6比例尺正比例反比例解读
新人教版数学六年级下册第四单元《比例》教材解读

请输入标题
教学建议 教学建议
请输入文本请输入文本
1.唤醒学请生输入的文本请生输入文活本 经 验。
2.激发学生的学习热 情。
4
教材直接说明“按2:1放大,就是把各边的长 放大到原来的2倍。”理解了“2:1”的意义 后,学生就可自主完成图形放大的过程,体验 图形放大的特点。
让学生观察放大前后的图形,比较它们的内角、 边长、周长,发现放大前后的图形,大小变了, 但形状没变,体会相似图形对应线段比相等、 对应角相等的特点。 让学生观察到图形按一定的比缩小,也满足 “大小变了,但形状没变”。
教材编排了一组图形放大与缩小的生活现象 的图片。突出强调通过对放大与缩小的生活 现象(如照相、用放大镜看书、投影仪放大 图表、人和影子等)观察比较分析,初步感 知图形按一定的比放大或缩小后,只是大小 发生变化,形状没有变化,从而体会图形的 相似变化特点。
“你知道吗?”介绍的是在计算机上处理图片 时放大或缩小的最基本方法,很多学生可能已 有过这样的使用经验。通过这样的例子,一方 面可以更好地激发学生的学习热情,另一方面 使学生感受数学在生活中的广泛应用。
在认识了正比例关系图像的基础上,再让学生 直接利用图像根据其中一个量的值找到另一个 量的值,体会利用数形结合的方法解决问题的 直观性与便捷性。
请输入标题
教学建议 教学建议
请输入文本请输入文本 请输入文本请输入文本
1.加强数形结合,使 学生经历生成正比例 图象的过程,自主探 索图象的特征。
2.引导学生利用数形 结合思考问题。
检 验 学生 是 否 可以灵活的运用比例的概念和判 定方法两种途径,来判断两个比是否可以组成 比例。
教学建议
1.引导学生辨析不同 形式的比例的内项与 外项。 2.引导学生自主探究 比例的基本性质。 3.加强4个数组成比 例判定方法的教学。
正比例与反比例比例尺

0 30 60 90km
1. 生活中有哪些成正比例的例子? 2. 生活中有哪些成反比例的例子?
判断下列各题中的两个量是否成比例,成什么比例? 并说明理由。 1 用砖块铺地,每块砖的大小和所需的块数。 ( 反比例 ) 2 比的前项一定,比的后项与比值。( 反比例 ) 3 圆柱的侧面积一定,底面周长和高。 ( 反比例 ) 4 六一班的出勤率一定,出勤人数和总人数 。 ( 正比例 ) 5 一条绳的长度一定,剪去部分和剩下的部分.( 不成比例 ) 6 圆锥的体积一定,底面积和高 。( 反比例 ) 7 长方形的周长一定,长和宽 。( 不成比例 ) 8 订阅<少年报>的份数和总价 。 ( 正比例 ) 9 正方形的面积和边长 。( 不成比例 ) 10 圆的直径和周长。( 正比例 )
4.一间大厅,用边长为4分米的方砖铺地,需要用324块。如果改 用边长为3分米的方砖铺,需要多少块?
• 小明家正东方向600米处有座图书大厦,图书大厦西 偏北70度方向400米处有个科技馆,科技馆的东偏南 25度方向800米处有个邮局。选择合适的比例尺,再 平面图上画出这些地点。
.
小明家
正比例、反比例、比例尺
基础知识
(1)正比例的意义:两种相关联的量,一种量 变化,另一种量也随着变化,如果这两种量中 的对应的两个量的比值(或者说商)一定,这 两种量就叫做成正比例的量,它们的关系叫做 正比例关系。 字母公式: y÷x=k(一定) (2)当两个变量成正比例关系时,所绘出的 图 是一条直线,也就是说所有的点都在同 一条直线上。
1.一张精密零件图上的比例尺是5:1,一个零件实际长3毫米,图 上应画多少厘米? 2.在比例尺为1:6000000的地图上,量得两地相距5厘米。甲、 乙两辆汽车同时从两地相向而行,3小时后相遇。已知甲与乙的 速度比是2:3,求甲、乙两辆车的速道,5天安装240米,如果每天安 装的长度一样,那么完成此项任务需要多少天?
正比例反比例讲解

正比例反比例讲解
正比例和反比例是数学中常见的两个概念,它们描述了两个变量之间的关系。
理解这两个概念对于解决实际问题非常重要。
正比例:
当两个变量的值随着彼此的变化而同步增加或减少时,我们说它们成正比例关系。
换句话说,如果一个变量增加或减少了一定数量,另一个变量也会按相同的比例增加或减少,那么这两个变量就成正比例。
例如:
- 如果一个人的工资与工作时间成正比例,那么工作时间增加10%,工资也会增加10%。
- 如果一辆汽车的行驶距离与油箱中汽油量成正比例,那么油箱中汽油量增加20%,行驶距离也会增加20%。
数学上,如果y = kx,其中k是一个非零常数,那么y与x成正比例关系。
反比例:
当一个变量的值增加时,另一个变量的值减少,反之亦然,我们说它们成反比例关系。
也就是说,如果一个变量增加了一定数量,另一个变量会按相同的比例减少,那么这两个变量就成反比例关系。
例如:
- 如果一个人完成一项工作所需的时间与工人数量成反比例,那么工人数量增加25%,完成工作所需时间会减少25%。
- 如果一个圆的面积与半径的平方成反比例,那么半径增加10%,面积会减少19%(因为面积与半径的平方成反比)。
数学上,如果y = k/x,其中k是一个非零常数,那么y与x成反比例关系。
理解正比例和反比例关系对于解决许多实际问题非常有帮助,如计算工资、距离、面积等。
掌握这些概念有助于我们更好地分析和解决现实生活中的问题。
2021年北师大版数学六下第四单元《正比例和反比例》章节知识点、达标训练附解析

北师大版数学六年级下册章节复习知识点、达标训练附解析第四单元《正比例和反比例》知识点一:变化的量1.相互关联的变量在一定条件下的变化是有规律的。
2.列表与画图都可以表示变量之间的变化关系。
分析表格时,要弄清两个变量及相对应的数据;分析图时,要弄清图中横轴、纵轴表示的量的名称,以及图中每一个点所对应的两个量的多少。
3. 一般用含有字母的式子表示有规律的变量的变化规律,应先根据题中的条件写出等量关系式,再将等量关系式用字母表示出来。
知识点二:正比例1.成正比例的量的特征:一个量随着另一个量的变化而变化,在变化过程中这两个量的比值一定。
2.如果用x和y表示两个相关联的量,用k(一定)表示它们的比值,正比例关系可以表示为=k(一定)。
3.判断两个量是否成正比例的方法(1)首先,要确定这两个量是不是相关联的量(其中一个量是否随着另一个量的变化而变化);(2)其次,要根据两个变量之间的数值对应关系,计算出两个变量每一对数值的比值;(3)最后,根据比值是否一定来判断这两个变量是否成正比例。
知识点三:正比例图像1.成正比例的两个量表示的各点在同一条直线上,即正比例图象的特征是一条直线。
2.从正比例图象中可以得出任意一点所表示的意义。
3. 观察正比例图象时,要先明确横轴、纵轴表示的意义,从图象中可以直观地看出两个量的变化情况,不需要计算,由一个量的值可以直接找到与它对应的另一个量的值。
知识点四:反比例1.成反比例的量的特征:一个量随着另一个量的变化而变化,在变化过程中这两个量的积一定。
2.如果用字母x和y表示两个相关联的量,用k(一定)表示它们的乘积,反比例关系可以表示为xy=k(一定)。
3.判断两个量是否成反比例的方法(1)首先,要确定这两个量是不是相关联的量(其中一个量是否随着另一个量的变化而变化);(2)其次,要根据两个变量之间的数值对应关系,计算出两个变量每一对数值的积;(3)最后,根据积是否一定来判断这两个变量是否成反比例。
(完整版)正比例和反比例的意义知识点(可编辑修改word版)

正比例和反比例的意义知识点一:正比例和反比例的意义(1)正比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量变叫做成正比例的量,它们的关系叫做正比例关系。
用字母x 和y 表示两种相关联的量,用k 表示一定的量,那么正比例关系可以写成:y=k (一定)x例如,总价随着数量的变化而变化,总价和数量的比的比值(单价)是一定的,我们就说,总价和数量是成正比例的量。
工总=工效(一定)工总和工时是成正比例的量工时路程=速度(一定)所以路程与时间成正比例。
时间(2)反比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
用字母x 和y 表示两种相关联的量,用k 表示一定的量,那么反比例关系可以写成:x × y = k (一定)例如,长×宽=面积(一定)长和宽是成反比例的量每本的页数×装订的本数=纸的总页数(一定)每本的页数和装订的本数是成反比例的量知识点二:正比例和反比例有什么相同点和不同点?(1)相同点:正、反比例都是研究两种相关联的量之间的关系,即一种量变化,另一种量也随着变化。
(2)不同点:正比例是两种相关联的量中相对应的两个数的比值(商)一定;反比例是两种相关联的量中相对应的两个数的积一定。
不同点知识点三:正比例和反比例的图像是一条什么线?(1)正比例关系的图象是一条过原点的直线。
(2)反比例关系的量是一条不过原点的曲线。
知识点四:正比例和反比例的判断(1)先判断两种量x 和y 是不是相关联的量,即一种量变化,另一种量也随着变化。
(2)若符合y=k (一定),则x 和y 成正比例;若符合x ×y =k (一定),则x 和y 成反x比例;否则,这两种量就不成比例关系。
【典型例题】题型一:根据图标填写信息例 1 :购买面粉的重量和钱数如下表,根据表填空。
人教版六年级数学上册课件:正比例与反比例的意义(共38张PPT)

(也就是商)一定,这两种量就叫做成正比例的量,
它们的关系叫做正比例关系.
x
y
= k(一定)
你知道吗?
意义
三要素
关系式
正比例 关系
两种相关联的量, 1、两种相联的量。
一种量变化,另一种 2、一种增加,另一种
量也随着变化,如果 量也增加;一种减少,
这两种量中相对应的 另一种量也减少。
两个数的比值一定, 这两种量就叫做成正 比例的量,它们的关
……
时间变化,路程也随着变化.
时间扩大,路程随着扩大;
时间和路程是
时间缩小,路程也随着缩小. 两种相关联的量
例题 1、一列火车行驶的时间和所行路程如下表. 时间(时) 1 2 3 4 5 6 7 8 … 路程(千米) 90 180 270 360 450 540 630 720 …
观察下表,回答下面的问题.
答:乙车行完全程需要10小时。
(2).小王家月收入为300 0元,这些钱用于家 庭日常消费与其他开支的比是3: 2,若在其他开 支 中取出一部分用于孩子的教育储蓄,且其他 开支与教育储蓄也是3: 2。 (1) :其他开支与家庭总收入的比为多少? (2):其他开支有多少元? (3):用于教育储蓄是多少元? (4):教育储蓄与家庭总收入之比是多少?
因为
路程 时间
= 速度(一定)
所以 行驶的路程和时间成正比例.
思考
判断下面每题中的两种量是不是成正比例,并 说明理由.
正方形的面积和边长 正方形的面积和边长是两种相关联的量, 边长 1 2 3 4 5 …
面积 1 4 9 16 25 … 比值 1 2 3 4 5 …
因为
正方形面积 边长
=
(完整版)六年级下册正比例和反比例的知识点

知识点:
1变化的量:一种量变化,另一种量也随着变化。
2正比例:意义两种相关的量一种量变化另外一种量也随着变化,如果它们的的比值一定(也就是商一定),那么它们之间就成正比例关系。
A ÷B=K (一定)除法关系 B
A =K (一定)
3判断正比例的关系
两种相关的量,一种量随着另一种的变化而变化(同时扩大或者同时缩小)
当它们比值一定时,成正比例
正比例的图像是:一条直线
4.反比例
意义:两种相关的量,一种量变化,另一种量也随着变化。
如果这两种量中相对应的两个数的积一定,这两种量就叫做反比例关系。
5判断反比例的方法
两种相关的量,一种量变化另一种量随着变化(一种量增加另一种量随着缩小)相反的 积一定 当它们的乘积一定时,成反比例关系
反比例的图像是:一条曲线
6比例尺
比例尺:图上距离和实际距离的比,叫做这幅图的比例尺
图上距离÷实际距离=比例尺 (注意:单位 )
图上距离÷比例尺=实际距离
实际距离×比例尺=图上距离
7比例尺的分类
线段比例尺
数值比例尺
(根据比例尺扩大的就× 根据比例尺缩小就÷)。
六年级数学下册《比例》

练习1:
应用比例来解决一些实际问题
1
小红8分钟走了500米,照这样的速度,她从家里走到学校用了14分钟,小红家离学校大约多少米?
2
练习2: 比例的应用
01
解:设小红家离学校有x米。
02
=500×14
03
=500×14÷8
04
=875
05
答:小红家离学校有875米。
在太阳的照射下,测得某身高为1.75米人的影子长1米长,然后又测得某电线杆的影子长8米,问能求出电线杆的高吗?
4
1
4
10
2
1
4、根据要求写出一个比例式
1)两个外项分别是3和x,两和内项分别是9和12。 2)等号左边的比是x:5,右边比的比值是5。 3)使各项都是整数,且两个比的比值为0.8。
×
×
说说正比例和反比例的意义。
这两种量就叫做成正比例的量,它们的关系叫做正比例关系.
如果这两种量中相对应的两个数的积一定,
梳理相关联的两种量。
判断相关联的两种量成什么比例,
写出关系式。
写“解”,设未知数。
按两种相关联的量所成的比例关系
列出比例式。
解比例。
用自己熟练的方法检验结果是否正
确是否符合题意。
作答。
5、说一说用比例解决问题的步骤:
01
02
03
甲乙两地相距2千米,画在一幅
图上的距离是5厘米,求这幅图
的比例尺。
0.9∶0.6=9∶( ) =3∶( )
6
2
在比例里,两个内项的积等于两个外项的积.
5∶6 = 20∶24
( )×( )=( )×( )
6
20
5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.成反比例的两个量中,一种量扩大,另一种量()
A随着扩大B反而缩小
C没有变化D无法确定
5.饼干的总块数一定,每人分得的块数与人数成_______
6.甲数是乙数的80%,甲数和乙数成____比例
7.a与b成反比例,b与c成正比例,那么a与c成______比例
6.甲数的 是甲乙两数和的 ,甲乙两数的比是( )。
8.一车水果重1.8吨,按2:3:5的比例分配给甲、乙、丙三个水果店,乙水果店分得这批水果的()。
教师教案
教学内容
比例尺、正比例、反比例
教学目标
比例尺、正比例、反比例
重 点
比例尺、正比例、反比例
难 点
比例尺、正比例、反比例
教学准备
教学主管
审核
教离的比,叫做这幅图的比例尺。
图上距离=实际距离×比例尺 实际距离=图上距离÷比例尺
2.比例尺的分类:比例尺根据实际距离是缩小还是扩大,分为缩小比
一幅地图的比例尺是1:100000。下面说法不正确的是( )。
A图上1厘米的距离相当于地面实际距离的100000米
B把实际距离缩小100000倍后,再画在图纸上。
C图上距离相当于实际的 。
做一批零件,甲需要4小时,乙需要3小时,甲与乙的速度比是( )。
A 4:3B 5:4C 3:4
六年级(1)班有科技书和故事书共40本,它们的比可能是( )。
课堂训练
一、填空题
1.在一个比例里,两个外项的积是最小的质数,一个内项是0.5,另一个内项是( )。
2.甲数× =乙数×60%,甲:乙=(: )。
3. 0.75: 化成最简整数比是( )。
4.一幅地图的线段比例尺是,它表示实际距离是图上距离的()倍。
5.在 的图纸上,一个正方形的面积为16平方厘米,它的实际面积是( )m2
正比例关系与反比例关系
成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示 yx=k(一定)
成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用字母表示x×y=k(一定)
2.比例的基本性质
在比例里,两个外项的积等于两个内项的积,这叫比例的基本性质
即:内项×内项=外项×外项
如:1.5:3=1:2
1×3=1.5×2=3
特别地:组成比例的四个数都不能为零。
3.解比例
根据比例的基本性质,如果已知比例中的任何三项就可以求出另外一个未知项,
求比例的未知项,叫做解比例。
解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。
A 5:1B 4:1C 2:5
在一幅云南地图上用4厘米的线段表示实际距离160千米,这幅地图的比例尺是( )。
A B C
比例和比例的性质
1.比例的意义
表示两个比相等的式子叫做比例。
如:a:b=c:d
内项
外项
只要两个比的比值相等,就能组成比例。
比
比例
意义
两个数相除又叫做这两个数的比
表示两个比相等的式子叫做比例
A.笔记本单价一定,数量和总价B汽车行驶路程一定,行驶的速度和时间
C工作总量一定,工作时间和工作效率D一袋大米的质量一定,吃了的和剩下的
2.如果 ,那么x和y()
A成正比例B成反比例
C不成比例D无法判断
3.下列关系中,成反比例的是()
A分数值一定,它的分子和分母的关系
B六(1)班的出勤与缺勤人数
C报纸的单价一定,订阅份数与总价的关系
把四个数组成比例常用的三种方法
①根据比值相等组成比例
②根据比例的基本性质组成比例
③根据从大到小或从小到大的排序组成比例。
例如1:4=5:20(或20:5=4:1),所以1,4,5,20可以组成比例
解比例的方法:
根据比例的基本性质解比例,先把比例转化成外项乘积相等的形式(即方程),再通
过解方程来求出未知项的值。(注:在转化过程中比例的内项、外项要严格区分)
正比例关系与反比例关系的异同点:
正比例关系
反比例关系
相同点
1.都是两种相关联的量
2.一种量随着另一种量变化
1.“变化方向”相同,一种量扩大或缩小,另一种量也扩大或缩小
1.“变化方向”相反,一种量扩大或缩小,另一种量反而缩小或扩大
不同点
2.相对应的两个数的比值(商)一定
2.相对应的两个数的乘积一定
3.关系式: =k(一定)
3.关系式:xy=k(一定)
正反比例关系的判断:
判断正比例与反比例的关系时应注意的问题
1.先判断两个量是不是相关联的量
2.再判断两种量中相对应的两个数积一定还是商一定,如果积一定,这两种量就成反比例关系;如果商一定,这两种量就成正比例关系
##正比例函数的图像是一条直线!
跟踪训练
1.下面各题中成正比例的是()
在一个比例式中,两个外项都是质数,它们的积是39,一个内项是这个积的20%,这个比例式可以是()。
甲、乙两地的实际距离是360千米,在一幅地图上量得它们之间的距离是7.2厘米,这幅地图的比例尺是()。
一个长方形操场,长110米,宽90米。把它画在比例尺是 的图纸上,长画()厘米,宽画( )厘米。
甲、乙两地之间的距离是120千米,在比例尺是 的地图上,这段距离应该画()厘米。
构成
由两项组成,分别叫做比的前项和后项
由四项组成,两端的两项叫做比例的外项,中间的两项叫做比例的内项
基本
性质
比的前项和后项同时乘或除以相同的数(0除外),比值不变
在比例里,两个外项的积等于两个内项的积
比与比例的区别:
判断两个比能否组成比例的方法。
①可以分别求出它们的比值,看比值是否相等。
②可以利用比例的基本性质,看两个外项之积是否等于两个内项之积
例尺和放大比例尺。
根据表现形式的不同,比例尺还可分为线段比例尺和数值比例尺。
3.比例尺的应用:
已知比例尺和图上距离,求实际距离
比例尺=图上距离÷实际距离 图上距离=实际距离×比例尺
实际距离=图上距离÷比例尺
习题
甲数的 等于乙数的 ,甲乙两个数的最简单的整数比是(),比值是( )。
在一幅云南地图上,要把实际距离224千米用线段5.6厘米表示出来,请你计算这幅地图的比例尺是()。