联合分布与边缘分布的关系

合集下载

厦门大学《应用多元统计分析》习题第02章 多元正态分布的参数估计

厦门大学《应用多元统计分析》习题第02章 多元正态分布的参数估计

思考与练习2.1 试述多元联合分布和边缘分布之间的关系。

2.2 设随机向量12(,)X X ′=X 服从二元正态分布,写出其联合分布密度函数和1X 、2X 各自的边缘密度函数。

2.3 已知随机向量12(,)X X ′=X 的联合分布密度函数为:()()()()()()()()()121122222,d c x a b a x c x a x c f x x b a d c −−+−−−−−2⎡⎤⎣⎦=−−其中,。

求:12,a x b c x d ≤≤≤≤⑴ 随机变量1X 和2X 各自的边缘密度函数、均值与方差。

⑵ 随机变量1X 和2X 的协方差和相关系数。

⑶ 判断1X 和2X 是否相互独立。

2.4 设随机向量12(,,,)p X X X ′=X L 服从正态分布,已知其协差阵为对角阵,证明ΣX 的分量是相互独立的随机变量。

2.5 从某企业全部职工中随机抽取一个容量为6的样本,该样本中各职工的目前工资、受教育年限、初始工资和工作经验资料如下表所示: 职工编号目前工资 (美元)受教育年限(年)初始工资 (美元)工作经验(月)11 2 3 4 5 6 57,000 40,200 21,450 21,900 45,000 28,350 15 16 12 8 15 8 27,000 18,750 12,000 13,200 21,000 12,000 144 36 381 190 138 26设职工总体的以上变量服从多元正态分布,根据样本资料求出均值向量和协差阵的最大似然估计。

2.6 均值向量和协差阵的最大似然估计量具有哪些优良性质? 2.7 试证多元正态总体的样本均值向量(,)p N μΣ1~(,p N nX μΣ)。

2.8 试证多元正态总体的样本协差阵S 为(,)p N μΣΣ的无偏估计。

2.9 设()1x 、()2x 、…、()n x 是从多元正态总体中独立抽取的一个随机样本,试求样本协差阵的分布。

联合分布与边缘分布

联合分布与边缘分布

变量 ( X ,Y )具有概率密度函数
z
f
(
x,
y)
1 A
,
(x, y)G
1 A
0, 其它
O
则称 ( X ,Y )在G上服从均匀分布.
x
z f ( x, y) y
G
边缘分布密度
fX ( x)
f ( x, y)dy,
fY ( y)
f ( x, y)dx,
若对任意的 x, y, 有 f ( x, y) fX ( x) fY ( y)
则称 X ,Y 相互独立.
y
y2
( x2 , y2 )
P{ x1 x x2 , y1 y y2 }
y1
F ( x2 , y2 ) F ( x2 , y1 )
O x1
x2 x
F ( x1, y2 ) F ( x1, y1 ).
图 2.
联合分布函数的性质:
(1) 0 F ( x, y) 1, 且 F (, y) 0, F ( x,) 0,
(3) 设 D 是 xOy 平面上的区域,点 ( X ,Y ) 落入 D 内
的概率为 P{( x, y) D} f ( x, y)dxdy D
(4) 若 f ( x, y) 在点( x, y) 连续,则有
2
F ( x, xy
y
)
f ( x, y).
注:
设 G 是平面上的有界区域,其面积为 A.若二维随机
pij 满足下列性质:
(1) pij 0,1, j 1,2, ; (2)
pij 1.
ij
由 X 和 Y 的联合概率分布,
得边缘分布:
pi P{ X xi } pij ,i 1,2, j

联合分布与边缘分布的关系

联合分布与边缘分布的关系
联合分布与边缘分布的关系
目录
• 联合分布与边缘分布的定义 • 联合分布与边缘分布的应用场景 • 联合分布与边缘分布的实例分析 • 总结与展望
01
联合分布与边缘分布的定义
联合分布的定义
1
联合分布描述了随机变量之间的共同概率分布, 表示多个随机变量同时发生的概率。
2
联合分布函数通常用大写字母表示,例如F(x,y), 表示随机变量X和Y的联合分布函数。
感谢您的观看
THANKS
的影响。
联合分布与边缘分布的关系
• 联合分布和边缘分布在描述随机变量之间的关系时具有互补性。联合分布描述 了多个随机变量的共同概率特性,而边缘分布描述了单个随机变量的概率特性。
• 当一个随机变量是其他随机变量的函数时,该随机变量的边缘分布可以通过对 联合分布进行积分得到。例如,如果X和Y是两个随机变量,且Y=g(X),那么X 的边缘分布可以通过对X和Y的联合分布积分得到。
联合分布和边缘分布在二维正态分布中具有以下关系:联合分布的概率 密度函数是边缘分布概率密度函数的乘积,即f(x, y)=f(x)f(y)。
多维正态分布的联合分布与边缘分布
01
多维正态分布的联合分布表示多个随机变量的概率分布情况,其概率密度函数 由均值向量和协方差矩阵决定。
02
对于多维正态分布,其边缘分布是低维正态分布。对于每个随机变量,其边缘 分布的概率密度函数由该变量的均值和标准差决定,与其他变量的取值无关。
联合分布与边缘分布在金融领域的应用
风险评估
联合分布和边缘分布在金融领域 中用于评估投资组合的风险,例 如计算投资组合的预期收益和风 险。
资产定价
联合分布和边缘分布在资产定价 中用于确定资产的合理价格,例 如通 结构中用于分析市场交易行为和 市场价格形成机制。

随机向量的联合分布函数

随机向量的联合分布函数
若X1,X2独立, X1 ~ N(μ1,σ12), X2 ~ N(μ2,σ22), 则 X1+X2 ~ N(μ1+μ2,σ12+σ22)
相互独立的二项分布、泊松分布、正态分布具有可加性 以上三个结论均可推广到三项及有限项
若Xi~N(μi,σi2), (i=1,2 ···,n), X1,X2, ···, Xn相互独立,实数
(1) 离散型随机变量X1 ,X2 , ···,Xn相互独立等价于联合概率
分布等于边缘概率分布的乘积.
(2) 连续型随机变量X1 ,X2 , ···, Xn相互独立等价于联合概率 密度函数等于边缘概率密度函数的乘积.
可统一为联合概率分布等于边缘概率分布的乘积.
六、随机变量序列独立性的概念
若n个随机变量X1 , X2, ···,Xn相互独立,则它们中的任意 m(1<m≤n)个随机变量也相互独立.
设随机向量(X,Y)的联合密度函数为f(x,y),记Z=g(X,Y). (1) 求Z的分布函数
F(z) P(Z z) P(g(X ,Y ) z)
f (x, y)dxdy
g( x,y)z
(2) 对F(z)求导即得Z的概率密度函数f(z).
例2 设随机向量(X,Y)服从区域
定义 二元实函数F( x , y )=P{ X ≤ x , Y ≤ y} (x,y)∈R2 称为二维随机向量(X,Y)的联合分布函数. (1)(X,Y)为离散型随机向量,且联合概率分布为
P( X xi ,Y y j ) pij
则相应的联合分布函数 F( x, y) pij xi x y j y
(2)(X,Y)为连续型随机向量,且联合概率密度为 f ( x, y)
xy

边缘分布和联合分布的关系

边缘分布和联合分布的关系

边缘分布和联合分布的关系嘿,朋友们!今天咱们来聊聊边缘分布和联合分布这对超有趣的概率概念。

你可以把联合分布想象成一场超级盛大的派对,派对里有各种各样的人,来自不同的地方,有着不同的特点。

这个派对就是所有可能事件的大集合,就像一个装满了奇奇怪怪小物件的魔法盒子,每一个小物件就是一个具体的事件组合。

而边缘分布呢,它就像是从这个超级派对里单独挑出某一类人来。

比如说,只看那些戴帽子的人或者只看穿红衣服的人。

它就像是从那满满当当的魔法盒子里,只挑出红色的小物件或者圆形的小物件。

这边缘分布呀,有点像是在这个超级复杂的大拼图里,只看拼图的一条边,虽然只是一部分,但也能看出一些独特的东西呢。

联合分布知道派对里所有人的各种组合情况,什么戴眼镜的男生和穿裙子的女生站在一起啦,高个子和矮个子聊天啦之类的。

但是边缘分布就不管这些组合中的搭配情况,只关心某一类人的整体状况。

这就好比联合分布是一个超级八卦的人,知道谁和谁在干嘛,而边缘分布是一个有点小固执的人,只关心某一类人的情况,其他一概不管。

有时候啊,联合分布就像一个超级大厨,他能做出各种各样搭配奇妙的菜肴,把各种食材组合在一起。

而边缘分布就像是只吃某一种食材的挑食者,比如只吃胡萝卜,不管胡萝卜和什么搭配。

不过呢,这挑食者(边缘分布)也能从侧面反映出这个大厨(联合分布)的一些信息,毕竟大厨的食材里有这个挑食者喜欢的嘛。

这两者之间的关系还特别微妙呢。

就像两个性格迥异的好朋友,一个热情奔放啥都关心(联合分布),一个有点小孤僻只关心自己那点事儿(边缘分布)。

但是他们又互相离不开,因为从边缘分布能大概推测出联合分布的一些轮廓,而联合分布能完整地解释边缘分布的一些特性。

再夸张一点说,联合分布是一个超级大的宇宙,里面有各种各样的星球(事件组合)。

边缘分布就是从这个宇宙里单独揪出某一种星球,比如只看蓝色星球。

虽然只是蓝色星球,但也能从侧面反映出这个宇宙可能存在的一些普遍规律。

而且呀,边缘分布有时候像是联合分布的简化版,联合分布的信息太多啦,就像一个啰嗦的老太太,而边缘分布把它简化了,变成了一个简洁的小清单,只列出某一类的关键信息。

维随机变量的联合分布与边缘分布

维随机变量的联合分布与边缘分布
边缘分布的求解方法
针对连续型和离散型随机变量,分别提出了边缘分布的求解方法,包 括积分法、求和法等,并通过实例验证了方法的有效性。
联合分布与边缘分布在统计推断中的应用
将联合分布与边缘分布的理论应用于统计推断中,如参数估计、假设 检验等问题,提高了统计推断的准确性和效率。
对未来研究的展望
• 高维随机变量的联合分布与边缘分布:随着数据维度的增加,高维随机变量的 联合分布与边缘分布研究将成为未来的重要方向,需要探索新的理论和方法来 解决高维数据的挑战。
PART 07
总结与展望
REPORTING
WENKU DESIGN
研究成果总结
联合分布与边缘分布的理论体系
本文构建了多维随机变量联合分布与边缘分布的理论框架,明确了两 者之间的关系和转化方法。
联合分布的性质
深入探讨了联合分布的性质,如联合分布的对称性、可加性、连续性 等,为实际应用提供了理论支持。
维随机变量的联合分 布与边缘分布
https://
REPORTING
• 引言 • 二维随机变量及其联合分布 • 边缘分布及其性质 • 条件分布及其性质 • 二维随机变量的独立性 • 二维随机变量函数的分布 • 总结与展望
目录
PART 01
引言
REPORTING
WENKU DESIGN
二维随机变量函数的分布求法
01
分布函数法
首先求出(X,Y)的联合分布函数F(x,y),然后通过Z=g(X,Y)的关系式求出
Z的分布函数G(z)。
02
概率密度函数法
若(X,Y)的联合概率密度函数为f(x,y)ห้องสมุดไป่ตู้则可以通过Z=g(X,Y)的关系式求
出Z的概率密度函数h(z)。

二维连续随机变量及其概率分布

二维连续随机变量及其概率分布
P{x1 X x2, y1 Y y2} P{x1 X x2}P{y1 Y y2}
定理2 二维随机变量(X,Y)的两个分量独立的充 分必要条件是: 对任意实数x, y有
P{X x,Y y} P{X x}P{Y y}
定理3 若(X , Y ) 是离散型随机变量,则X与Y相 互独立的充分必要条件是
lim F ( x, y) 0
x
lim F ( x, y) 0
y
lim F ( x, y) 1
x, y
性质3 对于x 和y,F(x, y)都是右连续的,即对任意 的实数x0和y0,均有
Lim xx0 F(x, y)=F(x0 , y), Lim yy0 F( x, y )=F(x, y0 )
(3) f (x, y)与 fX (x), fY (y)之间的关系
f X (x)
f (x, y)dy
fY ( y) f (x, y)dx.
例3 设随机变量X 和Y 具有联合分布
f
(
x,
y)
6, 0,
求X 和Y 边缘密度
x2 y x 其他
解:
f X (x)
f (x, y)dy
x
6dy x2
0
x 0, y 0 其它
求 (X, Y )的边缘分布函数。
解: X的边缘分布函数为
FX
(x)
F
( x,)
lim
y
F ( x,
y)
1 ex x 0
0 x0
1 ex ey exyxy x 0, y 0
(X ,Y) ~ F(x, y)
0
其它
Y的边缘分布函数为
FY
(
y)
F
(,

相互独立联合分布律

相互独立联合分布律

相互独立联合分布律
“随机变量相互独立,其联合分布等于各自的边缘分布的乘积。

”这句话是正确的。

假设随机变量(X,Y)是连续型的,则其联合概率密度函数还等于各自的边缘概率密度函数的乘积。

假设随机变量(X,Y)是连续型的,则其联合分布律还等于各自的边缘分布律的乘积。

扩展资料:
随机变量相互独立的推论:
1、若(X,Y)~A,则X与Y不相互独立的充要条件是存在矩阵A的任意两个行向量(或列向量)线性无关。

2、若(X,Y)~A,则X与Y不相互独立的充要条件是存在矩阵A的任意两行(或两列)对应元素不成比例。

3、若(X,Y)~A,则X与Y不相互独立的充要条件是矩阵A的秩大于1。

4、若(X,Y)~A中有某个Pᵢⱼ=0,但元素Pᵢⱼ所在的行与列的所有元素不全为零,则X与Y不相互独立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

j1
P{Y
yj
X
xi }
P{X xi ,Y yj } P{X xi }
pij , pi•
j 1, 2,
,
为在X xi条件下随机变量 Y 的条件分布律.
【说明】
① 条件分布的本质是条件概率, 离散型r.v.X在{Y=yj}发 生的条件下的条件分布律, 就是在{Y=yj}发生条件下将 X每一个可能取值及取值的条件概率列出.
fY ( y) f ( x, y)dx fY X ( y x) fX ( x)dx
类似于Bayes公式(求条件概率密度)
fXY (x
y)
f (x, y)
fY ( y)
fY X ( y x) f X ( x) fY ( y)
fY X ( y
x)
f (x, y) fX (x)
fX Y ( x y) fY ( y) fX (x)
fY ( y)
f ( x, y)d x 0.

6( fY ( y)
y y), 0,
0 y 1, 其他.
例6 设(X,Y)在区域 G {(x, y) 0 x 1, y x}上服从 均匀分布,求(X,Y)关于X和Y的边缘概率密度.
例7 设二维随机变量 ( X ,Y ) 的概率密度为
【结论】 联合分布
边缘分布
在什么情况下,由边缘分布可以唯一确定联合分布呢?
3.3 条件分布 问题
考虑一大群人,从其中随机挑选一个人,分别 用 X 和 Y 记此人的体重和身高,则X 和 Y 都是随 机变量,他们都有自己的分布.
现在如果限制 Y 取值为1.5m ,在这个 限制下求 X 的分布 .
一、离散型随机变量的条件分布
联合分布、边缘分布、条件分布的关系
联合分布
边缘分布 条件分布
联合分布
例3 已知(X,Y )服从圆域 x2 + y2 r2 上的均匀分布, 求
fX Y ( x y), fY X ( y x) .
r
2
x
2

x
-r
r

r2 x2
例4 已知( X ,Y ) ~ N 1,12; 2, 22; , 求 f X Y ( x y) .
类似于乘法公式(求联合概率密度)
f (x, y) fX (x) fY X ( y x) fX (x) 0
fY ( y) fX Y (x y) fY ( y) 0
类似于全概率公式(求边缘概率密度)
fX ( x) f ( x, y)dy fX Y ( x y) fY ( y)dy
3.2 边缘分布
联合分布函数与边缘分布函数的关系
FX ( x) F ( x, ) ; FY ( y) F (, y).
由联合分布律求边缘分布函数
FX ( x) F( x,)
pij , FY ( y) F (, y)
pij .
xi x j1
y j y i1
由联合概率密度求连续型r.v.的边缘分布函数

P{Y yj } P{X xi Y yj }, P{Y yj } 0
i, j 1,2,
类似全概率公式(求边缘分布律)
P{ X xi } pij P{ X xi ,Y y j }
j 1
j 1
P{ X xi Y y j } P{Y y j }, P{Y y j } 0, i 1, 2, j1
Y X x1 xi p• j
y1
p11 pi1
p•1
yj
p1 j pij
p•
j
pi•
p1•
pi
1

三、连续型随机变量的边缘概率密度
定义 对于连续型随机变量( X ,Y ), 设它的概率
密度为 f ( x, y),由于
x
FX ( x) F ( x,)
[ f ( x, y)d y]d x,
fX (x)
f ( x, y)d y 0.
因而得
6( x x2 ), 0 x 1,
fX (x)
0,
其他.
y
(1,1)
y x
O
y x2 x
当 0 y 1时,
y
(1,1)
fY ( y)
f (x, y)d x
y
y 6d x
y x ●
O

y x2
x
6( y y).
当 y 0 或 y 1时,
k 1
i 1, 2,
【练习】已知(X,Y)的联合分布律
X Y
0
1
2
0 3/28 9/28 3/28
1 1/14 5/14 0
2 1/28 0 0
求:Y=1时, X的条件分布律.
例1 把三个球等可能地放入编号为 1, 2, 3 的三个盒子 中, 每盒可容球数无限. 记 X 为落入 1 号盒的球数, Y 为落入 2 号盒的球数,求 (1) 在Y = 0 的条件下,X 的条件分布律; (2) 在 X = 2 的条件下,Y 的条件分布律.
f (x, y)
1
2σ1σ2 1 ρ2
1
exp
2(1
ρ2
)
(
x
μ1 )2 σ12
2
ρ
(
x
μ1 )( y σ1 σ2
μ2
)
(
y
μ2 σ22
)2
x , y , 其中 μ1, μ2 ,σ1,σ2 , ρ 都是常数,且 σ1 0, σ2 0, 1 ρ 1. 试求二维正态随机变量的边缘概率密度 .
2
,
2 1
,
2
2
,
)
X
~
N
(
1
,
2 1
),
Y
~
N
(
2
,
2 2
)
【说明】 对于确定的1, 2, 1, 2, 当不同时, 对应了
不同的二维正态分布. 在下一章将指出, 对于二维正态
分布而言, 参数正好刻画了X和Y之间关系的密切程度.
思考 边缘分布均为正态分布的随机变量, 其联合分布 一定是二维正态分布吗?
用 P{X x Y y}直接定义, 因为P{Y y} 0, 我们
只能讨论Y取值在y附近的条件下,X的条件分布.
定义 给定y, 对于任意固定的 0, P{ y Y y } 0.
若对于任意实数x, 极限
lim P{X x y Y y } lim P{X x, y Y y }
定义 设 ( X ,Y ) 是二维离散型随机变量, 对于固定
的 j, 若 P{Y y j } pij 0, 则称 i 1
P{ X
xi
Y
yj}
P{X xi ,Y P{Y y j }
yj}
pij , p• j
i 1, 2,
,
为在Y
y
条件下随机变量
j
X
的条件分布律.
对于固定的 i, 若 P{ X xi } pij 0, 则称
②条件分布律满足分布律的充要条件:
(1) P{X
xi
Y
yj}
pij p• j
0,
i 1, 2,
;
(2)
P{ X
i 1
xi
Y
yj}
i 1
pij p• j
1 p• j
i 1
pij
p• j p• j
1.
类似乘法公式(求联合分布律)
P{X xi ,Y yj } P{X xi } P{Y yj X xi }, P{X xi } 0
2
e e dt 1
2 2
( y 2 )2
2
2 2
t2 2
dt dt dx dx
1 dx
1 1 2
fY ( y)
1
2 2
e
(
y 2
2
2 2
)2
Y
~
dx 1
N
(
2
,
2 2
)
1 2 dt
【结论】二维正态分布的两个边缘分布都是一维正态
分布, 并且都不依赖于参数.

(X
,Y
)
~
N (1,
FX
(
x)
F
(
x,
)
x
dx f ( x, y)dy
y
FY ( y) F (, y)
dy
f ( x, y)dx
二、二维离散型随机变量的xi,Y=yj}=pij,i,j=1,2,…
P{ X xi } P{ X xi , (Y y j )} j 1
条件概率密度满足概率密度的充要条件:
(1) f X Y ( x y) 0 ;
(2)
f X Y ( x y)dx
f ( x, y)dx
fY ( y) 1 .
fY ( y)
fY ( y)
利用条件概率密度可计算Y=y条件下, 与X有关的事
件的条件概率:
P{ X L Y y} L fX Y ( x y)dx

f (x, y)
fX Y ( x y) fY ( y)
1
e
1 2(1
2
)
(
x
1
2 1
)2
2
(
x
1
)( y 1 2
2
)
(
y
2
2 2
)2
21 2 1 2
2(1
y 2 2
2)
)
2
21 2 1 2
f (x, y)
1
21 2 1 2
1
21 2 1 2
e e
相关文档
最新文档