一次函数实际应用解题技巧及专项训练测试题(含答案)
一次函数实际应用题_含答案

一次函数实际应用问题练习1、一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y(百元)关于观众人数x(百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y(百元)关于观众人数x(百人)的函数解析式和成本费用s(百元)关于观众人数x(百人)的函数解析式;⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费)1、解:⑴由图象可知:当0≤x≤10时,设y关于x的函数解析y=kx-100,∵(10,400)在y=kx-100上,∴400=10k-100,解得k=50∴y=50x-100,s=100x-(50x-100),∴s=50x+100⑵当10<x≤20时,设y关于x的函数解析式为y=mx+b,∵(10,350),(20,850)在y=mx+b上,∴ 10m+b=350 解得 m=5020m+b=850 b=-150∴y=50x-150 ∴s=100x-(50x-150)-50∴s=50x+100∴y= 50x-100 (0≤x≤10)50x-150 (10<x≤20)令y=360 当0≤x≤10时,50x-100=360 解得x=9.2 s=50x+100=50×9.2+100=560 当10<x≤20时,50x-150=360解得x=10.2 s=50x+100=50×10.2+100=610。
要使这次表演会获得36000元的毛利润.要售出920张或1020张门票,相应支付的成本费用分别为56000元或61000元。
2甲乙两名同学进行登山比赛,图中表示甲乙沿相同的路线同时从山脚出发到达山顶过程中,个自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:⑴分别求出表示甲、乙两同学登山过程中路程s(千米)与时间t(时)的函数解析式;(不要求写出自变量的取值范围)⑵当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;⑶在⑵的条件下,设乙同学从A点继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B处与乙同学相遇,此时点B与山顶距离为1.5千米,相遇后甲、乙各自沿原路下山和上山,求乙到大山顶时,甲离山脚的距离是多少千米?12623S(千米)t(小时)CD EF B甲乙2、解:⑴设甲、乙两同学登山过程中,路程s (千米)与时间t (时)的函数解析式分别为s 甲=k 1t ,s 乙=k 2t 。
第19章 一次函数 解题技巧专题:利用一次函数解决实际问题(含答案)

解题技巧专题:利用一次函数解决实际问题——明确不同类型的图象的端点、折点、交点等的意义◆类型一费用类问题一、建立一次函数模型解决问题1.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价;(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数解析式;(3)小明家5月份用水26吨,则他家应交水费多少元?二、分段函数问题2.为更新果树品种,某果园计划新购进A,B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种树苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数解析式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.三、两个一次函数图象结合的问题3.随着互联网的发展,互联网消费逐渐深入人们生活,如图是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,下列说法:①“快车”行驶里程不超过5公里计费8元;②“顺风车”行驶里程超过2公里的部分,每公里计费1.2元;③A点的坐标为(6.5,10.4);④从哈尔滨西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元.其中正确的个数有()A.1个B.2个C.3个D.4个四、分类讨论思想4.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲,y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?一、两个一次函数图象结合的问题5.A,B两地相距60 km,甲、乙两人从两地出发相向而行,甲先出发,图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是________(填l1或l2);甲的速度是________km/h,乙的速度是________km/h;(2)甲出发多长时间两人恰好相距5 km?二、分段函数问题6.暑假期间,小刚一家乘车去离家380 km的某景区旅游,他们离家的距离y(km)与汽车行驶的时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5 h后离目的地有多远?一、两个一次函数图象结合的问题7.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖2天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x=2或6时,甲、乙两队所挖管道长度都相差100米.正确的有________(填序号).二、分段函数问题8.根据卫生防疫部门的要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数解析式.参考答案与解析1.解:(1)设每吨水的政府补贴优惠价为m 元,市场价为n 元.由题意得⎩⎪⎨⎪⎧14m +(20-14)n =49,14m +(18-14)n =42,解得⎩⎪⎨⎪⎧m =2,n =3.5. 答:每吨水的政府补贴优惠价为2元,市场价为3.5元.(2)当0≤x ≤14时,y =2x ;当x >14时,y =14×2+(x -14)×3.5=3.5x -21.综上所述,y =⎩⎪⎨⎪⎧2x (0≤x ≤14),3.5x -21(x >14). (3)∵26>14,∴小明家5月份水费为3.5×26-21=70(元).答:小明家5月份应交水费70元.2.解:(1)当0≤x ≤20时,设y 与x 的函数解析式为y =ax ,把(20,160)代入y =ax 中,得a =8.即y 与x 的函数解析式为y =8x ;当x >20时,设y 与x 的函数解析式为y =kx +b ,把(20,160),(40,288)代入y =kx +b 中,得⎩⎪⎨⎪⎧20k +b =160,40k +b =288,解得⎩⎪⎨⎪⎧k =6.4,b =32,即y 与x 的函数解析式为y =6.4x +32.综上所述,y 与x 的函数解析式为y =⎩⎪⎨⎪⎧8x (0≤x ≤20),6.4x +32(x >20). (2)∵B 种树苗的数量不超过35棵,但不少于A 种树苗的数量,∴⎩⎪⎨⎪⎧x ≤35,x ≥45-x ,∴22.5≤x ≤35.设总费用为W 元,则W =6.4x +32+7(45-x )=-0.6x +347.∵k =-0.6<0,∴y 随x 的增大而减小,∴当x =35,45-x =10时,总费用最低,即购买B 种树苗35棵,A 种树苗10棵时,总费用最低,W 最低=-0.6×35+347=326(元).3.D4.解:(1)设y 甲=kx ,把(2000,1600)代入,得2000k =1600,解得k =0.8,所以y 甲=0.8x .当0<x <2000时,设y 乙=ax ,把(2000,2000)代入,得2000k =2000,解得k =1,所以y 乙=x .当x ≥2000时,设y 乙=mx +n ,把(2000,2000),(4000,3400)代入,得⎩⎪⎨⎪⎧2000m +n =2000,4000m +n =3400,解得⎩⎪⎨⎪⎧m =0.7,n =600,所以y 乙=⎩⎪⎨⎪⎧x (0<x <2000),0.7x +600(x ≥2000). (2)当0<x <2000时,0.8x <x ,到甲商店购买更省钱;当x ≥2000时,若到甲商店购买更省钱,则0.8x <0.7x +600,解得x <6000;若到乙商店购买更省钱,则0.8x >0.7x +600,解得x >6000;若到甲、乙两商店购买一样省钱,则0.8x =0.7x +600,解得x =6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.5.解:(1)l 2 30 20 解析:由题意可知,乙的函数图象是l 2,甲的速度是602=30(km/h),乙的速度是603=20(km/h).故答案为l 2,30,20. (2)设甲出发x h 两人恰好相距5 km.由题意30x +20(x -0.5)+5=60或30x +20(x -0.5)-5=60,解得x =1.3或1.5.答:甲出发1.3 h 或1.5 h 两人恰好相距5 km.6.解:(1)从小刚家到该景区乘车一共用了4 h.(2)设线段AB 对应的函数解析式为y =kx +b .把点A (1,80),B (3,320)代入得⎩⎪⎨⎪⎧k +b =80,3k +b =320,解得⎩⎪⎨⎪⎧k =120,b =-40.∴y =120x -40(1≤x ≤3). (3)当x =2.5时,y =120×2.5-40=260,380-260=120(km).故小刚一家出发2.5h 后离目的地120km.7.①②④8.解:(1)暂停排水需要的时间为2-1.5=0.5(h).∵排水时间为3.5-0.5=3(h),一共排水900m 3,∴排水孔的排水速度是900÷3=300(m 3/h).(2)当2≤t ≤3.5时,设Q 关于t 的函数解析式为Q =kt +b ,易知图象过点(3.5,0).∵当t =1.5时,排水300×1.5=450(m 3),此时Q =900-450=450,∴点(2,450)在直线Q =kt +b上.把(2,450),(3.5,0)代入Q =kt +b ,得⎩⎪⎨⎪⎧2k +b =450,3.5k +b =0,解得⎩⎪⎨⎪⎧k =-300,b =1050,∴Q 关于t 的函数解析式为Q =-300t +1050.。
中考数学总复习《一次函数的实际应用》专项测试卷-附参考答案

中考数学总复习《一次函数的实际应用》专项测试卷-附参考答案学校:___________姓名:___________班级:___________考号:___________一、单选题(共12题;共24分)1.货车和轿车分别沿同一路线从A地出发去B地,已知货车先出发10分钟后,轿车才出发,当轿车追上货车5分钟后,轿车发生了故障,花了20分钟修好车后,轿车按原来速度的910继续前进,在整个行驶过程中,货车和轿车均保持各自的速度匀速前进,两车相距的路程y(米)与货车出发的时间x(分钟)之间的关系的部分图象如图所示,对于以下说法:①货车的速度为1500米/分;②OA//CD;③点D的坐标为(65,27500);④图中a的值是4703,其中正确的结论有()个A.1B.2C.3D.42.如图所示,l甲,l乙分别是甲、乙两弹簧的长y(cm) 与所挂物体质量x(kg)之间函数关系的图象,设甲弹簧每挂1kg物体伸长的长度为k甲cm,乙弹.簧每挂1kg物体伸长的长度为k乙cm,则k甲与k乙的关系是()A.k甲>k乙B.k甲=k乙C.k甲<k乙D.不能确定3.为了节省空间,食堂里的饭碗一般是摆起来存放的,如果6只饭碗(注:饭碗的大小形状都一样,下同)摆起来的高度为15cm,9只饭碗摆起来的高度为21cm,食堂的碗橱每格的高度为35cm,则一摞碗最多只能放()只.A.20B.18C.16D.154.甲、乙两人沿同一条笔直的公路相向而行,甲从A地前往B地,乙从B地前往A地.甲先出发3分钟后乙才出发.当甲行驶到6分钟时发现重要物品忘带,立刻以原速的32掉头返回A地.拿到物品后以提速后的速度继续前往B地,二人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,下列说法不正确的是()A.乙的速度为240m/minB.两人第一次相遇的时间是896分钟C.B点的坐标为(3,3520)D.甲最终达到B地的时间是853分钟5.一辆汽车和一辆摩托车分别从A,B两地沿同一路线去同一个城市,它们离A地的路程随时间变化的图象如图所示.则下列结论:(1)摩托车比汽车晚到1h;(2)A,B两地的路程为20km;(3)摩托车的速度为45km/h,汽车的速度为60km/h;(4)汽车出发1小时候与摩托车相遇,此时距B地40千米;(5)相遇前摩托车的速度比汽车的速度慢.其中正确结论的个数是()A.2个B.3个C.4个D.5个6.某水果超市以每千克3元的价格购进某种水果若干千克,销售一部分后,根据市场行情降价销售,销售额y(元)与销售量x(千克)之间的关系如图所示.若该水果超市销售此种水果的利润为110元,则销售量为()A.130千克B.120千克C.100千克D.80千克7.A,B两地相距300km,甲、乙两人分别开车从A地出发前往B地,其中甲先出发1ℎ,甲,乙两人行驶路程y甲(km),y乙(km)与行驶时间x(ℎ)之间的函数关系如图所示,当乙追上甲时,则乙出发的时间是().A.4ℎB.2.5ℎC.1.5ℎD.1ℎ8.图1是我国青海湖最深处的某一截面图,青海湖水面下任意一点A的压强p(单位:cmHg)与其离水面的深度h(单位:m)的函数解析式为P=kℎ+P0,其图象如图2所示,其中P0为青海湖水面大气压强,k为常数且k≠0.根据图中信息分析(结果保留一位小数),下列结论正确的是()A.青海湖水深16.4m处的压强为188.6cmHgB.青海湖水面大气压强为76.0cmHgC.函数解析式P=kℎ+P0中自变量h的取值范围是ℎ≥0D.P与h的函数解析式为P=9.8×105ℎ+769.武鸣今年沃柑大丰收,希望育才中学初三年级开展了“双减”下劳动实践活动.同学们先从教室出发到果园摘果,再按原路返回教室,同学们离教室的距离y(单位:m)与所用时间t(单位:min)之间的函数关系如图所示,下列说法错误的是()A.教室距离果园1200mB.从教室去果园的平均速度是80m/minC.在果园摘果耗时16minD.从果园返回教室的平均速度是60m/min10.甲、乙两人在直线跑道上同起点、同终点、同方向匀速运动600米,先到终点的人在终点处休息.已知甲先出发2秒.在运动过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则下列结论正确的是()A.b=200,c=150B.b=192,c=150C.b=200,c=148D.b=192,c=14811.小红从劳动基地出发,步行返回学校,小军骑车从学校出发去劳动基地,在基地停留10分钟后,沿原路以原速返回,结果比小红早7分钟回到学校,若两人都是沿着同一路线行进,且两人与学校的距离s(米)和小红从劳动基地出发所用时间t(分)之间的函数关系如图所示,则下列说法中正确的结论有()个①学校到劳动基地距离是2400米;②小军出发53分钟后回到学校;③小红的速度是40米/分;④两人第一次相遇时距离学校1610米.A.1B.2C.3D.412.如图,元旦期间,某移动公司推出两种不同的收费标准:A种方式是月租20元,B种方式是月租0元,一个月本地网内打出时间t(分)与打出电话费s(元)的函数关系图象,当打出200分钟时,这两种方式的电话费相差()A.15元B.20元C.25元D.30元二、填空题(共6题;共15分)13.已知平面直角坐标系中,O为坐标原点,点A坐标为(0,8),点B坐标为(4,0),点E是直线y=x+4上的一个动点,若∠EAB=∠ABO,则点E的坐标为14.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差S(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法:①乙先到达科技馆;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中,正确的是(填序号).15.学校举办庆元旦智力竞赛,竞赛的记分方法是:开始前,每位参赛者都有100分作为底分,竞赛中每答对一个问题加10分,答错或不答得0分.代表某班参赛的小亮答对问题为x个,小亮的竞赛总得分为y(分),那么y与x之间的关系式为.16.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离S(km)与慢车行驶时间t(h)之间的函数图象如图所示,则快车到达甲地时,慢车距离甲地km.17.“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折,若购买种子数量为xkg,付款金额为y元.当0≤x≤2时,y与x的函数解析式为;当x>2时y与x的函数解析为.18.如图,反映了甲离开A的时间与离A地的距离的关系,反映了乙离开A地的时间与离A地的距离之间的关系,根据图象填空:(1)当时间为2小时时,甲离A地千米,乙离A地千米;(2)当时间为6小时时,甲离A地千米,乙离A地千米;(3)当时间时,甲、乙两人离A地距离相等;(4)当时间时,甲在乙的前面,当时间时,乙超过了甲;(5)对应的函数表达式为,对应的函数表达式为.三、综合题(共6题;共67分)19.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.小贝按照政策投资销售本市生产的一种品牌衬衫.已知这种品牌衬衫的成本价为每件120元,出厂价为每件165元,每月销售量y (件)与销售单价x(元)之间的关系近似满足一次函数:y=−3x+900.(1)小贝在开始创业的第1个月将销售单价定为180元,那么政府这个月为他承担的总差价为多少元?(2)设小贝获得的利润为w(元),当销售单价为多少元时,每月可获得最大利润?(3)物价部门规定,这种品牌衬衫的销售单价不得高于250元,如果小贝想要每月获得的利润不低于19500元,那么政府每个月为他承担的总差价最少为多少元?20.某医药研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中含药量y与时间t之间近似满足如图所示曲线:(1)分别求出t≤12和t≥12时,y与t之间的函数关系式;(2)据测定:每毫升血液中含药量不少于4微克时治疗疾病有效,假如某病人一天中第一次服药为7:00,那么服药后几点到几点有效?21.某大型水果超市销售水蜜桃,根据前段时间的销售经验,每天的售价x(元/箱)与销售量y (箱)有如下表关系:每箱售价x(元)68676665 (40)每天销量y(箱)40455055 (180)已知y与x之间的函数关系是一次函数.(1)求y与x的函数解析式;(2)水蜜桃的进价是40元/箱,若该超市每天销售水蜜桃盈利1600元,要使顾客获得实惠,每箱售价是多少元?22.为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:港口运费(元/台)甲库乙库A港1420B港108(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.23.小王计划从某批发市场批量购买A、B两种仿古秦兵马俑工艺品摆件,已知A种摆件的批发价比B种摆件的批发价每个少5元,且用400元购买的A种摆件数量与用500元购买的B种摆件数量相同.(1)求A、B两种摆件的单价各是多少?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为50元,若小王购买会员卡并用此卡按需购买100个仿古秦兵马俑工艺品摆件,共用了y元,设A种摆件购买了x个,请求出y与x之间的函数关系式.若小王共用了1930元,则他购买A、B两种摆件各多少个?24.二轮自行车的后轮磨损比前轮要大,当轮胎的磨损度(%)达到100时,轮胎就报废了,当两个轮的中的一个报废后,自行车就不可以继续骑行了.过去的资料表明:把甲、乙两个同质、同型号的新轮胎分别安装在一个自行车的前、后轮上后,甲、乙轮胎的磨损度(%)y1、y2与自行车的骑行路程x (百万米)都成正比例关系,如图(1)所示:(1)线段OB表示的是(填“甲”或“乙”),它的表达式是(不必写出自变量的取值范围);(2)求直线OA的表达式,根据过去的资料,这辆自行车最多可骑行多少百万米?(3)爱动脑筋的小聪,想了一个增大自行车骑行路程的方案:如图(2),当自行车骑行a百万米后,我们可以交换自行车的前、后轮胎,使得甲、乙两个轮胎在b百万米处,同时报废,请你确定方案中a、b的值.参考答案1.【答案】D2.【答案】A3.【答案】B4.【答案】D5.【答案】C6.【答案】A7.【答案】C8.【答案】A9.【答案】C10.【答案】D11.【答案】B12.【答案】B13.【答案】(4,8)或(﹣12,﹣8)14.【答案】①②③15.【答案】y=10x+10016.【答案】6017.【答案】y=5x;y=4x+218.【答案】15;10;25;30;4;小于4;大于4;s=2.5t+10;s=5t 19.【答案】(1)解:当x=180时y=−3x+900=−3×180+900=360 360×(165−120)=16200,即政府这个月为他承担的总差价为16200元.(2)解:依题意得∵a=−3<0∴当x=210时,w有最大值24300.即当销售单价定为210元时,每月可获得最大利润24300元.(3)解:由题意得:−3(x−210)2+24300=19500解得:x1=250,x2=170∵a=−3<0,抛物线开口向下,∴当170≤x≤250时w≥19500.设政府每个月为他承担的总差价为p元∴p =(165−120)×(−3x +900)=−135x +40500.∵k =−135<0.∴p 随x 的增大而减小∴当x =250时,p 有最小值=6750.即销售单价定为250元时,政府每个月为他承担的总差价最少为6750元.20.【答案】(1)解:当 t ≤12时,设y 1=kt ,图象经过点( 12 ,6) 代入解得:k=12,所以y 1=12t .当t≥ 12 时,设y 2=kt+b ,图象经过点( 12,6)和点(8,0). 代入列出方程组 {12k +b =68k +b =0解得: k =−45,b =325,所以 y 2=−45t +325 . (2)解:∵每毫升血液中含药量不少于4微克时治疗疾病有效∴把y=4代入y 1=12t 得:4=12t解得:t= 13即 13小时=20分钟;7点再过20分钟是7:20; 把y=4代入 y 2=−45t +325 得: 4=−45t +325解得:t=3,7:00再过三个小时也就是10:00.即每毫升血液中含药量不少于4微克时是在服药后 13小时到3小时内有效,即从7:20到10:00有效.21.【答案】(1)解:设y 与x 的函数解析式为y =kx+b (k≠0)将(68,40),(67,45)代入y =kx+b 得: {68k +b =4067k +b =45解得: {k =−5b =380∴y 与x 的函数解析式为y =﹣5x+380.(2)解:依题意得:(x ﹣40)(﹣5x+380)=1600整理得:x 2﹣116x+3360=0解得:x 1=56,x 2=60.∵要使顾客获得实惠∴x =56.答:每箱售价是56元.22.【答案】(1)解:设从甲仓库运x 吨往A 港口,则从甲仓库运往B 港口的有(80﹣x )吨 从乙仓库运往A 港口的有(100﹣x )吨,运往B 港口的有50﹣(80﹣x )=(x ﹣30)吨所以y=14x+20(100﹣x )+10(80﹣x )+8(x ﹣30)=﹣8x+2560x 的取值范围是30≤x≤80(2)解:由(1)得y=﹣8x+2560y 随x 增大而减少,所以当x=80时总运费最小当x=80时,y=﹣8×80+2560=1920此时方案为:把甲仓库的全部运往A 港口,再从乙仓库运20吨往A 港口,乙仓库的余下的全部运往B 港口23.【答案】(1)解:设A 种摆件的单价为x 元,则B 种摆件的单价为(x+5)元依题意,得:400x=500x+5 解得:x =20经检验,x =20是原方程的解,且符合题意∴x+5=25.答:A 种摆件的单价为20元,B 种摆件的单价为25元.(2)解:根据题意,y =20×0.8x+25×0.8(100﹣x )+50=﹣4x+2050当y =1930时,﹣4x+2050=1930解得:x =30100﹣30=70(个)答:他购买A 摆件30个,B 种摆件70个.24.【答案】(1)甲;y=20x(2)解:设直线OA 的表达式为y=mx根据题意得:1.5m=50解得:m= 1003则OA 的解析式是y= 1003x . 当y=100时,100= 1003 x解得:x=3.答:这辆自行车最多可骑行3百万米(3)解:根据题意,得 {1003a +20(b −a)=10020a +1003(b −a)=100解这个方程组,得 {a =158b =154。
八年级数学 一次函数实际应用 练习及答案详解

19.已知某市 2013 年企业用水量 x(吨)与该月应交的水费 y(元)之间的函数关系如图. (1)当 x≥50 时,求 y 关于 x 的函数关系式; (2)若某企业 2013 年 10 月份的水费为 620 元,求该企业 2013 年 10 月份的用水量; (3)为贯彻省委“五水共治”发展战略,鼓励企业节约用水,该市自 2014 年 1 月开始对月用水量 超过 80 吨的企业加收污水处理费,规定:若企业月用水量 x 超过 80 吨,则除按 2013 年收费标准收 取水费外, 超过 80 吨部分每吨另加收 求这个企业该月的用水量.
)
2.已知直线 y=mx+n,其中 m,n 是常数且满足:m+n=6,mn=8,那么该直线经过( A.第二、三、四象限 B.第一、二、三象限 C.第一、三、四象限 ) C.第三象限
)
D.第一、二、四象限
3.一次函数 y=﹣2x+1 的图象不经过下列哪个象限( A.第一象限 B.第二象限
D.第四象限 )
17.如图 1 所示,在 A,B 两地之间有汽车站 C 站,客车由 A 地驶往 C 站,货车由 B 地驶往 A 地.两车同 时出发,匀速行驶.图 2 是客车、货车离 C 站飞路程 y1,y2(千米)与行驶时间 x(小时)之间的函 数关系图象. (1)填空:A,B 两地相距 千米; (2)求两小时后,货车离 C 站的路程 y2 与行驶时间 x 之间的函数关系式; (3)客、货两车何时相遇?
10.小敏从 A 地出发向 B 地行走,同时小聪从 B 地出发向 A 地行走,如图所示,相交于点 P 的两条线段 l1、l2 分别表示小敏、小聪离 B 地距离 y km 与已用时间 x h 之间的关系,则小敏、小聪行走速度分别 是( ) B.3 km/h 和 3 km/h C.4 km/h 和 4 km/h D.4 km/h 和 3 km/h
一次函数实际应用(带解析)

一次函数实际应用(解析版)1.已知A、B两地之间有一条长270千米的公路.甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A 地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止.甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示.(1)乙车的速度为千米/时,a=,b=(2)求甲、乙两车相遇后y与x之间的函数关系式.(3)当甲车到达距B地70千米处时,求甲、乙两车之间的路程.2.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.3.(8分)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y (件),甲车间加工的时间为x (时),y 与x 之间的函数图象如图所示.(1)甲车间每小时加工服装的件数为 件;这批服装的总件数为 件. (2)求乙车间维修设备后,乙车间加工服装的数量y 与x 之间的函数关系式. (3)求甲、乙两车间共同加工完1 000件服装时甲车间所用的时间.4.实验室里,水平桌面上有甲、乙、丙三个高都是10cm 的圆柱形容器(甲、丙的底面积相同),用两个相同的管子在容器的6cm 高度处连通(即管子底离容器底6cm ,管子的体积忽略不计),、现在三个容器中,只有甲中有水,水位高2cm ,如图①所示,若每分钟同时向乙、丙中注入相同量的水,到三个容器都注满水停止,乙、丙容器中的水位h (cm )与注水时间t (min )的图象如图②所示.(1)乙、丙两个容器的底面积之比为 . (2)图②中a 的值为 ,b 的值为 . (3)注水多少分钟后,乙与甲的水位相差2cm ?y (件)5.小明在练习操控航拍无人机,该型号无人机在上升和下落时的速度相同,设无人机的飞行高度为y (米),小明操控无人飞机的时间为x(分),y与x之间的函数图象如图所示.(1)无人机上升的速度为米/分,无人机在40米的高度上飞行了分.(2)求无人机下落过程中,y与x之间的函数关系式.(3)求无人机距地面的高度为50米时x的值.6.某加工厂为赶制一批零件,通过提高加工费标准的方式调动工人的积性.工人每天加工零件获得的加工费y(元)与加工个数x(个)之间的函数图像为折线OA-AB-BC,如图所示.(1)求工人一天加工费不超过20个时零件的加工费.(2)求40≤x≤60时y与x的函数关系式.(3)小王两天一共加工了60个零件,共得到加工费220元,在这两天中,小王一天加工的零件不足20个,求小王第一天加工零件的个数。
一次函数专项训练及答案

一次函数专项训练及答案一、选择题1.若A (x 1,y 1)、B (x 2,y 2)是一次函数y=ax+x-2图像上的不同的两点,记()()1212m x x y y =--,则当m <0时,a 的取值范围是( )A .a <0B .a >0C .a <-1D .a >-1【答案】C【解析】【分析】【详解】∵A (x 1,y 1)、B (x 2,y 2)是一次函数2(1)2y ax x a x =+-=+-图象上的不同的两点,()()12120m x x y y =--<,∴该函数图象是y 随x 的增大而减小,∴a+1<0,解得a<-1,故选C.【点睛】此题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理,是一道基础题.2.如图,函数4y x =-和y kx b =+的图象相交于点()8A m-,,则关于x 的不等式()40k x b ++>的解集为( )A .2x >B .02x <<C .8x >-D .2x <【答案】A【解析】【分析】 直接利用函数图象上点的坐标特征得出m 的值,再利用函数图象得出答案即可.【详解】解:∵函数y =−4x 和y =kx +b 的图象相交于点A (m ,−8),∴−8=−4m ,解得:m =2,故A 点坐标为(2,−8),∵kx +b >−4x 时,(k +4)x +b >0,则关于x 的不等式(k +4)x +b >0的解集为:x >2.故选:A .【点睛】此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键.3.如图,已知一次函数22y x =-+的图象与坐标轴分别交于A 、B 两点,⊙O 的半径为1,P 是线段AB 上的一个点,过点P 作⊙O 的切线PM ,切点为M ,则PM 的最小值为( )A .22B .2C .5D .3【答案】D【解析】【分析】【详解】 解:连结OM 、OP ,作OH ⊥AB 于H ,如图,先利用坐标轴上点的坐标特征:当x=0时,y=﹣x+22=22,则A (0,22),当y=0时,﹣x+22=0,解得x=22,则B (22,0),所以△OAB 为等腰直角三角形,则AB=2OA=4,OH=12AB=2, 根据切线的性质由PM 为切线,得到OM ⊥PM ,利用勾股定理得到PM=22OP OM -=21OP -, 当OP 的长最小时,PM 的长最小,而OP=OH=2时,OP 的长最小,所以PM 的最小值为2213-=.故选D .【点睛】本题考查切线的性质;一次函数图象上点的坐标特征.4.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( )A .图象经过第一、二、四象限B .y 随x 的增大而减小C .图象与y 轴交于点()0,bD .当b x k >-时,0y > 【答案】D【解析】【分析】由k 0<,0b >可知图象经过第一、二、四象限;由k 0<,可得y 随x 的增大而减小;图象与y 轴的交点为()0,b ;当b x k >-时,0y <; 【详解】∵()0,0y kx b k b =+<>,∴图象经过第一、二、四象限,A 正确;∵k 0<,∴y 随x 的增大而减小,B 正确;令0x =时,y b =,∴图象与y 轴的交点为()0,b ,∴C 正确;令0y =时,b x k =-, 当b x k>-时,0y <; D 不正确;故选:D .【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数解析式y kx b =+中,k 与b 对函数图象的影响是解题的关键.5.下列函数(1)y =x (2)y =2x ﹣1 (3)y =1x(4)y =2﹣3x (5)y =x 2﹣1中,是一次函数的有( )A .4个B .3个C .2个D .1个 【答案】B【解析】【分析】分别利用一次函数、二次函数和反比例函数的定义分析得出即可.【详解】解:(1)y =x 是一次函数,符合题意;(2)y =2x ﹣1是一次函数,符合题意;(3)y =1x 是反比例函数,不符合题意;(4)y =2﹣3x 是一次函数,符合题意;(5)y =x 2﹣1是二次函数,不符合题意;故是一次函数的有3个.故选:B .【点睛】此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.6.已知直线3y mx =+经过点(2,0),则关于x 的不等式 30mx +>的解集是( )A .2x >B .2x <C .2x ≥D .2x ≤【答案】B【解析】【分析】求出m 的值,可得该一次函数y 随x 增大而减小,再根据与x 轴的交点坐标可得不等式解集.【详解】解:把(2,0)代入3y mx =+得:023m =+, 解得:32m =-,∴一次函数3y mx =+中y 随x 增大而减小,∵一次函数3y mx =+与x 轴的交点为(2,0),∴不等式 30mx +>的解集是:2x <,故选:B .【点睛】本题考查了待定系数法的应用,一次函数与不等式的关系,判断出函数的增减性是解题的关键.7.一次函数y mx n =-+( )A .mB .m -C .2m n -D .2m n -【答案】D【解析】【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0,=|m﹣n|+|n|=m﹣n﹣n=m﹣2n,故选D.【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.8.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(12,12m),则不等式组mx﹣2<kx+1<mx的解集为()A.x>12B.12<x<32C.x<32D.0<x<32【答案】B 【解析】【分析】由mx﹣2<(m﹣2)x+1,即可得到x<32;由(m﹣2)x+1<mx,即可得到x>12,进而得出不等式组mx﹣2<kx+1<mx的解集为12<x<32.【详解】把(12,12m)代入y1=kx+1,可得1 2m=12k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<32;当kx+1<mx时,(m﹣2)x+1<mx,解得x>12,∴不等式组mx﹣2<kx+1<mx的解集为12<x<32,故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.9.将直线21y x =+向下平移n 个单位长度得到新直线21y x =-,则n 的值为( )A .2-B .1-C .1D .2【答案】D【解析】【分析】直接根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知:直线y=2x+1向下平移n 个单位长度,得到新的直线的解析式是y=2x+1-n ,则1-n=-1,解得n=2.故选:D .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.10.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .k 0<【答案】B【解析】【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k 的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y 随x 的增大而增大,∴k-2>0,∴k >2,故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.11.若实数a 、b 、c 满足a+b+c=0,且a <b <c ,则函数y=ax+c 的图象可能是( )A .B .C .D .【答案】A【解析】【分析】∵a+b+c=0,且a <b <c ,∴a <0,c >0,(b 的正负情况不能确定也无需确定).a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,观察各选项,只有A选项符合.故选A.【详解】请在此输入详解!12.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个B.3个C.4个D.5个【答案】B【解析】【分析】根据图形给出的信息求出两车的出发时间,速度等即可解答.【详解】解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km,可求出速度为69km/h,错误.④慢车6个小时走了276km,可求出速度为46km/h,正确.⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.⑥快车2时出发,14时到达,用了12小时,错误.故答案选B.【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.13.关于一次函数y=3x+m﹣2的图象与性质,下列说法中不正确的是()A.y随x的增大而增大B.当m≠2时,该图象与函数y=3x的图象是两条平行线C.若图象不经过第四象限,则m>2D.不论m取何值,图象都经过第一、三象限【答案】C【解析】【分析】根据一次函数的增减性判断A ;根据两条直线平行时,k 值相同而b 值不相同判断B ;根据一次函数图象与系数的关系判断C 、D .【详解】A 、一次函数y=3x+m ﹣2中,∵k=3>0,∴y 随x 的增大而增大,故本选项正确;B 、当m≠2时,m ﹣2≠0,一次函数y=3x+m ﹣2与y=3x 的图象是两条平行线,故本选项正确;C 、若图象不经过第四象限,则经过第一、三象限或第一、二、三象限,所以m ﹣2≥0,即m≥2,故本选项错误;D 、一次函数y=3x+m ﹣2中,∵k=3>0,∴不论m 取何值,图象都经过第一、三象限,故本选项正确. 故选:C .【点睛】本题考查了两条直线的平行问题:若直线y 1=k 1x+b 1与直线y 2=k 2x+b 2平行,那么k 1=k 2,b 1≠b 2.也考查了一次函数的增减性以及一次函数图象与系数的关系.14.如图所示,已知()121,,2,2A y B y ⎛⎫ ⎪⎝⎭为反比例函数1y x =图象上的两点,动点(),0P x 在x 轴正半轴上运动,当AP BP -的值最大时,连结OA ,AOP ∆的面积是 ( )A .12B .1C .32D .52【答案】D 【解析】【分析】先根据反比例函数解析式求出A ,B 的坐标,然后连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大,利用待定系数法求出直线AB 的解析式,从而求出P '的坐标,进而利用面积公式求面积即可.【详解】当12x =时,2y = ,当2x =时,12y = , ∴11(,2),(2,)22A B .连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大.设直线AB 的解析式为y kx b =+ , 将11(,2),(2,)22A B 代入解析式中得 122122k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩解得152k b =-⎧⎪⎨=⎪⎩ , ∴直线AB 解析式为52y x =-+. 当0y =时,52x =,即5(,0)2P ', 115522222AOP A S OP y '∴=⋅=⨯⨯=. 故选:D .【点睛】 本题主要考查一次函数与几何综合,掌握待定系数法以及找到AP BP -何时取最大值是解题的关键.15.若一次函数y=(k-3)x-1的图像不经过第一象限,则A .k<3B .k>3C .k>0D .k<0【答案】A【解析】【分析】根据图象在坐标平面内的位置关系确定k ,b 的取值范围,从而求解.【详解】解:∵一次函数y=(k-3)x-1的图象不经过第一象限,且b=-1,∴一次函数y=(k-3)x-1的图象经过第二、三、四象限,∴k-3<0,解得k <3.故选A .【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.16.如图,已知直线1y x b =+与21y kx =-相交于点P ,点P 的横坐标为1-,则关于x 的不等式1x b kx +≤-的解集在数轴上表示正确的是( ).A .B .C .D .【答案】D【解析】 试题解析:当x >-1时,x+b >kx-1,即不等式x+b >kx-1的解集为x >-1.故选A .考点:一次函数与一元一次不等式.17.函数()312y m x =+-中,y 随x 的增大而增大,则直线()12y m x =---经过( )A .第一、三、四象限B .第二、三、四象限C .第一、二、四象限D .第一、二、三象限【答案】B【解析】【分析】根据一次函数的增减性,可得310m +>;从而可得10m --<,据此判断直线()12y m x =---经过的象限.【详解】 解:函数()312y m x =+-中,y 随x 的增大而增大, 310m ∴+>,则13m >- 10m ∴--<,∴直线()12y m x =---经过第二、三、四象限.故选:B .【点睛】本题考查了一次函数的性质,正确掌握一次函数图象与系数的关系是解题的关键.即一次函数y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大,图象经过一、三象限;当k <0时,y 随x 的增大而减小,图象经过二、四象限;当b >0时,此函数图象交y 轴于正半轴;当b <0时,此函数图象交y 轴于负半轴.18.函数12y x =-与23y ax =+的图像相交于点(),2A m ,则( )A .1a =B .2a =C .1a =-D .2a =-【答案】A【解析】【分析】将点(),2A m 代入12y x =-,求出m ,得到A 点坐标,再把A 点坐标代入23y ax =+,即可求出a 的值.【详解】 解:函数12y x =-过点(),2A m , 22m ∴-=,解得:1m =-,()1,2A ∴-,函数23y ax =+的图象过点A ,32a ∴-+=,解得:1a =.故选:A .【点睛】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了一次函数图象上点的坐标特征.19.对于一次函数24y x =-+,下列结论正确的是( )A .函数值随自变量的增大而增大B .函数的图象不经过第一象限C .函数的图象向下平移4个单位长度得2y x =-的图象D .函数的图象与x 轴的交点坐标是()0,4【答案】C【解析】【分析】根据一次函数的系数结合一次函数的性质,即可得知A 、B 选项不正确,代入y=0求出与之对应的x 值,即可得出D 不正确,根据平移的规律求得平移后的解析式,即可判断C 正确,此题得解.【详解】解:A 、∵k=-2<0,∴一次函数中y 随x 的增大而减小,故 A 不正确;B 、∵k=-2<0,b=4>0,∴一次函数的图象经过第一、二、四象限,故B 不正确;C 、根据平移的规律,函数的图象向下平移4个单位长度得到的函数解析式为y=-2x+4-4,即y=-2x , 故C 正确;D 、令y=-2x+4中y=0,则x=2,∴一次函数的图象与x 轴的交点坐标是(2,0)故D 不正确.故选:C .【点睛】此题考查一次函数的图象以及一次函数的性质,解题的关键是逐条分析四个选项.本题属于基础题,难度不大,解决该题时,熟悉一次函数的性质、一次函数图象上点的坐标特征以及一次函数图象与系数的关系是解题的关键.20.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( ) A .24y x =-B .24y x =+C .22y x =+D .22y x =-【答案】A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4, 故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.。
《一次函数的性质及运用》专题练习(含答案)

《一次函数的性质及运用》专题练习(时间:90分钟满分:100分)一、选择题(每小题3分,共30分)1.下列图像中,表示y是x的函数有( )A.1个B.2个C.3个D.4个2.下列函数中自变量的取值范围选取错误的是( )A.y=x2中x取全体实数B.y=11x-中x≠0C.y=11x+中x≠-1 D.y=1x-中x≥13.某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x升,如果每升汽油2.6元,则油箱内汽油的总价y(元)与x(升)之间的函数关系是( )A.y=2.6x(0≤x≤20) B.y=2.6x+26(0<x<30)C.y=2.6x+10(0≤x<20) D.y=2.6x+26(0≤x≤20)4.在某次实验中,测得两个变量m和v之间的4组对应数据如下表:则m与v之间的关系最接近于下列各关系式中的( )A.v=2m B.v=m2+1 C.v=3m-1 D.v=3m+15.已知一次函数y=kx+b,若当x增加3时,y减小2,则k的值是( )A.-23B.-32C.23D.326.在直线y=12x+12上且到x轴或y轴距离为1的点有( )A.1个B.2个C.3个D.4个7.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图像如图所示,则关于x的不等式k1x+b>k2x的解为( )A.x>-1 B.x<-1 C.x<-2 D.无法确定8.如图所示中的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟应付电话费_______元.( )A.8 B.7.4 C.7 D.6.89.若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图像可能是( )10.一天晚饭后,小明陪妈妈从家里出去散步,下图描述了他们散步过程中离家的距离s(m)与散步时间t(min)之间的函数关系,下面的描述符合他们散步情景的是( )A.从家出发,到了一家书店,看了一会儿书就回家了B.从家出发,到了一家书店,看了一会儿书,继续向前走了一段,然后回家了C.从家出发,一直散步(没有停留),然后回家了D.从家出发,散了一会儿步,到了一家书店,看了一会儿书,继续向前走了一段,18分钟后开始返回二、填空题(每小题3分,共24分)11.已知函数y=1231xx--,x=_______时,y的值是0;x=_______时,y的值是1;x=_______时,函数没有意义.12.已知一次函数y=ax+b(a,b是常数),x与y的部分对应值如下表:那么不等式ax+b>0的解集是_______.13.已知y=(m+3)x28m-是正比例函数,则m=_______.14.当直线y=2x+b与直线y=kx-1平行时,k=_______,b≠_______.15.一个长为120m、宽为100 m的矩形场地要扩建成—个正方形场地,设长增加xm,宽增加ym,则y与x的函数关系式是_______,自变量的取值范围是,且y是x的_______函数.16.直线y=kx+b与直线y=23x-平行,且与直线y=213x+交于y轴上同一点,则该直线的解析式为_______.17.甲、乙两人沿相同路线前往离学校12 km的地方参加植树活动,图中l甲,l乙分别表示甲、乙两人前往目的地所行驶的路程s(km)随时间t(min)变化的函数图像,则每分钟乙比甲多行驶_______km.18.五一某超市搞促销活动:①一次性购物不超过150元不享受优惠;②一次性购物超过150元但不超过500元一律九折;③一次性购物超过500元一律八折.王宁两次购物分别付款120元,432元,若王宁一次性购买与上两次相同的商品,则应付款_______元,三、解答题(共46分)19.(4分)某工人上午7点上班至11点下班,一开始他用15分钟做准备工作,接着每隔15分钟加工完1个零件.(1)求他在上午时间y(时)与加工完零件x(个)之间的函数关系式;(2)他加工完第一个零件是几点?(3)8点整他加工完几个零件?(4)上午他可加工完几个零件?20.(8分)已知点Q与点P(2,3)关于x轴对称,一个一次函数的图像经过点Q,且与y 轴的交点M与原点距离为5,求这个一次函数的解析式.21.(8分)如图,一个正比例函数与一个一次函数的图像交于点A(4,3),一次函数的图像与y轴交于点B,且OA=OB,求这两个函数的解析式.22.(8分)某气象研究中心观测一场沙尘暴从发生到结束的全过程,开始时风速平均每小时增加2 km,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4 km,一段时间,风速保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减小1 km,最终停止.结合风速与时间的图像,回答下列问题:(1)在y轴括号内填入相应的数值;(2)沙尘暴从发生到结束,共经过多少小时?(3)求出当x≥25时,风速y(km/h)与时间x(h)之间的函数关系式;(4)若风速达到或超过20 km/h,称为强沙尘暴,则强沙尘暴持续多长时间?23.(8分)(2013.山西)某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要,两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是_______;乙种收费的函数关系式是_______;(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?24.(10分)如图①所示是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽的水匀速注入乙槽,甲、乙两个水槽中水的深度y( cm)与注水时间x(min)之间的关系如图②所示.根据图像提供的信息,解答下列问题:(1)图②中折线ABC表示_______槽中水的深度与注水时间的关系,线段DE表示_______槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点B的纵坐标表示的实际意义是_______;(2)注水多长时间时,甲、乙两个水槽中水的深度相同?(3)若乙槽底面积为36 cm2(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112 cm3,求甲槽底面积.(壁厚不计,直接写出结果)参考答案1.B 2.B 3.D 4.B 5.A 6.C 7.B 8.B 9.A 10.D11.12251312.x<113.314.2-115.y=x+20 x≥0 一次16.y=-13x-1317.3 518.48019.(1)y=14x+714.(2)加工完第一个零件是7点30分.(3)8点整可加工完3个零件.(4)上午他可加工完15个零件.20.一次函数解析式为y=-4x+5或y=x-5.21.y=34x,y=2x-5.22.(1)8 32 (2)57小时.(3)y=-x+57( 25≤x≤57).(4)强沙尘暴持续30小时.23.(1)y1=0.1x+6 y2=0.12x.(2)甲种方式合算.24.(1)乙甲铁块的高度为14 cm (2)2 min (3)84(cm3).(4)甲槽底面积为60 cm2.。
(word版)初中求一次函数解析式专项练习30题(含答案解析),文档

范文范例精心整理求一次函数解析式专项练习1.A〔2,﹣1〕,B〔3,﹣2〕,C〔a,a〕三点在同一条直线上.1〕求a的值;2〕求直线AB与坐标轴围成的三角形的面积.2.如图,直线l与x轴交于点A〔﹣,0〕,与y轴交于点B〔0,3〕1〕求直线l的解析式;2〕过点B作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.3.一次函数的图象经过〔 1,2〕和〔﹣2,﹣1〕,求这个一次函数解析式及该函数图象与x轴交点的坐标.4.如下列图,直线l是一次函数y=kx+b的图象.1〕求k、b的值;2〕当x=2时,求y的值;3〕当y=4时,求x的值.5.一次函数y=kx+b的图象与x轴交于点A〔﹣6,0〕,与y轴交于点B.假设△AOB的面积为12,求一次函数的表达式.6.一次函数y=kx+b,当x=﹣4时,y的值为9;当x=6时,y的值为3,求该一次函数的关系式.word完美格式范文范例精心整理7.y与x+2成正比例,且x=0时,y=2,求:1〕y与x的函数关系式;2〕其图象与坐标轴的交点坐标.8.如果y+3与x+2成正比例,且x=3时,y=7.〔1〕写出y与x之间的函数关系式;〔2〕画出该函数图象;并观察当x取什么值时,y<0?9.直线y=kx+b是由直线y=﹣x平移得到的,此直线经过点A〔﹣2,6〕,且与x轴交于点B.〔1〕求这条直线的解析式;〔2〕直线y=mx+n经过点B,且y随x的增大而减小.求关于x的不等式mx+n<0的解集.10.y与x+2成正比例,且x=1时,y=﹣6.1〕求y与x之间的函数关系式,并建立平面直角坐标系,画出函数图象;2〕结合图象求,当﹣1<y≤0时x的取值范围.11.y﹣2与2x+1成正比例,且当x=﹣2时,y=﹣7,求y与x的函数解析式.12.y与x﹣1成正比例,且当x=﹣5时,y=2,求y与之间的函数关系式.13.一次函数的图象经过点A〔,m〕和B〔,﹣1〕,其中常量m≠﹣1,求一次函数的解析式,并指出图象特征.(14.一次函数y=〔k﹣1〕x+5的图象经过点〔1,3〕.(1〕求出k的值;(2〕求当y=1时,x的值.word完美格式范文范例精心整理15.一次函数y=k1x﹣4与正比例函数y=k2x的图象经过点〔2,﹣1〕.1〕分别求出这两个函数的表达式;2〕求这两个函数的图象与x轴围成的三角形的面积.16.y﹣3与4x﹣2成正比例,且x=1时,y=﹣1.1〕求y与x的函数关系式.2〕如果y的取值范围为3≤y≤5时,求x的取值范围.17.假设一次函数y=3x+b的图象与两坐标轴围成的三角形面积为24,试求这个一次函数的解析式.18.如果一次函数y=kx+b的变量x的取值范围是﹣2≤x≤6,相应函数值是﹣11≤y≤9,求此函数解析式.19.某一次函数图象的自变量的取值范围是﹣3≤x≤6,相应的函数值的变化范围是﹣5≤y≤﹣2,求这个函数的解析式.20.,直线AB经过A〔﹣3,1〕,B〔0,﹣2〕,将该直线沿y轴向下平移3个单位得到直线MN.1〕求直线AB和直线MN的函数解析式;2〕求直线MN与两坐标轴围成的三角形面积.21.一次函数的图象经过点A〔0,﹣2〕,且与两条坐标轴截得的直角三角形的面积为3,求这个一次函数的解析式.22.如果y+2与x+1成正比例,当x=1时,y=﹣5.〔1〕求出y与x的函数关系式.〔2〕自变量x取何值时,函数值为4?23.y﹣3与4x﹣2成正比例,且当x=1时,y=5,〔1〕求y与x的函数关系式;word完美格式范文范例精心整理2〕求当x=﹣2时的函数值:3〕如果y的取值范围是0≤y≤5,求x的取值范围;4〕假设函数图象与x轴交于A点,与y轴交于B点,求S△AOB.24.y﹣3与x成正比例,且x=2时,y=7.〔1〕求y与x的函数关系式;〔2〕当时,求y的值;〔3〕将所得函数图象平移,使它过点〔2,﹣1〕.求平移后直线的解析式.25.:一次函数y=kx+b的图象与y轴的交点到原点的距离为3,且过A〔2,1〕点,求它的解析式.26.一次函数y=〔3﹣k〕x+2k+1.〔1〕如果图象经过〔﹣1,2〕,求k;〔2〕假设图象经过一、二、四象限,求k的取值范围.27.正比例函数与一次函数y=﹣x+b的图象交于点〔2,a〕,求一次函数的解析式.28.y+5与3x+4成正比例,且当x=1时,y=2.1〕求出y与x的函数关系式;2〕设点P〔a,﹣2〕在这条直线上,求P点的坐标.29.一次函数y=kx+b〔k≠0〕在x=1时,y=5,且它的图象与x轴交点的横坐标是6,求这个一次函数的解析式.word完美格式范文范例精心整理30.:关于x的一次函数y=〔2m﹣1〕x+m﹣2假设这个函数的图象与y轴负半轴相交,且不经过第二象限,且m为正整数.〔1〕求这个函数的解析式.〔2〕求直线y=﹣x和〔1〕中函数的图象与x轴围成的三角形面积.word完美格式范文范例精心整理一次函数的解析式30题参考答案:1.〔1〕设直线AB解析式为y=kx+b,4.〔1〕由图象可知,直线l过点〔1,0〕和〔0,〕,依题意,得,解得那么,解得:,∴直线AB解析式为y=﹣x+1∵点C〔a,a〕在直线AB上,∴a=﹣a+1,解得a=;即k=,b=;〔2〕直线AB与x轴、y轴的交点分别为〔1,0〕,〔0,〔2〕由〔1〕知,直线l的解析式为y=x+,1〕∴直线AB与坐标轴围成的三角形的面积为当x=2时,有y=×2+=;2.〔1〕设直线l的解析式为y=kx+b,〔3〕当y=4时,代入y=x+得:4=x+,∵直线l与x轴交于点A〔﹣,0〕,与y轴交于点B〔0,3〕,解得x=﹣5.5.∵图象经过点A〔﹣6,0〕,∴代入得:,∴0=﹣6k+b,解得:k=2,b=3,即b=6k①,∴直线l的解析式为y=2x+3;∵图象与y轴的交点是B〔0,b〕,∴?OB=12,即:,∴|b|=4,∴b1=4,b2=﹣4,〔2〕代入①式,得,,解:分为两种情况:①当P在x轴的负半轴上时,∵A〔﹣,0〕,B〔0,3〕,一次函数的表达式是或∴OP=2OA=3,0B=3,∴AP=3﹣,6.根据题意,得,∴△ABP的面积是×AP×OB=××;②当P在x轴的正半轴上时,解得.∵A〔﹣,0〕,B〔0,3〕,∴OP=2OA=3,0B=3,∴,故该一次函数的关系式是y=﹣x+.∴△ABP的面积是×AP×OB=××.7.〔1〕根据题意,得y=k〔x+2〕〔k≠0〕;3.设一次函数的解析式为y=kx+b〔k≠0〕,由x=0时,y=2得2=k〔0+2〕,解得k=1,所以y与x的函数关系式是y=x+2;由得:,〔2〕由,得;解得:,由,得,∴一次函数的解析式为y=x+1,当y=0时,x+1=0,所以图象与x轴的交点坐标是:〔﹣2,0〕;与y轴的交∴x=﹣1,点坐标为:〔0,2〕.∴该函数图象与x轴交点的坐标是〔﹣1,0〕8.〔1〕∵y+3与x+2成正比例,word完美格式范文范例精心整理∴设y+3=k〔x+2〕〔k≠0〕,∵当x=3时,y=7,7+3=k〔3+2〕,解得,k=2.那么y+3=2〔x+2〕,即y=2x+1;〔2〕从图上可以知道,当﹣1<y≤0时x的取值范围﹣〔2〕由〔1〕知,y=2x+1.2≤x<﹣.令x=0,那么y=1,.令y=0,那么x=﹣,11.∵y﹣2与2x+1成正比例,∴设y﹣2=k〔2x+1〕〔k≠0〕,所以,该直线经过点〔0,1〕和〔﹣,0〕,其图象如∵当x=﹣2时,y=﹣7,∴﹣7﹣2=k〔﹣4+1〕,图所示:∴k=3,∴y=6x+5.12.设y=k〔x﹣1〕,把x=﹣5,y=2代入,得2=〔﹣5﹣1〕k,解得.所以y与x之间的函数关系式是由图示知,当x<﹣时,y<013.设过点A,B的一次函数的解析式为y=kx+b,9.〔1〕一次函数y=kx+b的图象经过点〔﹣2,6〕,且那么m=k+b,﹣1=k+b,与y=﹣x的图象平行,那么y=kx+b中k=﹣1,两式相减,得m+1=k+k,即m+1=〔m+1〕,当x=﹣2时,y=6,将其代入y=﹣x+b,解得:b=4.∵m≠﹣1,那么k=2,那么直线的解析式为:y=﹣x+4;∴b=m﹣1,那么函数的解析式为y=2x+m﹣1〔m≠﹣1〕,其图象是平面〔2〕如下列图:内平行于直线y=2x〔但不包括直线y=2x﹣2〕的一切直∵直线的解析式与x轴交于点B,线∴y=0,0=﹣x+4,14.〔1〕∵一次函数y=〔k﹣1〕x+5的图象经过点〔1,∴x=4,3〕,∴B点坐标为:〔4,0〕,∴3=〔k﹣1〕×1+5.∵直线y=mx+n经过点B,且y随x的增大而减小,∴k=﹣1.∴m<0,此图象与y=﹣x+4增减性相同,〔2〕∵y=﹣2x+5中,当y=1时,1=﹣2x+5∴关于x的不等式mx+n<0的解集为:x>4∴x=2.15.〔1〕把点〔2,﹣1〕代入y=k1x﹣4得:2k1﹣4=﹣1,解得:k1=,10.〔1〕设y=k〔x+2〕,所以解析式为:y=x﹣4;∵x=1时,y=﹣6.把点〔2,﹣1〕代入y=k2x∴﹣6=k〔1+2〕得:2k2=﹣1,k=﹣2.解得:k2=﹣,∴y=﹣2〔x+2〕=﹣2x﹣4.图象过〔0,﹣4〕和〔﹣2,0〕点所以解析式为:y=﹣x;word完美格式范文范例精心整理〔2〕因为函数y=x﹣4与x轴的交点是〔,0〕,且∴函数解析式为y=﹣x+4.两图象都经过点〔2,﹣1〕,因此,函数解析式为y=x﹣6或y=﹣x+4所以这两个函数的图象与x轴围成的三角形的面积是:S=××1=.19.设一次函数解析式为y=kx+b,根据题意①当k>0时,x=﹣3时,y=﹣5,x=6时,y=﹣2,∴解得,16.〔1〕设y﹣3=k〔4x﹣2〕,〔2分〕当x=1时,y=﹣1,∴﹣1﹣3=k〔4×1﹣2〕,∴k=﹣2〔4分〕,∴y﹣3=﹣2〔4x﹣2〕,∴函数解析式为y=﹣8x+7.〔5分〕〔2〕当y=3时,﹣8x+7=3,解得:x=,当y=5时,﹣8x+7=5,解得:x=,∴x的取值范围是≤x≤.17.当x=0时,y=b,当y=0时,x=﹣,∴一次函数与两坐标轴的交点为〔0,b〕〔﹣,0〕,∴三角形面积为:×|b|×|﹣|=24,2即b=144,解得b=±12,∴这个一次函数的解析式为y=3x+12或y=3x﹣1218.根据题意,①当k>0时,y随x增大而增大,∴当x=﹣2时,y=﹣11,x=6时,y=9∴解得,∴函数解析式为y=x﹣6;②当k<0时,函数值随x增大而减小,∴当x=﹣2时,y=9,x=6时,y=﹣11,∴解得,∴函数的解析式为:y= x﹣4;②当k<0时,x=﹣3时,y=﹣2,x=6时,y=﹣5,∴解得,∴函数解析式为y=﹣x﹣3;因此这个函数的解析式为y= x﹣4或y=﹣x﹣3.20.设直线AB的解析式为y=kx+b,∵A〔﹣3,1〕,B〔0,﹣2〕,∴,k=﹣1,∴直线AB的解析式为:y=﹣x﹣2,∵将该直线沿y轴向下平移3个单位得到直线MN,∴直线MN的函数解析式为:y=﹣x﹣5;2〕∵直线MN与x轴的交点为〔﹣5,0〕,与y轴的交点坐标为〔0,﹣5〕,∴直线MN与两坐标轴围成的三角形面积为×|﹣5|×||﹣.21.设与x轴的交点为B,那么与两坐标轴围成的直角三角形的面积=AO?BO,AO=2,∴BO=3,∴点B纵坐标的绝对值是3,∴点B横坐标是±3;设一次函数的解析式为:y=kx+b,当点B纵坐标是3时,B 〔3,0〕,把A〔0,﹣2〕,B〔3,0〕代入y=kx+b,得:k=,b=﹣2,所以:y=x﹣2,当点B纵坐标=﹣3时,B〔﹣3,0〕,把A〔0,﹣2〕,B〔﹣3,0〕代入y=kx+b,word完美格式范文范例精心整理y=kx﹣3,得k=﹣,b=﹣2,过A〔2,1〕,1=2k﹣3,所以:y=﹣x﹣2.k=2.22.〔1〕依题意,设y+2=k〔x+1〕,故解析式为:y=2x﹣3.将x=1,y=﹣5代入,得26.〔1〕∵一次函数y=〔3﹣k〕x+2k+1的图象经过〔﹣k〔1+1〕=﹣5+2,1,2〕,解得k=﹣,∴2=〔3﹣k〕×〔﹣1〕+2k+1,即2=3k﹣2,∴y+2=﹣〔x+1〕,解得k=;即y=﹣﹣;〔2〕把y=4代入y=﹣﹣中,得〔2〕〕∵一次函数y=〔3﹣k〕x+2k+1的图象经过一、﹣﹣3.5=4,二、四象限,解得x=﹣5,即当x=﹣5时,函数值为4∴,23.〔1〕设y﹣3=k〔4x﹣2〕,∵x=1时,y=5,解得,k>3.∴5﹣3=k〔4﹣2〕,故k的取值范围是k>3.解得k=1,27.根据题意,得∴y与x的函数关系式y=4x+1;,解得,,〔2〕将x=﹣2代入y=4x+1,得y=﹣7;所以一次函数的解析式是y=﹣x+3.〔3〕∵y的取值范围是0≤y≤5,28.〔1〕∵y+5与3x+4成正比例,∴0≤4x+1≤5,∴设y+5=k〔3x+4〕,即y=3kx+4k﹣5〔k是常数,且k≠0〕.∵当x=1时,y=2,解得﹣≤x≤1;∴2+5=〔3×1〕k,解得,k=1,〔4〕令x=0,那么y=1;令y=0,那么x=﹣,故y与x的函数关系式是:y=3x﹣1;〔2〕∵点P〔a,﹣2〕在这条直线上,∴A〔0,1〕,B〔﹣,0〕,∴﹣2=3a﹣1,∴S AOB=××1=.解得,a=﹣,△24.〔1〕∵y﹣3与x成正比例,∴P点的坐标是〔﹣,﹣2〕∴y﹣3=kx〔k≠0〕成正比例,把x=2时,y=7代入,得7﹣3=2k,k=2;29.把〔1,5〕、〔6,0〕代入y=kx+b中,得∴y与x的函数关系式为:y=2x+3,,解得,〔2〕把x=﹣代入得:y=2×〔﹣〕+3=2;∴一次函数的解析式是y=﹣x+6.〔3〕设平移后直线的解析式为y=2x+3+b,把点〔2,﹣1〕代入得:﹣1=2×2+3+b,30.〔1〕由题意得:,解得:b=﹣8,故平移后直线的解析式为:y=2x﹣5解得:<m<2,25.根据题意得:当b=3时,又∵m为正整数,y=kx+3,过A〔2,1〕.∴m=1,函数解析式为:y=x﹣1.1=2k+3〔2〕由〔1〕得,函数图象与x轴交点为〔1,0〕与yk=﹣1.轴交点为〔0,﹣1〕,∴解析式为:y=﹣x+3.∴所围三角形的面积为:×1×1=当b=﹣3时,word完美格式。