最新一次函数应用题的解题方法word版本

合集下载

第19章 一次函数 解题技巧专题:利用一次函数解决实际问题(含答案)

第19章 一次函数 解题技巧专题:利用一次函数解决实际问题(含答案)

解题技巧专题:利用一次函数解决实际问题——明确不同类型的图象的端点、折点、交点等的意义◆类型一费用类问题一、建立一次函数模型解决问题1.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价;(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数解析式;(3)小明家5月份用水26吨,则他家应交水费多少元?二、分段函数问题2.为更新果树品种,某果园计划新购进A,B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种树苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数解析式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.三、两个一次函数图象结合的问题3.随着互联网的发展,互联网消费逐渐深入人们生活,如图是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,下列说法:①“快车”行驶里程不超过5公里计费8元;②“顺风车”行驶里程超过2公里的部分,每公里计费1.2元;③A点的坐标为(6.5,10.4);④从哈尔滨西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元.其中正确的个数有()A.1个B.2个C.3个D.4个四、分类讨论思想4.江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲,y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?一、两个一次函数图象结合的问题5.A,B两地相距60 km,甲、乙两人从两地出发相向而行,甲先出发,图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是________(填l1或l2);甲的速度是________km/h,乙的速度是________km/h;(2)甲出发多长时间两人恰好相距5 km?二、分段函数问题6.暑假期间,小刚一家乘车去离家380 km的某景区旅游,他们离家的距离y(km)与汽车行驶的时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5 h后离目的地有多远?一、两个一次函数图象结合的问题7.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖2天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x=2或6时,甲、乙两队所挖管道长度都相差100米.正确的有________(填序号).二、分段函数问题8.根据卫生防疫部门的要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数解析式.参考答案与解析1.解:(1)设每吨水的政府补贴优惠价为m 元,市场价为n 元.由题意得⎩⎪⎨⎪⎧14m +(20-14)n =49,14m +(18-14)n =42,解得⎩⎪⎨⎪⎧m =2,n =3.5. 答:每吨水的政府补贴优惠价为2元,市场价为3.5元.(2)当0≤x ≤14时,y =2x ;当x >14时,y =14×2+(x -14)×3.5=3.5x -21.综上所述,y =⎩⎪⎨⎪⎧2x (0≤x ≤14),3.5x -21(x >14). (3)∵26>14,∴小明家5月份水费为3.5×26-21=70(元).答:小明家5月份应交水费70元.2.解:(1)当0≤x ≤20时,设y 与x 的函数解析式为y =ax ,把(20,160)代入y =ax 中,得a =8.即y 与x 的函数解析式为y =8x ;当x >20时,设y 与x 的函数解析式为y =kx +b ,把(20,160),(40,288)代入y =kx +b 中,得⎩⎪⎨⎪⎧20k +b =160,40k +b =288,解得⎩⎪⎨⎪⎧k =6.4,b =32,即y 与x 的函数解析式为y =6.4x +32.综上所述,y 与x 的函数解析式为y =⎩⎪⎨⎪⎧8x (0≤x ≤20),6.4x +32(x >20). (2)∵B 种树苗的数量不超过35棵,但不少于A 种树苗的数量,∴⎩⎪⎨⎪⎧x ≤35,x ≥45-x ,∴22.5≤x ≤35.设总费用为W 元,则W =6.4x +32+7(45-x )=-0.6x +347.∵k =-0.6<0,∴y 随x 的增大而减小,∴当x =35,45-x =10时,总费用最低,即购买B 种树苗35棵,A 种树苗10棵时,总费用最低,W 最低=-0.6×35+347=326(元).3.D4.解:(1)设y 甲=kx ,把(2000,1600)代入,得2000k =1600,解得k =0.8,所以y 甲=0.8x .当0<x <2000时,设y 乙=ax ,把(2000,2000)代入,得2000k =2000,解得k =1,所以y 乙=x .当x ≥2000时,设y 乙=mx +n ,把(2000,2000),(4000,3400)代入,得⎩⎪⎨⎪⎧2000m +n =2000,4000m +n =3400,解得⎩⎪⎨⎪⎧m =0.7,n =600,所以y 乙=⎩⎪⎨⎪⎧x (0<x <2000),0.7x +600(x ≥2000). (2)当0<x <2000时,0.8x <x ,到甲商店购买更省钱;当x ≥2000时,若到甲商店购买更省钱,则0.8x <0.7x +600,解得x <6000;若到乙商店购买更省钱,则0.8x >0.7x +600,解得x >6000;若到甲、乙两商店购买一样省钱,则0.8x =0.7x +600,解得x =6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.5.解:(1)l 2 30 20 解析:由题意可知,乙的函数图象是l 2,甲的速度是602=30(km/h),乙的速度是603=20(km/h).故答案为l 2,30,20. (2)设甲出发x h 两人恰好相距5 km.由题意30x +20(x -0.5)+5=60或30x +20(x -0.5)-5=60,解得x =1.3或1.5.答:甲出发1.3 h 或1.5 h 两人恰好相距5 km.6.解:(1)从小刚家到该景区乘车一共用了4 h.(2)设线段AB 对应的函数解析式为y =kx +b .把点A (1,80),B (3,320)代入得⎩⎪⎨⎪⎧k +b =80,3k +b =320,解得⎩⎪⎨⎪⎧k =120,b =-40.∴y =120x -40(1≤x ≤3). (3)当x =2.5时,y =120×2.5-40=260,380-260=120(km).故小刚一家出发2.5h 后离目的地120km.7.①②④8.解:(1)暂停排水需要的时间为2-1.5=0.5(h).∵排水时间为3.5-0.5=3(h),一共排水900m 3,∴排水孔的排水速度是900÷3=300(m 3/h).(2)当2≤t ≤3.5时,设Q 关于t 的函数解析式为Q =kt +b ,易知图象过点(3.5,0).∵当t =1.5时,排水300×1.5=450(m 3),此时Q =900-450=450,∴点(2,450)在直线Q =kt +b上.把(2,450),(3.5,0)代入Q =kt +b ,得⎩⎪⎨⎪⎧2k +b =450,3.5k +b =0,解得⎩⎪⎨⎪⎧k =-300,b =1050,∴Q 关于t 的函数解析式为Q =-300t +1050.。

最新八年级数学一次函数解题技巧与方法(实用性强)

最新八年级数学一次函数解题技巧与方法(实用性强)

口诀:常量定时因变定,最终自变必出来。 例题:指出下列函数中的自变量、因变量、常 量。
1. y 22 2 x
2.v 1 sh
3
2 2
3.C 2r
4.s vt 5.s vt.(t是一定的)
解:(1)常量: 2 ,因变量: y ;自变量: x (2)常量: 1 ,因变量: v ;自变量: s, h 3 (3)常量: 2 ,因变量: C ;自变量: r (4)常量:无,因变量: s ;自变量: v, t
(5)常量: t ,因变量: s ;自变量: v 2.如何判断图像是不是函数的图像:划一根穿过 图像并平行于 y 轴的直线,交点仅一个即函数图像。 3.判断一些点是否在函数图像上: 一般将这个点代入函数解析式,使得等号成立 就是这个函数的解。 4.所有函数上含有无数个坐标,在函数里,任意 给出横坐标或纵坐标的值,即可代入函数解析式,求 出另一个值。 (二) 、函数图像识别:
b
k
y 4 2 , x 2
正比例的函数解析式为 y 2 x
注:求解析式关键求 k ,将 k 回带到解析式中即可。 例题:已知 y 与 x 1 成正比例,且过点 2,4 ,求函数 解析式。
解:成正比: y 与 x 1 必存在 k 倍关系。 设函数解析式为 y k x 1, k 0
函数过点 2,4 ,
4 4 k xy 1 2 1 3
函数解析式为 y 4 x 1 4 x 4 3 3 3
3.正比例函数特点: ①自变量次数必为 1;②分母无字母, ③无常数项;④必须含等号; ⑤等号左字母,右单项式; 4.是否为正比例函数的取值与范围求解:
最新探索的一次函数解题技巧方法
一、函数: (一)函数解析式基本构成剖析 1、由三部分组成:自变量(先变量) 、因变量 (后变量) 、常量(含π与不变量) 。 (1) 、自变量:在特定【范围】内,沿着某一 【方向】不断【变化】的量。比如时间不断变化,年 龄在不断改变,树等也是如此。 (2) 、因变量:因为自变量不断【变化而变化】 的值,即再自变量范围内取的一切值。路程随时间的 变化而变化,身高随年龄变化等 ▲①函数值与因变量的区别: 解题求值时我们称因变量就是函数值,寻找关系 是因变量就是因变量。 (3) 、常量:含π与固定不变的量或特别要求不 变的量。比如说常数、赋予字母特殊不变意义的等。 方法:形式上观察发现:自变量就是“=”后面 除了常量的字母,变量就是“=”前面的字母。

一次函数应用型问题的解题分析

一次函数应用型问题的解题分析

识图中寻找出路 画图中体现应用——一次函数应用型问题的解题分析近些年函数应用型问题成为考试的热点,生活中的很多问题通过建立函数模型可以很好的解决.本文通过实例谈谈一次函数图象题的解决策略及考点分析.例1 一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x (h),两车之间的距离为y (km),图中的折线表示y 与x 之间的函数关系. 根据图象进行以下探究.信息读取(1)甲、乙两地之间的距离为 km ;(2)请解释图中点B 的实际意义;(3)求慢车和快车的速度;(4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围;图 1问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时? 详析(1)从图象我们可知y 表示的是两车之间的距离.当两车还没行驶时两车之间的距离是900千米,因此,甲乙两地之间的距离为900 k m.(2)两车相向而行共同行驶了4小时,两车之间的距离是0,说明两车已经相遇.因此,B 处的实际意义是:在B 处两车相遇.(3)由图象可知,慢车12h 行驶的路程为900km ,所以慢车的速度为9007512=(km/h).当慢车行驶4h 时,慢车和快车相遇,两车行驶的路程之和为900km ,所以慢车和快车行驶的速度之和为9002254=(km/h),所以快车的速度为150km/h. 所以,快车的速度是150km/h ,慢车的速度是75km/h. (4)根据题意,快车行驶900 k m ,到达乙地,所以快车行驶9006150=(h)到达乙地,此时两车之间的距离为675450⨯=(km ),所以点C 的坐标为(6,450).设线段BC 所表示的y 与x 之间的函数关系式为y kx b =+,y kx b =+,将(4,0)B ,(6,450)C 代入,得044506k b k b=+⎧⎨=+⎩,解得,225900k b =⎧⎨=-⎩. 所以,BC 的表达式是225900y x =-.自变量x 的取值范围是46x ≤≤.(5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4. 5 h.把 4.5x =代入225900y x =-,得112.5y =.此时,慢车与第一列快车之间的距离等于两列快车之间的距离是l 12.5 km ,所以两列快车出发的间隔时间是112.50.75150=(h),即第二列快车比第一列快车晚出发0. 75h.评析 这是南京2008年中考试题的最后一题.这道试题的出现应该是新课程实施以来,非常具有划时代意义的一道一次函数应用问题.试题的信息大部分要通过学生阅认图象来获得.对学生的阅读能力(从数学的角度来说,就是识图能力)要求比较高,如果能够通过对图象的分析理解图中点,,,A B C D 的实际意义,就能够比较容易的解决这个问题.根据纵坐标的含义(表示两车之间的距离),点A 的意义不难理解,表示开始出发时两车相距900 km;点B 的坐标为(4,0)表示两车行驶了4小时,两车相距0 km ,也就是说此时两车相遇了,根据这一点信息,就可以知道两车的速度和;点C 的意义有难度,点C 是一个转折点,相遇之后两车的距离变化关系在点C 处发生转折,为什么会出现这种情况?深入分析图象,结合点D 的意义:12小时的时候两车又相距900km ,说明两车都到了目的地,然而快车应该比慢车提前到目的地,再加上线段CD 变平缓了说明点C 向后两车之间的距离变化变慢了,这些信息都在说明点C 表示快车已经到达了目的地.有了以上对图像的分析,整个运切过程的思路就清晰了.这道试题很好的一个评价功能就是:考查学生的核心素养中所提及的关键能力——阅读能力.阅读能力是最基础、最关键的学习能力,它直接决定着学生学习效果的好坏和学习效率的高低.从数学学科而言,阅读不仅包括文字的阅读,还包括图象的阅读,图象的阅读要建立在函数意义的理解上,读图的能力直接影响着学生数形结合思想的意一识.从2008年以后这样的试题如雨后春笋,在各地的中考试题中频频出现,继续扮演着考查学生函数应用的角色.例2 小华观察钟面(图l),了解到钟面上的分针每小时旋转360度,时针每小时旋转30度.他为了进一步探究钟面上分针与时针的旋转规律,从下午2:00开始对钟面进行了一个小时的观察.为了探究方便,他将分针与分针起始位置OP (图2)的夹角记为1y ;时针与OP 的夹角记为2y 度(夹角是指不大于平面的角),旋转时间记为t 分钟.观察结束后,利用获得的数据绘制成图象(图3),并求出1y 与t 的函数关系式:16(030)6360(3060)t t y t t ≤≤⎧=⎨-+<≤⎩.请你完成:(1)求出图3中,2y 与t 的函数关系式;(2)直接写出,A B 两点的坐标,并解释这两点的实际意义;(3)若小华继续观察一个小时,请你在图3中补全图象.解析 (1)设2y 与t 的函数关系式为2y kt b =+.∵图象经过(0,60),(60,90)两点,∴606090b k b =⎧⎨+=⎩,解得1260k b ⎧=⎪⎨⎪=⎩. ∴21602y t =+. (2) 120720(,)1111A ,6001080(,)1313B 或写成105(10,65)1111A ,21(46,83)1313B .A 表示分针与时针第一次重合,B 表示时针与OP 的夹角、分针与OP 的夹角相等. (3)如图4.评析 这是2011年淮安市中考第27题,该问题的背景是时钟问题,与学生学习、生活关系密切.但是它避开了追及等俗套的路子,而是研究时针、分钟与起始边夹角的问题,巧妙地建立了函数模型,从而用函数的相关知识去解决实际问题.特别是考查了学生解读图象的能力:时针图象与分针图象的交点,A B 的实际意义的考查让人耳目一新.具体来看,其中问题1考查学生用待定系数确定法确定函数关系式,当然也可以根据时针旋转的速度直接写出函数关系式:问题2的考查对学生识图能力要求很高,,A B 两点的坐标就是两个函数的交点.可以转化为方程组的解.A 的实际意义相对比较容易,B 点的实际意义不深入思考很有可能认为是分针与时针成平角(夹角是180度).其实,根据题目中对1y ,2y 定义可知,它们值相等表示与OP 的夹角相等,因而B 点的实际意义是表示时针与OP 的夹角、分针与OP 的夹角相等.问题3其实进一步考查学生对这两个函数意义的理解,同时体现了对函数图象的绘制考查.本题命制从从取材到问题的设置,都能够看出命题者独具匠心的思考,尤其是能够将一个陈题与一次函数有机结合,让这个陈题有了别样的精彩,更体现了函数知识与生活的紧密相连.这道题很好的评价功能不仅是考查学生的核心素养中所提及的关键能力——阅读能力,也突出了学生表达能力的考查.用科学、准确的语言表达点坐标和含义;用图形来表达对实际问题的理解.考试评价改革是让核心素养落地的最直接、最重要的保障.试题的命制包括立意、情境、设问三个方面.试题的立意是试题的考查目的,情境是实现立意的材料和介质,设问是试题的呈现方式.以上两个一次函数中考试题无论从立意、还是情境,设问都能够很好的考查学生独立思考和运用所学知识分析问题、解决问题的能力.从解题的角度出发,应该重点培养学生读图的能力,数与形是不分家的,只有充分了解图形的含义,尤其是每一个点的含义是解决问题的根本.画图能力的要求提高,也是学生数学表达能力的很好体现,利用所画图象可以更方便、更快捷的解决生活中的问题.。

(完整word版)一次函数方案选择问题

(完整word版)一次函数方案选择问题

利用一次函数选择最佳方案(1)根据自变量的取值范围选择最佳方案:A 、列出所有方案,写出每种方案的函数关系式;B 、画出函数的图象,求出交点坐标,利用图象来讨论自变量在哪个范围内取哪种方案最佳。

(2)根据一次函数的增减性来确定最佳方案:A 、首先弄清最佳方案量与其他量之间的关系,设出最佳方案量和另外一个量,建立函数关系式。

B 、根据条件列出不等式组,求出自变量的取值范围。

C 、根据一次函数的增减性,确定最佳方案。

根据自变量的取值范围选择最佳方案:例1、某校实行学案式教学,需印制若干份数学学案。

印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要。

两种印刷方式的费用y (元)与印刷份数x (份)之间的函数关系如图所示:(1)填空:甲种收费方式的函数关系式是_______ ____。

乙种收费方式的函数关系式是_______ ____。

(2)该校某年级每次需印制100∽450(含100和450)份学案, 选择哪种印刷方式较合算。

例2、某校一名老师将在假期带领学生去北京旅游,甲旅行社说:“如果老师买全票,其他人全部半价优惠,”乙旅行社说:“所有人按全票价的6折优惠,”已知全票价为240元,设学生人数为x ,甲旅行社的收费为甲y (元),乙旅行社的收费为乙y (元)。

(1)分别表示两家旅行社的收费甲y ,乙y 与x 的函数关系式;(2)就学生人数讨论哪家旅行社更优惠;(2)根据一次函数的增减性来确定最佳方案:例3、博雅书店准备购进甲、乙两种图书共100本,购书款不高于2224元,预计这100本图书全部售完的利润(1)有哪几种进书方案?(2)在这批图书全部售出的条件下,(1)中的哪种方案利润最大?最大利润是多少?(3)博雅书店计划用(2)中的最大利润购买单价分别为72元、96元的排球、篮球捐给贫困山区的学校,那么在钱恰好用尽的情况下,最多可以购买排球和篮球共多少个?请你直接写出答案。

(完整word版)一次函数

(完整word版)一次函数

2.2.1 一次函数的性质与图象【学习目标】1.理解一次函数的概念,掌握一次函数的性质.(重点)2.会用一次函数的图象和性质解题.(难点) 【重点】会用一次函数的图象和性质解题 【难点】会用一次函数的图象和性质解题1.一次函数的概念函数 叫做一次函数,它的定义域为R ,值域为R .一次函数的图象是直线,其中k 叫做该直线的斜率,b 叫做该直线在y 轴上的 .一次函数又叫 .2.一次函数的性质(1)平均变化率:即为直线的斜率k ;设(x 1,y 1),(x 2,y 2)为直线上任意两点,则 . (k 与两点在直线上的位置无关).(2)单调性:k >0时,y =kx +b 为增函数,k <0时,y =kx +b 为 .(3)奇偶性:b =0时,y =kx +b 为奇函数(此时为正比例函数),b ≠0时既不是奇函数也不是偶函数. (4)直线y =kx +b 与坐标轴的交点:与x 轴的交点坐标为⎝ ⎛⎭⎪⎪⎫-b k ,0,与y 轴的交点坐标为(0,b ).1.思考辨析(1)函数y =7x是一次函数.( )(2)函数y =2x +3是单调递增函数.( )(3)一次函数y =x -1的图象过第一、二、三象限.( ) 2.设函数f (x )=(2a -1)x +b 在R 上是增函数,则有( ) A .a ≥12 B .a ≤12 C .a >-12 D .a >123.一次函数y =-2x +3的图象与两坐标轴的交点坐标是( )A .(0,3),⎝ ⎛⎭⎪⎪⎫32,0 B .(1,3),⎝ ⎛⎭⎪⎪⎫32,1 C .(3,0),⎝ ⎛⎭⎪⎪⎫0,32 D .(3,1),⎝ ⎛⎭⎪⎪⎫1,32 4.已知一次函数y 1=x 2+2,y 2=x3+3,当x ∈________时,y 1>y 2.【情境引入】(1)已知y =(α+1) x α-1+2是一次函数,则α=______.(2)已知函数y =3mx +2m +1,试求m 为何值时,①这个函数为正比例函数;②这个函数为一次函数;③函数值y随x的增大而减小.[跟踪训练]1.下列函数:①y=-2x,②y=15-6x,③c=7t-35,④y=1x+2,⑤y=13x,⑥y=x2x,其中正比例函数是________,一次函数是________.(填序号)画出函数y=2x+1的图象,利用图象求:(1)方程2x+1=0的根;(2)不等式2x+1≥0的解集;(3)图象与坐标轴的两个交点间的距离.母题探究:(变结论)本例中已知条件不变,求(1)当-3≤y≤3时,x的取值范围?(2)图象与坐标轴围成的三角形的面积.[探究问题]已知函数y=x+1,y=2x,y=-x+1,图2­2­11.上述函数的图象有何特点?2.观察以上图象,试说明函数的单调性.已知函数y=(2m-1)x+1-3m,当m为何值时:(1)这个函数为一次函数;(2)函数值y随x的增大而减小;(3)此函数为奇函数;(4)此函数图象与直线y=x+1的交点在y轴上.[跟踪训练]2.已知f(x)为一次函数且满足4f(1-x)-2f(x-1)=3x+18,求函数f(x)在[-1,1]上的最大值,并比较f(2 017)和f(2 018)的大小.1.过点(3,m)、(m,-4)的一次函数解析式y=25x+b,则实数m的值是( )A.2 B.-4 C.0 D.-22.函数y=kx-1与y=-kx在同一坐标系中的大致图象可能是下图中的( )3.对于函数y=5x+6,y的值随x的值减小而________.4.若一次函数y=(3a-8)x+a-2的图象与两坐标轴都交于正半轴,则a的取值范围是________.5.已知y=(m-1)xm2-3m+3+2是一次函数,且为增函数,求m的值.【课堂小结】【总结反思】一、选择题1.一次函数y=kx+b(k>0,b<0)的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2.函数y=kx+k2-k过点(0,2)且是减函数,则k的值为( )A.-2 B.-1C .-1,2D .1,-23.若函数y =ax 2+x b -1+2表示一次函数,则a ,b 的值分别为( )A.⎩⎪⎨⎪⎧a =1,b =1B.⎩⎪⎨⎪⎧a =0,b =1C.⎩⎪⎨⎪⎧a =0,b =2D.⎩⎪⎨⎪⎧a =1,b =24.一个水池有水60 m 3,现将水池中的水排出,如果排水管每小时排水量为3 m 3,则水池中剩余水量Q 与排水时间t 之间的函数关系是( )A .Q =60-3tB .Q =60-3t (0≤t ≤20)C .Q =60-3t (0≤t <20)D .Q =60-3t (0<t ≤20)5.两条直线y 1=ax +b 与y 2=bx +a 在同一坐标系中的图象可能是下图中的( )二、填空题6.已知点A (-4,a ),B (-2,b )都在直线y =12x +k (k 为常数)上,则a 与b 的大小关系是a ________b (填“>”“<”或“=”).7.一次函数f (x )=(1-m )x +2m +3在[-2,2]上总取正值,则m 的取值范围是________.8.一次函数y =(3a -7)x +a -2的图象与y 轴的交点在x 轴上方,且y 随x 的增大而减小,则a 的取值范围是________.三、解答题9.某航空公司规定乘客所携带行李的质量x (kg)与其运费y (元)由如图2­2­2所示的一次函数确定,求乘客可免费携带行李的最大质量.图2­2­210.已知函数y =(2m +1)x +2-3m ,m 为何值时: (1)这个函数为正比例函数;(2)这个函数为一次函数;(3)函数值y 随x 的增大而增大;(4)这个函数图象与直线y =x +1的交点在x 轴上.[冲A 挑战练]一、选择题1.已知kb <0,且不等式kx +b >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x >-bk ,则函数kx +b >0的图象大致是( )2.过点A (-1,2)作直线l ,使它在x 轴,y 轴上的截距相等,则这样的直线有( )A .1条B .2条C .3条D .4条二、填空题3.已知一次函数y =f (x )的图象过点(0,-3),不等式f (x -1)>0的解集为{x |x >2},则f (x )=________. 4.若一次函数y =f (x )在区间[-1,2]上的最小值为1,最大值为3,则y =f (x )的解析式为________. 三、解答题5.对于每个实数x ,设f (x )取y =x -3,y =-x -4,y =-2三个函数中的最大者,用分段函数的形式写出f (x )的解析式,并求f (x )的最小值.答案1.思考辨析[解析] (1)× 函数y =7x是反比例函数(2)√ 函数y =2x +3的斜率k =2>0,所以函数是单调递增函数.(3)× 一次函数y =x -1的斜率k >0,b <0所以其图象过一、三、四象限. [答案] (1)× (2)√ (3)×2.D [∵y =f (x )为R 上的增函数,∴2a -1>0,∴a >12.]3.A [当x =0时,y =3,过点(0,3);当y =0时,x =32,过点⎝ ⎛⎭⎪⎫32,0,故选A.]4.(6,+∞) [由y 1>y 2可得x 2+2>x3+3,解得x >6,所以x ∈(6,+∞).]解](1)由题意得⎩⎨⎧α+1≠0,α-1=1,解得⎩⎨⎧α≠-1,α=2,即α=2.[答案] 2(2)①若y =3mx +2m +1是正比例函数,则m 应满足⎩⎨⎧m ≠0,2m +1=0.解得m =-12.∴当m =-12时,这个函数是正比例函数.②当m ≠0时,这个函数为一次函数.③根据一次函数性质可知,当m <0时,y 随x 的增大而减小.[规律方法] 对于函数y =kx a +b ,当a =1,k ≠0时,为一次函数;当a =1,k ≠0,b =0时,为正比例函数.[跟踪训练]1.[答案] ①⑤ ①②③⑤轴交点B ⎝ ⎛⎭⎪⎫-12,0,过A 、B 作直线,直线AB 就是函数[解] 因函数y =2x +1的图象与y 轴交点A (0,1),与xy =2x +1的图象.如图所示:(1)直线AB 与x 轴的交点为B ⎝ ⎛⎭⎪⎫-12,0,所以方程2x +1=0的根为x =-12.(2)从图象上可以看到,射线BA 上面的点的纵坐标都不小于零,即y =2x +1≥0.因为射线BA 上点的横坐标满足x ≥-12,∴不等式2x +1≥0的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫xx ≥-12.(3)图象与x 轴的交点为B ⎝ ⎛⎭⎪⎫-12,0,与y 轴交于点A (0,1),因此,|OA |=1,|OB |=12.由勾股定理得:|AB |=|OA |2+|OB |2=12+⎝ ⎛⎭⎪⎫122=52. [规律方法] 解决与图象有关的问题,要做好图,识图分析,注意数形结合思想的应用. 母题探究:[解] (1)过(0,-3)点作平行于x 轴的直线,交直线AB 于点D (-2,-3).过点(0,3)作平行于x 轴的直线,交直线AB 于点C (1,3).从图象中可见,线段DC 上的点的纵坐标满足-3≤y ≤3,而横坐标满足-2≤x ≤1. ∴当-3≤y ≤3时,x 的取值范围为-2≤x ≤1. (2)∵△AOB 是直角三角形, ∴S △AOB =12|OB |·|OA |=12×12×1=14.[探究问题]1.提示:图象都为直线.2.提示:函数y =x +1,y =2x 为增函数,函数y =-x +1为减函数.[思路探究] 本题主要考查一次函数的概念、奇偶性与单调性,第(1)(2)(3)问易求,对于第(4)问要重视方程组的作用.[解] (1)当2m -1≠0,即m ≠12时,此函数为一次函数.(2)根据一次函数的性质,可知当2m -1<0,即m <12时,函数值y 随x 的增大而减小.(3)当2m -1≠0,且1-3m =0,即m =13时,此函数为奇函数.(4)在y =x +1中,令x =0,y =1,∴(0,1)是在y =(2m -1)x +1-3m 的图象上,∴m =0,∴当m =0时,两直线的交点在y 轴上. [规律方法] 一次函数的值域或一次函数的最大值、最小值,常利用一次函数的单调性来求解. [跟踪训练]2.[解] 设f (x )=kx +b (k ≠0).由已知可得4[k (1-x )+b ]-2[k (x -1)+b ]=3x +18.整理,得-6kx +6k +2b =3x +18.∴⎩⎨⎧-6k =3,6k +2b =18,解得⎩⎪⎨⎪⎧k =-12,b =212.∴f (x )=-12x +212,易得f (x )在[-1,1]上为减函数(在R 上也是减函数).∴函数f (x )在[-1,1]上的最大值为f (-1)=11且f (2 017)>f (2 018).1.D [由Δy Δx =-4-m m -3=25,得m =-2.]2.B [在A 中,直线是上升的,知k >0,由曲线的位置知-k >0,即k <0,矛盾;在B 中,曲线的位置正好使k >0,故选B.] 3.减小 [由于一次函数的斜率5>0,所以一次函数是增函数,所以y 值随x 的减小而减小.]4.⎝ ⎛⎭⎪⎫2,83[由题意,得⎩⎨⎧3a -8<0,a -2>0,解得2<a <83.]5.[解]∵函数为一次函数且单调递增,∴⎩⎨⎧m 2-3m +3=1,m -1>0,∴⎩⎨⎧m =1或m =2,m >1.∴m =2.一、选择题1.B [直线y =kx +b (k >0,b <0)经过点(0,b ),在y 轴的负半轴上,且y 是x 的增函数.]2.B [将点的坐标代入函数关系式,得k 2-k =2,即k 2-k -2=0,所以k =-1或k =2,由于一次函数为减函数,即k <0,所以k =-1,故选B.]3.C[若函数为一次函数,则有⎩⎨⎧a =0,b -1=1,即⎩⎨⎧a =0.b =2.]4.B [∵每小时的排水量为3 m 3,t 小时后的排水量为3t m 3,故水池中剩余水量Q =60-3t ,且0≤3t ≤60,即0≤t ≤20.] 5.A [对于A ,y 1中a >0,b <0,y 2中b <0,a >0,y 1和y 2中的a 、b 符号分别相同,故正确; 对于B ,y 1中a >0,b >0,y 2中b <0,a >0,故不正确; 对于C ,y 1中a >0,b <0,y 2中b <0,a <0,故不正确; 对于D ,y 1中a >0,b >0,y 2中b <0,a <0,故不正确.] 二、填空题6.< [过A 、B 两点的直线的斜率为12,则b -a -2--4=12,即b -a 2=12,所以b =a +1,因此a <b .]7.⎝ ⎛⎭⎪⎫-14,+∞[对于一次函数不论是增函数还是减函数,要使函数值在[-2,2]上总取正值,只需⎩⎨⎧f-2>0,f2>0.即⎩⎨⎧2m -2+2m +3>0,2-2m +2m +3>0.解之得m >-14.]8.2<a <73 [∵关于x 的一次函数的图象与y 轴的交点在x 轴上方,且y 随x 的增大而减小,∴⎩⎨⎧3a -7<0a -2>0,解得2<a <73.]三、解答题9.[解] 设题图中的函数解析式为y =kx +b (k ≠0),其中y ≥0.由题图,知点(40,630)和(50,930)在函数图象上,∴⎩⎨⎧630=40k +b ,930=50k +b ,得⎩⎨⎧k =30,b =-570.∴函数解析式为y =30x -570.令y =0,得30x -570=0,解得x =19. ∴乘客可免费携带行李的最大质量为19 kg.10.[解](1)由⎩⎨⎧2m +1≠0,2-3m =0;得⎩⎪⎨⎪⎧m ≠-12,m =23.即m =23;(2)当2m +1≠0时,函数为一次函数,所以m ≠-12;(3)由题意知函数为增函数,即2m +1>0,所以m >-12;(4)直线y =x +1与x 轴的交点为(-1,0),将点的坐标(-1,0)代入函数表达式,得-2m -1+2-3m =0,所以m =15.[冲A 挑战练]一、选择题1.B[由kb <0,得k 与b 异号,由不等式kx +b >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >-bk ,知k >0,所以b <0,因此选B.] 2.B [当直线在两个坐标轴上的截距都为0时,点A 与坐标原点的连线符合题意,当直线在两坐标轴上的截距相等且都不为0时,只有当直线斜率为-1时符合,这样的直线只有一条,因此共2条.]二、填空题3.3x -3 [设一次函数为y =kx +b (k ≠0),因y =f (x )的图象过点(0,-3),所以b =-3.f (x -1)>0,即kx -k -3>0,由题意知,k +3k=2,所以k =3.]4.f (x )=23x +53或f (x )=-23x +73[设f (x )=kx +b (k ≠0)当k >0时,⎩⎨⎧-k +b =1,2k +b =3,即⎩⎪⎨⎪⎧k =23,b =53.∴f (x )=23x +53.当k <0时,⎩⎨⎧-k +b =3,2k +b =1,即⎩⎪⎨⎪⎧k =-23,b =73,∴f (x )=-23x +73.∴f (x )的解析式为f (x )=23x +53或f (x )=-23x +73.]三、解答题5.对于每个实数x ,设f (x )取y =x -3,y =-x -4,y =-2三个函数中的最大者,用分段函数的形式写出f (x )的解析式,并求f (x )的最小值. [解] 在同一坐标系中作出函数y =x -3,y =-x -4,y =-2的图象,如图所示.由⎩⎨⎧y =-x -4,y =-2,得⎩⎨⎧x =-2,y =-2,即A (-2,-2).由⎩⎨⎧y =x -3,y =-2,得⎩⎨⎧x =1,y =-2,即B (1,-2).根据图象,可得函数f (x )的解析式为f (x )=⎩⎨⎧-x -4,x <-2,-2,-2≤x ≤1,x -3,x >1.由上述过程及图象可知,当-2≤x ≤1时,f (x )均取到最小值-2.。

一次函数应用题的解题方法

一次函数应用题的解题方法

一次函数应用题的解题方法一次函数应用题的解题方法一、直接代入法直接代入法是将题目中的关键信息转化为代数式,然后根据函数关系列出一次函数的解析式,最后解决问题的方法。

例如,东风商场的一种毛笔售价为25元,一本书法练本售价为5元。

商场制定了甲、乙两种优惠方式:甲为每购买1支毛笔赠送1本书法练本,乙为按照购买金额打9折付款。

某书法小组想购买10支毛笔和x(x≥10)本书法练本。

1)分别列出甲、乙两种优惠方式下的实际付款金额y甲(元)和y乙(元)与x之间的函数关系式。

2)比较不同数量的书法练本时,哪种优惠方式更省钱。

3)商场允许选择一种或两种优惠方式购买,请设计最省钱的购买方案。

1)y甲=10×25+5(x-10)=5x+200(x≥10)y乙=10×25×0.9+5×x×0.9=225×0.9+4.5x2)比较y甲和y乙的大小,得到:当y甲=y乙时,5x+200=225×0.9+4.5x,解得x=50;当y甲>y乙时,5x+200>225×0.9+4.5x,解得x>50;当y甲<y乙时,5x+200<225×0.9+4.5x,解得x<50.因此,当购买50本书法练本时,两种优惠方式的实际付款相同,可以任选一种;当购买的书法练本数量在10到50之间时,选择甲优惠方式更省钱;当购买的书法练本数量大于50时,选择乙优惠方式更省钱。

3)设按照甲优惠方式购买a(0≤a≤10)支毛笔,则可以获赠a本书法练本。

按照乙优惠方式购买10-a支毛笔和(60-a)本书法练本。

总费用为y=25a+25×0.9×(10-a)+5×(60-a)=495-2a。

因此,当a最大(即a=10)时,y最小。

因此,最省钱的购买方案是先按照甲优惠方式购买10支毛笔,然后按照乙优惠方式购买50本书法练本。

(完整版)一次函数的解题技巧

(完整版)一次函数的解题技巧

一次函数的解题技巧一次函数是初中数学最重要的内容之一,它的知识结构体系非常丰富,在具体的解题过程中会运用到许多重要的思想方法:如数形结合思想,函数思想,转化和化归的思想,综合运用思想等,掌握一次函数的解题技巧,可以提高同学们的学习效率,下面举例说明:一:数形结合思想例1 如图,直线y=ax+b经过点A(-1,-2)和B(-2,0),直线y=2x过点A,则不等式02≤+<bkxx的解集是为:()A.x<-2B.-2<x<-1C.-2<x<0D.-1<x<0分析:根据不等式2x<kx+b<0体现的几何意义得到:直线y=kx+b上,点在点A与点B之间的横坐标的范围.解答:解:不等式2x<kx+b<0体现的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那部分点,显然,这些点在点A与点B之间.故选B.点评:本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.练习1:直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k1x+b<k2x+c的解集为()A .x>1 B.x<1 C.x>﹣2 D.x<﹣2练习2:如图,L甲、L乙分别是甲、乙两弹簧的长ycm与所挂物体质量xkg之间函数关系的图象,设甲弹簧每挂1kg物体伸长的长度为k甲cm,乙弹簧每挂1kg物体伸长的长度为k乙cm,则k甲与k乙的关系是()A.k甲>k乙B.k甲=k乙C.k甲<k乙D.不能确定二:函数思想通过学习函数使我们逐步用函数的观点,方法去思考问题,将已知条件或所给数量关系进行转化,借助函数的图像或性质去解决问题。

例2 育才中学需要添置某种教学仪器.方案1:到商家购买,每件需要8元;方案2:•学校自己制作,每件4元,另外需要制作工具的租用费120元.设需要仪器x件,方案1与方案2的费用分别为y1,y2(元).(1)分别写出y1,y2的函数表达式;(2)当购置仪器多少件时,两种方案的费用相同?(3)若学校需要仪器50件,问采用哪种方案便宜?请说明理由.解:(1)y1=8x,y2=4x+120.(2)y1=y2,则x=30.(3)当x=50时,y1=400,y2=320,∴y2<y1选用方案(2)便宜.练习1• 如图是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买乙家的1件售价约为3元,其中正确的说法是()A.①②B.②③④C.②③D.①②③练习 2 如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程中路程随时间变化的图象(分别是正比例函数图象和一次函数图象),•根据图象解答下列问题:(1)请分别求出表示轮船和快艇行驶过程的函数解析式(不要求写出自变量的取值范围);(2)轮船和快艇在途中(不包括起点和终点)行驶的速度分别是多少?(3)问快艇出发多长时间赶上轮船?三:转化和化归的思想转化和化归思想的核心是把生题转化为熟题,将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题例3 函数y=2x与y=x+1的图象的交点坐标为()分析:根据两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解,所以解方程组即可得到两直线的交点坐标(1,2).考点:1.两条直线相交或平行问题;2.直线上点的坐标与方程的关系.练习1过点(-1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线1+x23-y平行.则在线段AB上,横、纵坐标都是整数的点的坐标是()练习2已知一次函数y=kx+3的图象与直线y=2x平行,那么此一次函数的解析式为()。

八年级数学下册 4.5 一次函数的应用 一次函数的解题方法素材 (新版)湘教版

八年级数学下册 4.5 一次函数的应用 一次函数的解题方法素材 (新版)湘教版

一次函数的解题方法一次函数在实际的应用当中是相当的广泛的,不论是解决实际的问题还是抽象的问题.一次函数的性质的运用是解决这些问题的途径,因此我们具体说明一次函数的解题方法.一、有关产品销售决策问题例 1 某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,图1表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y1与y2的函数解析式;(3)如果你是推销员,应如何选择付费方案?分析:(1)由图可得出每个图象上两点坐标,用待定数系法可求出两函数解析式;(2)根据图象和(1)可说明两种方案;(3)结合图象和(2)可选方案.解:(1)由图象知y1是x的正比例函数,y2是x的一次函数,因而可设y1=kx,y2=mx+n.将(30,600)坐标代入y1=kx,得k=20,所以y1=20x;将(0,300)、(30,600)的坐标分别代入y2=mx+n,解得m=10,n=300.所以y2=10x+300.(2)y1表示不推销产品没有推销费,每推销10件产品得推销费200元;y2表示保底工资300元,每推销10件产品再提成100元.(3)若业务能力强,平均每月能保证推销多于30件,就选择y1付费方案,否则,选择y2付费方案.二、有关气温决策问题例2 春秋季节,由于冷空气的入侵,地面气温急剧下降到0℃以下的天气现象称为“霜冻”,由霜冻导致植物生长受到影响或破坏的现象称为霜冻灾害.某种植物在气温是0℃以下持续时间超过3小时,即遭受霜冻灾害.需采取预防措施.右图是气象台某天分布的该地区气象信息,预报了次日0时-8时气温随时间变化情况,其中0时-5时,5时-8时的图象分别满足一次函数关系,请你根据图中信息,针对这种植物判断次日是否需要采取防霜冻措施,并说明理由.分析:由图象知:0时-5时和5时-8时的图象都满足一次函数关系,故可设111b x k y +=,222b x k y +=,可求得3561+-=x y ,349382-=x y .是否需要采取防霜冻措施,需要知道某种植物是否在气温0℃以下持续时间超过3小时, 当21,y y 分别为0时,分别求出21,x x ,再作差与3比较.解:设0时-5时的一次函数关系式为111b x k y +=,将点(0,3),(5,-3)分别代入可求得3561+-=x y .设5时-8时的一次函数关系式为222b x k y +=,将点(8,5),(5,-3)分别代入可求得349382-=x y .是否需要采取防霜冻措施,需要知道某种植物是否在气温0℃以下持续时间超过3小时,而当21,y y 分别为0时,,849,2521==x x 而38292584912〉=-=-x x .故需要采取防霜冻措施.三、有关运输调配决策问题例3 夏天容易发生腹泻等肠道疾病,益阳市医药公司的甲乙两仓库内分别存在医治腹泻的药品80箱和70箱,现需要将库存的药品调往南县100箱和沅江50箱,已知从甲乙两仓库内运送药品到两地的费用(元∕箱)如下表所示:(1)设从运送到南县的药品为x 箱,求总费用y 元与x 箱之间的函数关系式,并写出x 的取值范围;(2)求出最低费用,并说明总费用最低时的调配方案. 解:(1)由题意知从甲仓库运送到沅江的药品为(80-x ) 箱,从乙仓库运送到南县的药品为(100-x )箱,从乙仓库运送到沅江的药品为(x-30)箱.故y=14x +10(80-x )+20(100-x )+8(x-30)=-8x+2560.(30≤x ≤80).(2)因为在函数y=-8x+2560中,y 随x 的增大而减小,所以x=80时,1920min y (元),总费用最低时调配方案为:甲仓库的80箱全部运往南县,乙仓库的20箱运往南县,50箱运往江.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数应用题的解题方法一.使用直译法求解一次函数应用题所谓直译法就是将题中的关键语句“译”成代数式,然后找出函数关系、列出一次函数解析式,从而解决问题的方法。

例题1.东风商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元。

该商场为促销制定了甲、乙两种优惠办法。

甲:买1支毛笔就赠送1本书法练习本;乙:按购买金额打9折付款。

某校书法兴趣小组打算购买这种毛笔10支,这种书法练习本x(x>=10)本。

(1)分别写出按甲、乙两种优惠办法实际付款金额y甲(元)、y乙(元)与x之间的函数关系式。

(2)比较购买不同数量的书法练习本时,按哪种优惠办法付款最省钱。

(3)如果商场允许既可以选择一种优惠办法购买,也可以用两种优惠办法购买,请你就购买这种毛笔10支和这种书法练习本60本设计一种最省钱的购买方案。

分析:只需根据题意,按要求将文字语言翻译成符号语言,再列出一次函数关系式即可。

解:(1)y甲=10×25+5(x-10)=5x+200(x>=10)y乙=10×25×0.9+5×0.9×x=4.5x+225(x>=10)(2)由(1)有:y甲-y乙=0.5x-25若y甲-y乙=0 解得x=50若y甲-y乙>0 解得x>50若y甲-y乙<0 解得x<50当购买50本书法练习本时,按两种优惠办法购买实际付款一样多,即可任选一种优惠办法付款;当购买本数不小于10且小于50时,选择甲种优惠办法付款省钱;当购买本数大于50时,选择乙种优惠办法付款省钱。

(3)设按甲种优惠办法购买a(0<=a<=10)支毛笔,则获赠a本书法练习本。

则需要按乙种优惠办法购买10-a支毛笔和(60-a)支书法练习本。

总费用为y=25a+25×0.9×(10-a)+5×0.9×(60-a)=495-2a。

故当a最大(为10)时,y最小。

所以先按甲种优惠办法购买10支毛笔得到10本书法练习本,再按乙种优惠办法购买50本书法练习本,这样的购买方案最省钱。

说明:本题属于“计算、比较、择优”型,它运用了一次函数、方程、不等式等知识,解决了最优方案的设计问题。

二.使用列表法求解一次函数应用题列表法就是将题目中的各个量列成一个表格,从而理顺它们之间的数量关系,以便于从中找到函数关系的解题方法。

例题2.某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B 两种产品,共50件。

已知:生产一件A种产品需用甲种原料9kg、乙种原料3kg,可获利润700元;生产一件B种产品需用甲种原料4kg、乙种原料10kg,可获利润1200元。

(1)若安排A、B两种产品的生产,共有哪几种方案?请你设计出来。

(2)设生产A、B两种产品获得的总利润是y元,其中一种产品的生产件数是x,试写出y与x之间的函数关系式,并利用函数的性质说明(1)中的哪种生产方案可以获得最大总利润。

最大的总利润是多少?分析:本题中共出现了9个数据,其中涉及甲、乙两种原料的质量,生产A、B两种产品的总件数及两种产品所获得的利润等。

为了清楚地整理题目所涉及的各种信息,我们可采用列表法。

解:(1)设安排生产A种产品x件,则生产B种产品是(50-x)件产品每件产品需要甲种原料(kg)每件产品需要乙种原料(kg)每件产品利润(元)件数A 9 3 700 xB 4 10 1200 50-x根据题意得:解不等式组,得30<=X<=32因为x是整数,所以x只可取30、31、32,相应的(50-x)的值是20、19、18。

所以,生产的方案有三种:生产A种产品30件,B种产品20件;生产A种产品31件,B种产品19件;生产A种产品32件,B种产品18件。

(2)设生产A种产品的件数是x,则生产B种产品的件数是50-x。

由题意得:y=700x+1200*(50-x)=-500x+60000(其中x只能取30、31、32)因为-500<0所以y随x的增大而减小,当x=30时,y的值最大因此,按(1)中第一种生产方案安排生产,获得的总利润最大最大的总利润是:-500×30+60000=45000(元)说明:本题是先利用不等式的知识,得到几种生产方案,再利用一次函数性质得出最佳生产方案。

三.使用图示法求解一次函数应用题所谓图示法就是用图形来表示题中的数量关系,从而观察出函数关系的解题方法。

此法对于某些一次函数问题非常有效,解题过程直观明了。

例题3.某市的C县和D县上个月发生水灾,急需救灾物资10t和8t。

该市的A县和B县伸出援助之手,分别募集到救灾物资12t和6t,全部赠给C县和D县。

已知A、B两县运资到C、D两县的每吨物资的运费如下表所示:A县B县C县40 30D县50 80(1)设B县运到C县的救灾物资为xt,求总运费w(元)关于x(t)的函数关系式,并指出x的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案。

分析:本题的信息量大,数据也较多,为梳理各个量之间的关系,我们可以采用如下的图示整理信息。

解:(1)w=30x+80(6-x)+40(10-x)+50[12-(10-x)]=-40x+980 自变量x的取值范围是:0<=x<=6(2)由(1)可知,总运费w随x的增大而减小,所以当x=6时,总运费最低。

最低总运费为-40×6+980=740(元)。

此时的运送方案是:把B县的6t全部运到C县,再从A县运4t到C县,A县余下的8t全部运到D县。

说明:本题运用函数思想得出了总运费w与x的一次函数关系。

一次函数应用题专题训练1.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图像. (温馨提示:请画在答题卷相对应的图上)2.春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y(人)与售票时间x(分钟)的关系如图所示,已知售票的前a分钟只开放了两个售票窗口(规定每人只购一张票).(1)求a的值.(2)求售票到第60分钟时,售票听排队等候购票的旅客人数.(3)若要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?3.在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶x (h )后,与.B .港的距离....分别为1y 、2y (km ),1y 、2y 与x 的函数关系如图所示.(1)填空:A 、C 两港口间的距离为 km , a ; (2)求图中点P 的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10 km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.4.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完. ⑴如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工? ⑵如果先进行精加工,然后进行粗加工.①试求出销售利润W 元与精加工的蔬菜吨数m 之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?甲 乙小时)5.某物流公司的甲、乙两辆货车分别从A 、B 两地同时相向而行,并以各自的速度匀速行驶,途径配货站C ,甲车先到达C 地,并在C 地用1小时配货,然后按原速度开往B 地,乙车从B 地直达A 地,图16是甲、乙两车间的距离y (千米)与乙车出发x (时)的函数的部分图像(1)A 、B 两地的距离是 千米,甲车出发 小时到达C 地;(2)求乙车出发2小时后直至到达A 地的过程中,y 与x 的函数关系式及x 的取值范围,并在图16中补全函数图像;(3)乙车出发多长时间,两车相距150千米6.张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图所示.请根据图象回答下列问题:(1)汽车行驶 小时后加油,中途加油 升; (2)求加油前油箱剩余油量y 与行驶时间t 的函数关系式; (3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.7.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?8.自2010年6月1日起我省开始实施家电以旧换新政策,消费者在购买政策限定的新家电时,每台新家电用一台同类的旧家电换取一定数额的补贴.为确保商家利润不受损失,补贴部分由政府提供,其中三种家电的补贴方式如下表:为此,设购进的电视机和洗衣机数量均为x台,这100台家电政府需要补贴y元,商场所获利润w 元(利润=售价-进价)(1)请分别求出y与x和w与x的函数表达式;(2)若商场决定购进每种家电不少于30台,则有几种进货方案?若商场想获得最大利润,应该怎样安排进货?若这100台家电全部售出,政府需要补贴多少元钱?。

相关文档
最新文档