随机变量;边缘分布;联合分布AbstractIn this paper,we first understand the concept and properties of the joint distribution of two-dimensional random variables and their two basic expressions: joint probability distribution of discrete two-dimensional random variables and joint probability density of continuous two-dimensional random variables. The method of finding the edge distribution of the joint distribution of two known random variables is mastered. On the basis of literature research, a formal extension model of two-dimensional random variable distribution and edge distribution is established by using random event element and random element set. By using extension transformation and conduction transformation combined with formalized knowledge of extension reasoning,the conduction and distribution models of two-dimensional random variables under extension transformation are studied. The random event element,random event set,extension transformation and extension reasoning knowledge are introduced into the study of two-dimensional random variable distribution,making the analysis more formalized and logical. The extension model of the distribution of two dimensional random variables is established by using the random event element and the set of random element. This special case is studied in depth. The structure and nature of the two-dimensional density f (x,y) with this property is analyzed,which helps us to better understand the special properties of normal distribution.Key words:two-dimensional random variables; edge distribution; joint distribution目录摘要 (I)Abstract (II)1 随机变量独立性及其判定 (1)1.1 随机变量独立性定义 (1)1.1.1随机变量及随机变量独立性的定义 (1)1.1.2随机变量独立性的两个简单定理 (2)1.2 离散型随机变量独立性的判定 (4)1.2.1离散型随机变量判别法一 (4)1.2.2离散型随机变量判别法二 (8)1.3 连续型随机变量独立性的判定 (12)1.3.1连续型随机变量判别法一 (12)1.3.2连续型随机变量判别法二 (13)2 边缘分布与联合分布关系探讨 (16)2.1 二维随机变量的分布函数 (16)2.2 二维离散型随机变量 (17)2.3 二维连续型随机变量 (18)2.4 随机变量的独立性 (18)2.5条件分布 (19)2.6 二维随机变量函数的分布 (20)结论 (21)致谢 (21)参考文献 (22)0 引言概率论是研究随机现象数量规律的数学分支,而随机现象是相对于决定性现象而言的。

概率基本法则随机变量联合分布,边缘分布,条件概率

概率基本法则随机变量联合分布,边缘分布,条件概率
P(s | m) = 0.8
P(s) = 0.01
P(s | m) P(m)
P(s)
=
已给定的
0.8 x 0.0001 .
0.01
◦ 注意: meningitis 的后验概率还是非常小: 0.008 (但比先验概率大80倍 – 为什么?)
◦ 注意: 如果有了症状还是应该去检查! 为什么?
小练习
假设两个随机变量A和B,它们的值域是 A ∈{ true, false } , B
P(Roll2=5 | Roll1=5) = P(Roll2=5)
举例: 独立性
n 个公平,独立的硬币翻转:
P(X1)
P(X2)
P(Xn)
H
0.5
H
0.5
H
0.5
T
0.5
T
0.5
T
0.5
P(X1,X2,...,Xn)
2n
真实世界里的(概率事件)独立性
独立性是简化建模的假设
有时对于真实世界的变量是合理的
0.01
30
条件独立性(条件无关)
Conditional Independence
无条件的 (绝对的) 独立性非常稀少 (为什么?)
条件独立性是我们对于不确定环境的最基本和鲁棒的知识蕴藏
形式
X 是 条件独立于(conditionally independent) Y, 给定 Z
当且仅当:
x,y,z
上次的内容
概率
概率基本法则
随机变量
联合分布,边缘分布,条件概率,条件分布
人工智能导论:
概率推理
概率推理(Probabilistic Inference)
概率推理: 从其他已知概率里计算一个想知

联合分布和边缘分布的区别

联合分布和边缘分布的区别

联合分布和边缘分布的区别
联合分布和边缘分布是概率论中两个重要的概念。

联合分布指的是多个随机变量同时发生时的概率分布。

它描述了这些随机变量之间的关联性,即联合概率。

联合分布可以通过概率密度函数或概率质量函数来表示。

边缘分布指的是在联合分布中某些随机变量被固定后,其他随机变量的概率分布。

换句话说,边缘分布是联合分布在某个随机变量的取值上的概率分布。

边缘分布可以通过对联合分布积分或求和来获得。

简单来说,联合分布关注的是多个随机变量之间的关系,而边缘分布关注的是单个随机变量的概率分布。

可以通过联合分布来计算边缘分布,但边缘分布不能反推出联合概率。

联合分布函数与边缘分布函数的关系解读

联合分布函数与边缘分布函数的关系解读

yj}
pij , p• j
i 1, 2,L
,
为在Y

y
条件下随机变量
j
X
的条件分布律.

对于固定的 i, 若 P{ X xi } pij 0, 则称
j1
P{Y

yj
X
xi }
P{X xi ,Y yj } P{X xi }
pij , pi•
j 1, 2,L
分布, 并且都不依赖于参数.

(X
,Y
)
~
N (1,
2
,
2 1
,
2
2
,

)
X
~
N
(
1
,

2 1
),
Y
~
N
(

2Hale Waihona Puke ,2 2)
【说明】 对于确定的1, 2, 1, 2, 当不同时, 对应了
不同的二维正态分布. 在下一章将指出, 对于二维正态
分布而言, 参数正好刻画了X和Y之间关系的密切程度.
f (x, y)
1
2σ1σ2 1 ρ2

1
exp
2(1

ρ2
)
(
x
μ1 )2 σ12

2
ρ
(
x

μ1 )( y σ1 σ2

μ2
)

(
y
μ2 σ22
)2



x , y , 其中 μ1, μ2 ,σ1,σ2 , ρ 都是常数,且 σ1 0, σ2 0, 1 ρ 1. 试求二维正态随机变量的边缘概率密度 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变量 ( X ,Y )具有概率密度函数
z
f
(
x,
y)
1 A
,
(x, y)G
1 A
0, 其它
O
则称 ( X ,Y )在G上服从均匀分布.
x
z f ( x, y) y
G
边缘分布密度
fX ( x)
f ( x, y)dy,
fY ( y)
f ( x, y)dx,
若对任意的 x, y, 有 f ( x, y) fX ( x) fY ( y)
则称 X ,Y 相互独立.
y
y2
( x2 , y2 )
P{ x1 x x2 , y1 y y2 }
y1
F ( x2 , y2 ) F ( x2 , y1 )
O x1
x2 x
F ( x1, y2 ) F ( x1, y1 ).
图 2.
联合分布函数的性质:
(1) 0 F ( x, y) 1, 且 F (, y) 0, F ( x,) 0,
(3) 设 D 是 xOy 平面上的区域,点 ( X ,Y ) 落入 D 内
的概率为 P{( x, y) D} f ( x, y)dxdy D
(4) 若 f ( x, y) 在点( x, y) 连续,则有
2
F ( x, xy
y
)
f ( x, y).
注:
设 G 是平面上的有界区域,其面积为 A.若二维随机
pij 满足下列性质:
(1) pij 0,1, j 1,2, ; (2)
pij 1.
ij
由 X 和 Y 的联合概率分布,
得边缘分布:
pi P{ X xi } pij ,i 1,2, j
p j P{Y y j } pij , j 1,2, i
三、连续型随机变量ຫໍສະໝຸດ 其概率密度xyF( x, y)
f (s,t)dsdt,
则称( X ,Y )为二维连续型随机变量,并称 f ( x, y) 为
X与Y 的联合概率密度(联合密度函数). 概率密度函数 f ( x, y) 的性质:
(1) f ( x, y) 0;
(2)
f ( x, y)dxdy F (,) 1;
y
(x, y)
O
x
F (,) 0, F (,) 1;
(2)F ( x, y) 关于 x 和 y 均为单调非减函数, (3)F ( x, y) 关于 x 和 y 均为右连续。
二、离散型随机变量及其概率分布
P{ X xi ,Y y j } pij (i, j 1,2, )
为 X 与 Y 的联合概率分布(分布律).
一、 二维随机变量的分布函数
F ( x, y) P{( X x) (Y y)} 记为 P{ X x,Y y}
称为二维随机变量 ( X ,Y ) 的分布函数或称为随机
变量 X 和 Y 的联合分布函数.
注:由概率的加法法则,随机点( X ,Y ) 落入矩形域
{ x1 x x2 , y1 y y2 }的概率
相关文档
最新文档