河北省邯郸市2019届中考二模数学试题及答案

合集下载

2019年河北省数学中考模拟试题(2)含答案

2019年河北省数学中考模拟试题(2)含答案

2019年河北省初中毕业生升学文化课模拟考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上. 考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑. 答在试卷上无效. 一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果+30 m 表示向东走30 m ,那么向西走40 m 表示为( ▲ )A . +30 mB .-30 mC . +40 mD .-40 m2.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为( ▲ ) A .6.75×103吨 B . 6.75×104吨C .6.75×105吨D .6.75×10-4吨3. 已知点A (a ,2013)与点A ′(-2019,b )是关于原点O 的对称点,则b a +的值为( ▲ ) A . 1 B . 5 C . 6 D .4 4.如图,已知一商场自动扶梯的长l 为13米,高度h 为5米,自动扶梯与地面所成的夹角为θ,则tan θ的值等于( ▲ ) A .125 B .512 C .135D .1312 5.一组数据2,4,x ,2,4,7的众数是2,则这组数据的平均数、中位数分别为( ▲ ) A .3,4 B .3,3.5 C . 3.5,3 D .4,3 6.反比例函数xm y 3-=(m ≠3)在图象所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是( ▲ ) A .3m <- B . 3m >- C .3m < D . 3m >7.已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是( ▲ )8.用棋子按下列方式摆图形,依此规律,第n 个图形比第(n-1)个图形多(▲ )枚棋子.A .4nB . 5n -4C .4n -3D . 3n -29. 如图,平行四边形ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC =54°,连接AE ,则∠AEB 的度数为( ▲ ) A .27° B .36° C . 46° D .63°10.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止,设点P 运动的路程为x ,△ABP 的面积为y ,y 关于x 的函数图象如图2所示, 则△ABC 的面积是( ▲ )A .4B .3C .2D .111.下列图形中,既是轴对称图形又是中心对称图形的是( ) A.菱形、正方形、平行四边形 B.矩形、等腰三角形、圆 C.矩形、正方形、等腰梯形 D.菱形、正方形、圆12.有下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④两个锐角的和是锐角;⑤同角或等角的补角相等. 正确命题的个数是( ) A.2个 B.3个 C.4个 D.5个 13.若不等式组211x a x a >-⎧⎨<+⎩无解,则a 的取值范围是( )A.2a <B.2a =C.2a >D.2a ≥14.已知,△ABC 中,∠A =90°,∠ABC =30°.将△ABC 沿直线BC 平移得到△111C B A ,1B 为BC 的中点,连结1BA ,则tan BC A 1∠的值为( )(第14题)0 0 3 5 3 5 1414ABCDA B CD P 2 3 x yO 图1A .43 B .53 C .63 D .73 15.一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是( ) A .15个 B .13个 C .11个 D .5个 16.给出以下命题:①已知8215-可以被在60~70之间的两个整数整除,则这两个数是63、65;②若,2=x a ,3=ya 则y x a -2=34; ③已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为6-≠->m m 或; ④若方程x 2-2(m +1)x +m 2=0有两个整数根,且12<m <60, 则m 的整数值有2个. 其中正确的是( )A .①②B .①②④C .①③④ D.②③④ 2019年河北省初中毕业生升学文化课模拟考试数 学 试 卷卷II (非选择题,共78分)注意事项:1.答卷II 前,将密封线左侧的项目填写清楚.2.答卷II 时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.题号 二 三21 22 23 24 25 26 得分总 分 核分人(第15题)二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.一个不透明的袋中装有除颜色外其他均相同的2个红球和3个黄球,从中随机摸出一个黄球的概率是 ▲ .18.若实数a 、b 满足a +b =5,a 2b +ab 2=-10,则ab 的值是 ▲ .19.如图,矩形ABCD 中,AB =8,AD =3.点E 从D 向C 以每秒1个单位的速度运动,以AE 为一边在AE 的右下方作正方形AEFG ,同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当经过 ▲ 秒时,直线MN 和正方形AEFG 开始有公共点? 20.如图,Rt △ABC 的斜边AB 在x 轴上,OA =OB =6,点C 在第一象限,∠A =30°, P (m ,n )是线段BC 上的动点,过点P 作BC 的垂线a ,以直线a 为对称轴,将线段OB 轴对称变换后得线段O ′B ′,(1)当点B ′ 与点C 重合时,m 的值为 ▲ ;(2)当线段O ′B ′与线段AC 没有公共点时,m 的取值范围是 ▲ .三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分9分)如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(217x +)cm ,正六边形的边长为(22x x +)cm (0)x >其中.求这两段铁丝的总长.得 分评卷人得 分评卷人22.(本小题满分10分)已知:图1为一锐角是30°的直角三角尺,其边框为透明塑料制成(内、外直角三角形对应边互相平行且三处所示宽度相等).操作:将三角尺移向直径为6cm 的⊙O ,它的内Rt △ABC 的斜边AB 恰好等于⊙O 的直径,它的外Rt △A ′B ′C ′的直角边A ′C ′ 恰好与⊙O 相切(如图2)。

最新河北省邯郸市2019-2020年最新中考第2次模拟考试数学试卷(含答案)(已纠错)

最新河北省邯郸市2019-2020年最新中考第2次模拟考试数学试卷(含答案)(已纠错)

/ACDB图2初三第二次模拟考试数学试题一、选择题(本大题共16题,1-8小题,9-16小题,每题3分,共40分)1.在3,-1,0,-2这四个数中,最大的数是( ) A .0B .-1C .-2D .32.如图1所示的几何体的俯视图是( )A .B .C .D . 3.一元一次不等式x +1<2的解集在数轴上表示为( )A .B .C .D .4.如图2,AB ∥CD ,AD 平分∠BAC ,若∠BAD =70°,那么∠ACD 的度数为( ) A .40°B .35°C .50°D .45°5.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为( ) A .31B .21 C .32 D .61 6.下列计算正确的是( )A .|-a |=aB .a 2·a 3=a 6C .()2121-=--D .(3)=07.如图3,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A和B 为圆心,大于AB 21的长为半径画弧,两弧相交于C 、D 两点,直线CD即为所求.根据他的作图方法可知四边形ADBC 一定是( )A .矩形B .菱形C .正方形D .无法确定8.已知n 20是整数,则满足条件的最小正整数n 为( ) A .2B .3C .4D .59.如图4,四边形ABCD 是⊙O 的内接四边形,若∠BOD =88°,则∠BCD 的度数是( ) A .88°B .92°C .106°D .136°10.下列因式分解正确的是( )A .m 2+n 2=(m +n )(m -n )B .x 2+2x -1=(x -1)2C .a 2-a =a (a -1)D .a 2+2a +1=a (a +2)+111.下列命题中逆命题是真命题的是( )A .对顶角相等B .若两个角都是45°,那么这两个角相等C .全等三角形的对应角相等D .两直线平行,同位角相等 12.若关于x 的方程x 2﹣4x +m =0没有实数根,则实数m 的取值范围是( )A .m <﹣4B .m >﹣4C .m <4D .m >413.如图5所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,点P 是对角线AC 上一点,若PD +PE 的和最小,则这个最小值为( )A .32B .62C .3D .614.如图6,在平面直角坐标系中,过点A 与x 轴平行的直线交抛物线2)1(31+=x y 于点B 、C ,线段BC 的长度为6,抛物线b x y +-=22与y 轴交于点A ,则b =( ).A .1B .4.5C .3D .615.已知△ABC 在正方形网格中的位置如图7所示,点A 、B 、C 、P 均在格点上,则点P 叫做△ABC 的( )A .外心B .内心C .重心D .无法确定图3CBAD 图4AB图/16.如图8是小李销售某种食品的总利润y元与销售量x千克的函数图象(总利润=总销售额-总成本).由于目前销售不佳,小李想了两个解决方案:方案(1)是不改变食品售价,减少总成本;方案(2)是不改变总成本,提高食品售价.下面给出的四个图象中虚线表示新的销售方式中总利润与销售量的函数图像,则分别反映了方案(1)(2)的图象是()A.②,③B.①,③C.①,④D.④,②二、填空题(本大题共4小题,每题3分,共12分)17.太阳的半径约为696 000千米,用科学记数法表示数696 000为_____________。

河北省邯郸市2019年中考数学模拟试卷及答案(word解析版)

河北省邯郸市2019年中考数学模拟试卷及答案(word解析版)

河北省邯郸市2019年中考数学模拟试卷一、选择题(每题3分,共24分))..4.(3分)(2019•邯郸模拟)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()5.(3分)(2019•邯郸模拟)在一个不透明的袋子中装有4个除颜色外完全相同的小球,其6.(3分)(2019•邯郸模拟)一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半7.(3分)(2019•邯郸模拟)不等式组的解在数轴上表示为()B8.(3分)(2019•邯郸模拟)下列函数:①y=﹣x;②y=2x;③y=﹣;④y=x2(x<0),y二、填空题(每题3分,共18分)9.(3分)(2019•邯郸模拟)分解因式:x2﹣9=(x+3)(x﹣3).10.(3分)(2019•邯郸模拟)如图,已知AB为⊙O的直径,∠CAB=30°,则∠D=60°.11.(3分)(2019•邯郸模拟)如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数y=的图象上,则图中阴影部分的面积等于π(结果保留π).12.(3分)(2019•邯郸模拟)把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D 重合,折痕为EF.若BF=4,FC=2,则∠DEF的度数是60°.13.(3分)(2019•邯郸模拟)如图(1),在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图(2)的思考方式出发列出的方程是(32﹣2x)(20﹣x)=570.14.(3分)(2019•邯郸模拟)用同样大小的小圆按下图所示的方式摆图形,第1个图形需要1个小圆,第2个图形需3个小圆,第3个图形需要6个小圆,第4个图形需要10个小圆,按照这样的规律摆下去,则第n个图形需要小圆()或个(用含n的代数式表示).三、解答题(每题5分,共20分)15.(5分)(2019•邯郸模拟)先化简,再求值:,其中a=﹣1.•﹣﹣1+1=16.(5分)(2019•邯郸模拟)学校组织各班开展“阳光体育”活动,某班体育委员第一次到时商店购买了5个毽子和8根跳绳,花费34元,第二次又去购买了3个毽子和4根跳绳,花费18元,求每个毽子和每个跳绳各多少元?.17.(5分)(2019•邯郸模拟)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树状图或列表法中的一种列举出这辆汽车行驶方向所有可能的结果;(2)求至少有一辆汽车向左转的概率.18.(5分)(2019•邯郸模拟)已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.四、解答题(每题6分,共12分)19.(6分)(2019•邯郸模拟)如图所示,网格中每个小正方形的边长为1,请你认真观察图(1)中的三个网格中阴影部分构成的图案,解答下列问题:(1)这三个图案都具有以下共同特征:都是中心对称图形,都不是轴对称图形.(2)请在图(2)中设计出一个面积为4,且具备上述特征的图案,要求所画图案不能与图(1)中所给出的图案相同.20.(6分)(2019•邯郸模拟)生活经验表明,靠墙摆放的梯子,当50°≤α≤70°时(α为梯子与地面所成的角),能够使人安全攀爬.现在有一长为6米的梯子AB,试求能够使人安全攀爬时,梯子的顶端能达到的最大高度AC.(结果保留两个有效数字,sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)五、解答题(每题6分,共12分)21.(6分)(2019•邯郸模拟)某中学学生为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)参加调查的学生共有300人,在扇形图中,表示“其他球类”的扇形的圆心角为36度;(2)将条形图补充完整;(3)若该校有2000名学生,则估计喜欢“篮球”的学生共有800人.×=36×=80022.(6分)(2019•邯郸模拟)如图,AB是⊙O的直径,AC是弦,CD是⊙O的切线,C 为切点,AD⊥CD于点D.求证:(1)∠AOC=2∠ACD;(2)AC2=AB•AD.六、解答题:(每小题7分,共14分)23.(7分)(2019•邯郸模拟)如图,已知直线AB与x轴交于点C,与双曲线交于A (3,)、B(﹣5,a)两点.AD⊥x轴于点D,BE∥x轴且与y轴交于点E.(1)求点B的坐标及直线AB的解析式;(2)判断四边形CBED的形状,并说明理由.)∵双曲线,)代入,得),==24.(7分)(2019•邯郸模拟)在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD 于点F,取FD的中点G,连接EG、CG,如图(1),易证EG=CG且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图(3),则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.七、解答题:(每小题10分,共20分)25.(10分)(2019•邯郸模拟)如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽中的水匀速注人乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC表示乙槽中水的深度与注水时间之间的关系,线段DE表示甲槽中水的深度与注水时间之间的关系(以上两空选塡“甲”或“乙”),点B的纵坐标表示的实际意义是乙槽中铁块的高度为14cm.(2)注水多长时间时,甲、乙两个水槽中水的深度相同?(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).(直接写成结果)的水的体积和乙槽中流入的水的体积分别相等列二元一次方程组26.(10分)(2019•邯郸模拟)在梯形OABC中,CB∥OA,∠AOC=60°,∠OAB=90°,OC=2,BC=4,以点O为原点,OA所在的直线为x轴,建立平面直角坐标系,另有一边长为2的等边△DEF,DE在x轴上(如图(1)),如果让△DEF以每秒1个单位的速度向左作匀速直线运动,开始时点D与点A重合,当点D到达坐标原点时运动停止.(1)设△DEF运动时间为t,△DEF与梯形OABC重叠部分的面积为S,求S关于t的函数关系式.(2)探究:在△DEF运动过程中,如果射线DF交经过O、C、B三点的抛物线于点G,是否存在这样的时刻t,使得△OAG的面积与梯形OABC的面积相等?若存在,求出t的值;若不存在,请说明理由.s=s=﹣ts=))﹣x xxy=k=y=x+×h=代入﹣x+。

河北省邯郸市2019-2020学年中考数学仿真第二次备考试题含解析

河北省邯郸市2019-2020学年中考数学仿真第二次备考试题含解析

河北省邯郸市2019-2020学年中考数学仿真第二次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在5×5的方格纸中将图①中的图形N平移到如图②所示的位置,那么下列平移正确的是( )A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格2.如图,△ABC是⊙O的内接三角形,∠BOC=120°,则∠A等于()A.50°B.60°C.55°D.65°3.81的算术平方根是()A.9 B.±9 C.±3 D.34.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD 交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.2DE=EB C.3DE=DO D.DE=OB5.如图,等腰三角形ABC底边BC的长为4 cm,面积为12 cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F,若D为BC边上的中点,M为线段EF上一点,则△BDM的周长最小值为( )A.5 cm B.6 cm C.8 cm D.10 cm6.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位7.|﹣3|的值是()A.3 B.13C.﹣3 D.﹣138.若关于x的不等式组221x mx m->⎧⎨-<-⎩无解,则m的取值范围()A.m>3 B.m<3 C.m≤3D.m≥39.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )A.22B.4 C.32D.4210.如图,将函数y=12(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.y=12(x﹣2)2-2 B.y=12(x﹣2)2+7C.y=12(x﹣2)2-5 D.y=12(x﹣2)2+411.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE12.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块二、填空题:(本大题共6个小题,每小题4分,共24分.)13.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛,根据题意,可列方程为_____.14.如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为____________________.15.如图,一次函数y1=kx+b的图象与反比例函数y2=mx(x<0)的图象相交于点A和点B.当y1>y2>0时,x的取值范围是_____.16.已知抛物线y=x2﹣x+3与y轴相交于点M,其顶点为N,平移该抛物线,使点M平移后的对应点M′与点N重合,则平移后的抛物线的解析式为_____.17.如图,折叠长方形纸片ABCD,先折出对角线BD,再将AD折叠到BD上,得到折痕DE,点A的对应点是点F,若AB=8,BC=6,则AE的长为_____.18.如图,将直线y =x 向下平移b 个单位长度后得到直线l ,l 与反比例函数y =5x(x >0)的图象相交于点A ,与x 轴相交于点B ,则OA 2﹣OB 2的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,抛物线y=﹣213x +bx+c 交x 轴于点A (﹣2,0)和点B ,交y 轴于点C (0,3),点D 是x 轴上一动点,连接CD ,将线段CD 绕点D 旋转得到DE ,过点E 作直线l ⊥x 轴,垂足为H ,过点C 作CF ⊥l 于F ,连接DF . (1)求抛物线解析式;(2)若线段DE 是CD 绕点D 顺时针旋转90°得到,求线段DF 的长;(3)若线段DE 是CD 绕点D 旋转90°得到,且点E 恰好在抛物线上,请求出点E 的坐标.20.(6分)如图,在平面直角坐标系中,一次函数y =﹣x+3的图象与反比例函数y =(x >0,k 是常数)的图象交于A (a ,2),B (4,b )两点.求反比例函数的表达式;点C 是第一象限内一点,连接AC ,BC ,使AC ∥x 轴,BC ∥y 轴,连接OA ,OB .若点P 在y 轴上,且△OPA 的面积与四边形OACB 的面积相等,求点P 的坐标.21.(6分)如图,点A .F 、C .D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且 AB=DE ,∠A=∠D ,AF=DC .(1)求证:四边形BCEF 是平行四边形,(2)若∠ABC=90°,AB=4,BC=3,当AF 为何值时,四边形BCEF 是菱形.22.(8分)如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B .求证:△AED ≌△EBC ;当AB=6时,求CD 的长.23.(8分)在平面直角坐标系中,关于x 的一次函数的图象经过点(47)M ,,且平行于直线2y x =. (1)求该一次函数表达式;(2)若点Q (x ,y )是该一次函数图象上的点,且点Q 在直线32y x =+的下方,求x 的取值范围. 24.(10分)如图,已知△ABC 内接于O e ,AB 是直径,OD ∥AC ,AD=OC . (1)求证:四边形OCAD 是平行四边形;(2)填空:①当∠B= 时,四边形OCAD 是菱形; ②当∠B= 时,AD 与O e 相切.25.(10分)先化简,再求值:22222+b a b a b a a ab b a b a -+÷--+-,其中,a 、b 满足2428a b a b -=-⎧⎨+=⎩. 26.(12分)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI )数据,绘制出三幅不完整的统计图表,请根据图表中提供的信息解答下列问题:AQI指数质量等级天数(天)0-50 优m51-100 良44101-150 轻度污染n151-200 中度污染 4201-300 重度污染 2300以上严重污染 2(1)统计表中m= ,n= ,扇形统计图中,空气质量等级为“良”的天数占%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少?27.(12分)如图,将等腰直角三角形纸片ABC对折,折痕为CD.展平后,再将点B折叠在边AC上(不与A、C重合),折痕为EF,点B在AC上的对应点为M,设CD与EM交于点P,连接PF.已知BC=1.(1)若M为AC的中点,求CF的长;(2)随着点M在边AC上取不同的位置,①△PFM的形状是否发生变化?请说明理由;②求△PFM的周长的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据题意,结合图形,由平移的概念求解.【详解】由方格可知,在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是:先向下移动2格,再向左移动1格,故选C.【点睛】本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后物体的位置.2.B【解析】【分析】由圆周角定理即可解答.【详解】∵△ABC是⊙O的内接三角形,∴∠A=12∠BOC,而∠BOC=120°,∴∠A=60°.故选B.【点睛】本题考查了圆周角定理,熟练运用圆周角定理是解决问题的关键. 3.D【解析】【分析】根据算术平方根的定义求解.【详解】,又∵(±1)2=9,∴9的平方根是±1,∴9的算术平方根是1.即81的算术平方根是1.故选:D.【点睛】考核知识点:算术平方根.理解定义是关键.4.D【解析】【详解】解:连接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故选D.5.C【解析】【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】如图,连接AD.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×4×AD=12,解得:AD=6(cm).∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+12BC=6+12×4=6+2=8(cm).故选C.【点睛】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键. 6.D 【解析】A.平移后,得y=(x+1)2,图象经过A 点,故A 不符合题意;B.平移后,得y=(x−3)2,图象经过A 点,故B 不符合题意;C.平移后,得y=x 2+3,图象经过A 点,故C 不符合题意;D.平移后,得y=x 2−1图象不经过A 点,故D 符合题意; 故选D. 7.A 【解析】分析:根据绝对值的定义回答即可. 详解:负数的绝对值等于它的相反数,3 3.-=故选A.点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数. 8.C 【解析】 【分析】根据“大大小小找不着”可得不等式2+m≥2m -1,即可得出m 的取值范围. 【详解】221x m x m ->⎧⎨-<-⎩①②, 由①得:x >2+m , 由②得:x <2m ﹣1, ∵不等式组无解, ∴2+m≥2m ﹣1, ∴m≤3,故选C . 【点睛】考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则得出是解题关键. 9.B 【解析】 【分析】求出AD =BD ,根据∠FBD +∠C =90°,∠CAD +∠C =90°,推出∠FBD =∠CAD ,根据ASA 证△FBD ≌△CAD ,推出CD =DF 即可. 【详解】解:∵AD ⊥BC ,BE ⊥AC , ∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°, ∵∠AFE=∠BFD , ∴∠EAF=∠FBD ,∵∠ADB=90°,∠ABC=45°, ∴∠BAD=45°=∠ABC , ∴AD=BD ,在△ADC 和△BDF 中CAD DBFAD BDFDB ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADC ≌△BDF , ∴DF=CD=4, 故选:B . 【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件. 10.D 【解析】 【详解】 ∵函数()21212y x =-+的图象过点A (1,m ),B (4,n ), ∴m=()211212-+=32,n=()214212-+=3, ∴A (1,32),B (4,3),过A 作AC ∥x 轴,交B′B 的延长线于点C ,则C (4,32),∴AC=4﹣1=3,∵曲线段AB 扫过的面积为9(图中的阴影部分),∴AC•AA′=3AA′=9,∴AA′=3,即将函数()21212y x =-+的图象沿y 轴向上平移3个单位长度得到一条新函数的图象, ∴新图象的函数表达式是()21242y x =-+. 故选D .11.C【解析】解:∵AB=AC ,∴∠ABC=∠ACB .∵以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,∴BE=BC ,∴∠ACB=∠BEC ,∴∠BEC=∠ABC=∠ACB ,∴∠BAC=∠EBC .故选C .点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大. 12.C【解析】 试题分析:根据题意设出未知数,列出相应的不等式,从而可以解答本题.设这批手表有x 块, 550×60+(x ﹣60)×500>55000 解得,x >104 ∴这批电话手表至少有105块考点:一元一次不等式的应用二、填空题:(本大题共6个小题,每小题4分,共24分.)13.12x (x ﹣1)=1 【解析】【分析】赛制为单循环形式(每两队之间都赛一场),x 个球队比赛总场数为12x (x ﹣1),即可列方程. 【详解】有x 个队,每个队都要赛(x ﹣1)场,但两队之间只有一场比赛,由题意得:12x (x ﹣1)=1, 故答案为12x (x ﹣1)=1.【点睛】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 14.(6053,2).【解析】【分析】根据前四次的坐标变化总结规律,从而得解.【详解】第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,1),第五次P5(17,2),…发现点P的位置4次一个循环,∵2017÷4=504余1,P2017的纵坐标与P1相同为2,横坐标为5+3×2016=6053,∴P2017(6053,2),故答案为(6053,2).考点:坐标与图形变化﹣旋转;规律型:点的坐标.15.-2<x<-0.5【解析】【分析】根据图象可直接得到y1>y2>0时x的取值范围.【详解】根据图象得:当y1>y2>0时,x的取值范围是﹣2<x<﹣0.5,故答案为﹣2<x<﹣0.5.【点睛】本题考查了反比例函数与一次函数的交点问题,熟悉待定系数法以及理解函数图象与不等式的关系是解题的关键.16.y=(x﹣1)2+5 2【解析】【分析】直接利用抛物线与坐标轴交点求法结合顶点坐标求法分别得出M、N点坐标,进而得出平移方向和距离,即可得出平移后解析式.【详解】解:y=x2-x+3=(x-12)2+114,∴N点坐标为:(12,114),令x=0,则y=3,∵平移该抛物线,使点M平移后的对应点M′与点N重合,∴抛物线向下平移14个单位长度,再向右平移12个单位长度即可,∴平移后的解析式为:y=(x-1)2+52.故答案是:y=(x-1)2+52.【点睛】此题主要考查了抛物线与坐标轴交点求法以及二次函数的平移,正确得出平移方向和距离是解题关键.17.3【解析】【分析】先利用勾股定理求出BD,再求出DF、BF,设AE=EF=x.在Rt△BEF中,由EB2=EF2+BF2,列出方程即可解决问题.【详解】∵四边形ABCD是矩形,∴∠A=90°.∵AB=8,AD=6,∴BD2268=+=1.∵△DEF是由△DEA翻折得到,∴DF=AD=6,BF=2.设AE=EF=x.在Rt△BEF中,∵EB2=EF2+BF2,∴(8﹣x)2=x2+22,解得:x=3,∴AE=3.故答案为:3.【点睛】本题考查了矩形的性质、勾股定理等知识,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.18.1.【解析】解:∵平移后解析式是y=x﹣b,代入y=5x得:x﹣b=5x,即x2﹣bx=5,y=x﹣b与x轴交点B的坐标是(b,0),∴OA 2﹣OB 2=x 2+y 2﹣b 2=x 2+(x ﹣b )2﹣b 2=2x 2﹣2xb=2(x 2﹣xb )=2×5=1,故答案为1.点睛:本题是反比例函数综合题,用到的知识点有:一次函数的平移规律,一次函数与反比例函数的交点坐标,利用了转化及方程的思想,其中利用平移的规律表示出y=x 平移后的解析式是解答本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1) 抛物线解析式为y=﹣215336x x ++;;(3) 点E 的坐标为E 1(4,1)或E 2(﹣92 ,﹣152)或E 3)或E 4). 【解析】【分析】(1)将点A 、C 坐标代入抛物线解析式求解可得;(2)证△COD ≌△DHE 得DH=OC ,由CF ⊥FH 知四边形OHFC 是矩形,据此可得FH=OC=DH=3,利用勾股定理即可得出答案;(3)设点D 的坐标为(t ,0),由(1)知△COD ≌△DHE 得DH=OC 、EH=OD ,再分CD 绕点D 顺时针旋转和逆时针旋转两种情况,表示出点E 的坐标,代入抛物线求得t 的值,从而得出答案.【详解】(1)∵抛物线y=﹣213x +bx+c 交x 轴于点A (﹣2,0)、C (0,3),∴42033b c c ⎧--+=⎪⎨⎪=⎩,解得:563b c ⎧=⎪⎨⎪=⎩,∴抛物线解析式为y=﹣213x +56x+3; (2)如图1.∵∠CDE=90°,∠COD=∠DHE=90°,∴∠OCD+∠ODC=∠HDE+∠ODC ,∴∠OCD=∠HDE . 又∵DC=DE ,∴△COD ≌△DHE ,∴DH=OC .又∵CF ⊥FH ,∴四边形OHFC 是矩形,∴FH=OC=DH=3,∴(3)如图2,设点D 的坐标为(t ,0).∵点E 恰好在抛物线上,且EH=OD ,∠DHE=90°,∴由(2)知,△COD ≌△DHE ,∴DH=OC ,EH=OD ,分两种情况讨论:①当CD 绕点D 顺时针旋转时,点E 的坐标为(t+3,t ),代入抛物线y=﹣213x +56x+3,得:﹣13(t+3)2+56(t+3)+3=t ,解得:t=1或t=﹣152,所以点E 的坐标E 1(4,1)或E 2(﹣92,﹣152); ②当CD 绕点D 逆时针旋转时,点E 的坐标为(t ﹣3,﹣t ),代入抛物线y=﹣213x +56x+3得:﹣13(t ﹣3)2+56(t ﹣3)+3=﹣t ,解得:t=234094+或t=234094-.故点E 的坐标E 3(114094+,﹣234094+)或E 4(114094-,﹣234094-);综上所述:点E 的坐标为E 1(4,1)或E 2(﹣92,﹣152)或E 311409+23409+E 411409-23409-). 【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、全等三角形的判定与性质、矩形的判定与性质及分类讨论思想的运用.20.(1) 反比例函数的表达式为y=(x>0);(2) 点P的坐标为(0,4)或(0,﹣4)【解析】【分析】(1)根据点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上求出a、b的值,得出A、B两点的坐标,再运用待定系数法解答即可;(2)延长CA交y轴于点E,延长CB交x轴于点F,构建矩形OECF,根据S四边形OACB=S矩形OECF﹣S△OAE ﹣S△OBF,设点P(0,m),根据反比例函数的几何意义解答即可.【详解】(1)∵点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上,∴﹣a+3=2,b=﹣×4+3,∴a=2,b=1,∴点A的坐标为(2,2),点B的坐标为(4,1),又∵点A(2,2)在反比例函数y=的图象上,∴k=2×2=4,∴反比例函数的表达式为y=(x>0);(2)延长CA交y轴于点E,延长CB交x轴于点F,∵AC∥x轴,BC∥y轴,则有CE⊥y轴,CF⊥x轴,点C的坐标为(4,2)∴四边形OECF为矩形,且CE=4,CF=2,∴S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF=2×4﹣×2×2﹣×4×1=4,设点P的坐标为(0,m),则S△OAP=×2•|m|=4,∴m=±4,∴点P的坐标为(0,4)或(0,﹣4).【点睛】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.21.(1)见解析(2)当AF=75时,四边形BCEF是菱形.【解析】【分析】(1)由AB=DE,∠A=∠D,AF=DC,根据SAS得△ABC≌DEF,即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形.(2)由四边形BCEF是平行四边形,可得当BE⊥CF时,四边形BCEF是菱形,所以连接BE,交CF 与点G,证得△ABC∽△BGC,由相似三角形的对应边成比例,即可求得AF的值.【详解】(1)证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF.∵在△ABC和△DEF中,AC=DF,∠A=∠D,AB=DE,∴△ABC≌DEF(SAS).∴BC=EF,∠ACB=∠DFE,∴BC∥EF.∴四边形BCEF是平行四边形.(2)解:连接BE,交CF与点G,∵四边形BCEF是平行四边形,∴当BE⊥CF时,四边形BCEF是菱形.∵∠ABC=90°,AB=4,BC=3,∴2222AB+BC4+35==.∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC.∴BC CG AC BC =,即3CG 53=.∴9CG 5=. ∵FG=CG ,∴FC=2CG=185, ∴AF=AC ﹣FC=5﹣18755=. ∴当AF=75时,四边形BCEF 是菱形. 22.(1)证明见解析;(2)CD =3【解析】分析: (1)根据二直线平行同位角相等得出∠A=∠BEC ,根据中点的定义得出AE=BE ,然后由ASA 判断出△AED ≌△EBC ;(2)根据全等三角形对应边相等得出AD=EC ,然后根据一组对边平行且相等的四边形是平行四边形得出四边形AECD 是平行四边形,根据平行四边形的对边相等得出答案.详解:(1)证明 :∵AD ∥EC∴∠A=∠BEC∵E 是AB 中点,∴AE=BE∵∠AED=∠B∴△AED ≌△EBC(2)解 :∵△AED ≌△EBC∴AD=EC∵AD ∥EC∴四边形AECD 是平行四边形∴CD=AE∵AB=6∴CD= 12AB=3 点睛: 本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.23.(1)2-1y x =;(2)3x >-.【解析】【分析】(1)由题意可设该一次函数的解析式为:2y x b =+,将点M (4,7)代入所设解析式求出b 的值即可得到一次函数的解析式;(2)根据直线上的点Q (x ,y )在直线32y x =+的下方可得2x -1<3x+2,解不等式即得结果.【详解】解:(1)∵一次函数平行于直线2y x =,∴可设该一次函数的解析式为:2y x b =+,∵直线2y x b =+过点M (4,7),∴8+b=7,解得b=-1,∴一次函数的解析式为:y=2x -1;(2)∵点Q (x ,y )是该一次函数图象上的点,∴y=2x -1,又∵点Q 在直线32y x =+的下方,如图,∴2x -1<3x+2,解得x>-3.【点睛】本题考查了待定系数法求一次函数的解析式以及一次函数与不等式的关系,属于常考题型,熟练掌握待定系数法与一次函数与不等式的关系是解题的关键.24.(1)证明见解析;(2)① 30°,② 45°【解析】试题分析:(1)根据已知条件求得∠OAC=∠OCA ,∠AOD=∠ADO ,然后根据三角形内角和定理得出∠AOC=∠OAD ,从而证得OC ∥AD ,即可证得结论;(2)①若四边形OCAD 是菱形,则OC=AC ,从而证得OC=OA=AC ,得出∠60AOC ∠=o ,即可求得1302B AOC ∠=∠=o ;②AD 与O e 相切,根据切线的性质得出90OAD ∠=o ,根据AD ∥OC ,内错角相等得出90AOC ∠=o ,从而求得145.2B AOC ∠=∠=o 试题解析:(方法不唯一)(1)∵OA=OC ,AD=OC ,∴OA=AD ,∴∠OAC=∠OCA ,∠AOD=∠ADO ,∵OD ∥AC ,∴∠OAC=∠AOD ,∴∠OAC=∠OCA=∠AOD=∠ADO ,∴∠AOC=∠OAD ,∴OC ∥AD ,∴四边形OCAD 是平行四边形;(2)①∵四边形OCAD 是菱形,∴OC=AC ,又∵OC=OA ,∴OC=OA=AC ,∴60AOC ∠=o , ∴1302B AOC ∠=∠=o ; 故答案为30.o②∵AD 与O e 相切,∴90OAD ∠=o ,∵AD ∥OC ,∴90AOC ∠=o , ∴145.2B AOC ∠=∠=o 故答案为45.o 25.35【解析】【分析】先根据分式混合运算顺序和运算法则化简原式,再解方程组求得a 、b 的值,继而代入计算可得.【详解】原式=()2()•()a b a b a b aa b a b a b+----++,=a b aa b a b+-++,=ba b+,解方程组2428a ba b--⎧⎨+⎩==得23ab⎧⎨⎩==,所以原式=33=2+35.【点睛】本题主要考查分式的化简求值和解二元一次方程组,解题的关键是熟练掌握分式混合运算顺序和运算法则.26.(1)m=20,n=8;55;(2) 答案见解析.【解析】【分析】(1)由A占25%,即可求得m的值,继而求得n的值,然后求得空气质量等级为“良”的天数占的百分比;(2)首先由(1)补全统计图,然后利用样本估计总体的知识求解即可求得答案.【详解】(1)∵m=80×25%=20,n=80-20-44-4-2-2=8,∴空气质量等级为“良”的天数占:4480×100%=55%.故答案为20,8,55;(2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365×(25%+55%)=292(天),答:估计该市城区全年空气质量等级为“优”和“良”的天数共292天;补全统计图:【点睛】此题考查了条形图与扇形图的知识.读懂统计图,从统计图中得到必要的信息是解决问题的关键.27.(1)CF=32;(2)①△PFM的形状是等腰直角三角形,不会发生变化,理由见解析;②△PFM的周长满足:<()y<.【解析】【分析】(1)由折叠的性质可知,FB=FM,设CF=x,则FB=FM=1﹣x,在Rt△CFM中,根据FM2=CF2+CM2,构建方程即可解决问题;(2)①△PFM的形状是等腰直角三角形,想办法证明△POF∽△MOC,可得∠PFO=∠MCO=15°,延长即可解决问题;②设FM=y,由勾股定理可知:PF=PM=2y,可得△PFM的周长=()y,由2<y<1,可得结论.【详解】(1)∵M为AC的中点,∴CM=12AC=12BC=2,由折叠的性质可知,FB=FM,设CF=x,则FB=FM=1﹣x,在Rt△CFM中,FM2=CF2+CM2,即(1﹣x)2=x2+22,解得,x=32,即CF=32;(2)①△PFM的形状是等腰直角三角形,不会发生变化,理由如下:由折叠的性质可知,∠PMF=∠B=15°,∵CD是中垂线,∴∠ACD=∠DCF=15°,∵∠MPC=∠OPM,∴△POM∽△PMC,∴POPM=OMMC,∴MCPM=OMPO,∵∠EMC=∠AEM+∠A=∠CMF+∠EMF,∴∠AEM=∠CMF,∵∠DPE+∠AEM=90°,∠CMF+∠MFC=90°,∠DPE=∠MPC,∴∠DPE=∠MFC,∠MPC=∠MFC,∵∠PCM=∠OCF=15°,∴△MPC∽△OFC,∴MP MC OF OC=,∴MC OC PM OF=,∴OM OC PO OF=,∵∠POF=∠MOC,∴△POF∽△MOC,∴∠PFO=∠MCO=15°,∴△PFM是等腰直角三角形;②∵△PFM是等腰直角三角形,设FM=y,由勾股定理可知:PF=PM=2y,∴△PFM的周长=()y,∵2<y<1,∴△PFM的周长满足:<()y<.【点睛】本题考查三角形综合题、等腰直角三角形的性质和判定、翻折变换、相似三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考常考题型.。

河北省邯郸市2019-2020学年中考第二次大联考数学试卷含解析

河北省邯郸市2019-2020学年中考第二次大联考数学试卷含解析

河北省邯郸市2019-2020学年中考第二次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.右图是由四个小正方体叠成的一个立体图形,那么它的俯视图是()A.B.C.D.2.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.215B.8 C.210D.2133.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.64.函数y=4x和y=1x在第一象限内的图象如图,点P是y=4x的图象上一动点,PC⊥x轴于点C,交y=1x的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=13AP.其中所有正确结论的序号是()A.①②③B.②③④C.①③④D.①②④5.下列图形中,是中心对称图形,但不是轴对称图形的是( )A.B.C .D .6.下列运算正确的是( )A .2a+3a=5a 2B .(a 3)3=a 9C .a 2•a 4=a 8D .a 6÷a 3=a 2 7.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( ) A .23(2)3y x =++ B .23(2)3y x =-+ C .23(2)3y x =+- D .23(2)3y x =--8.在Rt △ABC 中,∠C=90°,如果AC=2,cosA=23,那么AB 的长是( ) A .3 B .43 C .5D .13 9.人的大脑每天能记录大约8 600万条信息,数据8 600用科学记数法表示为( )A .0.86×104B .8.6×102C .8.6×103D .86×10210.如图所示,直线a ∥b ,∠1=35°,∠2=90°,则∠3的度数为( )A .125°B .135°C .145°D .155°11.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S 6,则S 6的值为( )A .3B .23C .33D .23312.等腰三角形底角与顶角之间的函数关系是( )A .正比例函数B .一次函数C .反比例函数D .二次函数二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-3的倒数是___________14.口袋中装有4个小球,其中红球3个,黄球1个,从中随机摸出两球,都是红球的概率为_________. 15.2018年贵州省公务员、人民警察、基层培养项目和选调生报名人数约40.2万人,40.2万人用科学记数法表示为_____人.16.如图,正△的边长为,点、在半径为的圆上,点在圆内,将正绕点逆时针针旋转,当点第一次落在圆上时,旋转角的正切值为_______________17.如图,若点 A 的坐标为 ()1,3 ,则 sin 1∠ =________.18.计算(7+3)(73-)的结果等于_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,图2…、图m 是边长均大于2的三角形、四边形、…、凸n 边形.分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧…、n 条弧.(1)图1中3条弧的弧长的和为 ,图2中4条弧的弧长的和为 ;(2)求图m 中n 条弧的弧长的和(用n 表示).20.(6分)问题提出(1)如图①,在矩形ABCD 中,AB=2AD ,E 为CD 的中点,则∠AEB ∠ACB (填“>”“<”“=”);问题探究(2)如图②,在正方形ABCD 中,P 为CD 边上的一个动点,当点P 位于何处时,∠APB 最大?并说明理由;问题解决(3)如图③,在一幢大楼AD 上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF 为1.6米,他从远处正对广告牌走近时,在P 处看广告效果最好(视角最大),请你在图③中找到点P 的位置,并计算此时小刚与大楼AD 之间的距离.21.(6分)抛物线23y ax bx a =+-经过A (-1,0)、C (0,-3)两点,与x 轴交于另一点B .求此抛物线的解析式;已知点D (m,-m-1) 在第四象限的抛物线上,求点D 关于直线BC 对称的点D’的坐标;在(2)的条件下,连结BD ,问在x 轴上是否存在点P ,使PCB CBD ∠=∠,若存在,请求出P 点的坐标;若不存在,请说明理由.22.(8分)如图,AB 是圆O 的直径,AC 是圆O 的弦,过点C 的切线交AB 的延长线于点D ,若∠A=∠D ,CD=23.(1)求∠A 的度数. (2)求图中阴影部分的面积.23.(8分)如图,已知AB 是圆O 的直径,弦CD ⊥AB ,垂足H 在半径OB 上,AH=5,CD=45,点E 在弧AD 上,射线AE 与CD 的延长线交于点F .(1)求圆O 的半径;(2)如果AE=6,求EF 的长.24.(10分)如图所示,直线y=12x+2与双曲线y=k x相交于点A(2,n),与x 轴交于点C . (1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为5,求点P的坐标.25.(10分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?26.(12分)已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=1.(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.i)求证:△CAE∽△CBF;ii)若BE=1,AE=2,求CE的长;(2)如图②,当四边形ABCD和EFCG均为矩形,且AB EFkBC FC==时,若BE=1,AE=2,CE=3,求k的值;(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)27.(12分)如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,点A (2,1).(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的函数表达式;(3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】解:从上面看,上面一排有两个正方形,下面一排只有一个正方形,故选B.2.D【解析】∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=1.设⊙O的半径为r,则OC=r-2,在Rt△AOC中,∵AC=1,OC=r-2,∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.∴AE=2r=3.连接BE,∵AE是⊙O的直径,∴∠ABE=90°.在Rt△ABE中,∵AE=3,AB=8,∴2222BE AE AB1086=--=.在Rt△BCE中,∵BE=6,BC=1,∴2222CE BE BC64213=+=+=D.3.D 【解析】【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可.【详解】A、数据中5出现2次,所以众数为5,此选项正确;B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C、平均数为(7+5+3+5+10)÷5=6,此选项正确;D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.4.C【解析】解:∵A、B是反比函数1yx=上的点,∴S△OBD=S△OAC=12,故①正确;当P的横纵坐标相等时PA=PB,故②错误;∵P是4yx=的图象上一动点,∴S矩形PDOC=4,∴S四边形PAOB=S矩形PDOC﹣S△ODB﹣﹣S△OAC=4﹣12﹣12=3,故③正确;连接OP,212POCOACS PCS AC∆∆===4,∴AC=14PC,PA=34PC,∴PAAC=3,∴AC=13AP;故④正确;综上所述,正确的结论有①③④.故选C.点睛:本题考查的是反比例函数综合题,熟知反比例函数中系数k的几何意义是解答此题的关键.5.A【解析】分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.详解:A、此图形是中心对称图形,不是轴对称图形,故此选项正确;B 、此图形不是中心对称图形,是轴对称图形,故此选项错误;C 、此图形是中心对称图形,也是轴对称图形,故此选项错误;D 、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选A .点睛:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴. 6.B【解析】【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别化简得出答案.【详解】A 、2a+3a=5a ,故此选项错误;B 、(a 3)3=a 9,故此选项正确;C 、a 2•a 4=a 6,故此选项错误;D 、a 6÷a 3=a 3,故此选项错误.故选:B .【点睛】此题主要考查了同底数幂的乘除运算以及合并同类项和幂的乘方运算,正确掌握运算法则是解题关键. 7.A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .8.A【解析】根据锐角三角函数的性质,可知cosA=AC AB =23,然后根据AC=2,解方程可求得AB=3. 故选A.点睛:此题主要考查了解直角三角形,解题关键是明确直角三角形中,余弦值cosA=A ∠的邻边斜边,然后带入数值即可求解.9.C科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【详解】数据8 600用科学记数法表示为8.6×103故选C.【点睛】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).10.A【解析】分析:如图求出∠5即可解决问题.详解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故选:A.点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.11.C【解析】【分析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6×12×1×1×sin60°33故选C.【点睛】本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.12.B【解析】【分析】根据一次函数的定义,可得答案.【详解】设等腰三角形的底角为y,顶角为x,由题意,得x+2y=180,所以,y=﹣12x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,故选B.【点睛】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1 3【解析】【分析】乘积为1的两数互为相反数,即a的倒数即为1a,符号一致【详解】∵-3的倒数是1 3 -∴答案是1 3 -14.1 2【解析】【分析】先画出树状图,用随意摸出两个球是红球的结果个数除以所有可能的结果个数即可. 【详解】∵从中随意摸出两个球的所有可能的结果个数是12,随意摸出两个球是红球的结果个数是6,∴从中随意摸出两个球的概率=61= 122;故答案为:1 2 .【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.15.4.02×1.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:40.2万=4.02×1,故答案为:4.02×1.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.【解析】【分析】作辅助线,首先求出∠DAC的大小,进而求出旋转的角度,即可得出答案.【详解】如图,分别连接OA、OB、OD;∵OA=OB=,AB=2,∴△OAB是等腰直角三角形,∴∠OAB=45°;同理可证:∠OAD=45°,∴∠DAB=90°;∵∠CAB=60°,∴∠DAC=90°−60°=30°,∴旋转角的正切值是,故答案为:.【点睛】此题考查等边三角形的性质,旋转的性质,点与圆的位置关系,解直角三角形,解题关键在于作辅助线.17.3 2【解析】【分析】根据勾股定理,可得OA的长,根据正弦是对边比斜边,可得答案.【详解】如图,由勾股定理,得:22OB AB+=1.sin∠1=3ABOA=318.4【解析】【分析】利用平方差公式计算.【详解】解:原式7)232=7-3=4.故答案为:4.【点睛】本题考查了二次根式的混合运算.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1)π, 2π;(2)(n ﹣2)π.【解析】【分析】(1)利用弧长公式和三角形和四边形的内角和公式代入计算;(2)利用多边形的内角和公式和弧长公式计算.【详解】(1)利用弧长公式可得312111180180180n n n πππ⨯⨯⨯++=π, 因为n 1+n 2+n 3=180°. 同理,四边形的=31241111180180180180n n n n ππππ⨯⨯⨯⨯+++=2π, 因为四边形的内角和为360度;(2)n 条弧=31241111(2)1801 (180180180180180)n n n n n πππππ⨯⨯⨯⨯-⨯⨯++++==(n ﹣2)π. 【点睛】本题考查了多边形的内角和定理以及扇形的面积公式和弧长的计算公式,理解公式是关键.20.(1)>;(2)当点P 位于CD 的中点时,∠APB 最大,理由见解析;(3)10米.【解析】【分析】(1)过点E作EF⊥AB于点F,由矩形的性质和等腰三角形的判定得到:△AEF是等腰直角三角形,易证∠AEB=90°,而∠ACB<90°,由此可以比较∠AEB与∠ACB的大小(2)假设P为CD的中点,作△APB的外接圆⊙O,则此时CD切⊙O于P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB与∠APB均为⊙O中弧AB所对的角,则∠AFB=∠APB,即可判断∠APB与∠AEB的大小关系,即可得点P位于何处时,∠APB最大;(3)过点E作CE∥DF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.【详解】解:(1)∠AEB>∠ACB,理由如下:如图1,过点E作EF⊥AB于点F,∵在矩形ABCD中,AB=2AD,E为CD中点,∴四边形ADEF是正方形,∴∠AEF=45°,同理,∠BEF=45°,∴∠AEB=90°.而在直角△ABC中,∠ABC=90°,∴∠ACB<90°,∴∠AEB>∠ACB.故答案为:>;(2)当点P位于CD的中点时,∠APB最大,理由如下:假设P为CD的中点,如图2,作△APB的外接圆⊙O,则此时CD切⊙O于点P,在CD 上取任意异于P 点的点E ,连接AE ,与⊙O 交于点F ,连接BE ,BF ,∵∠AFB 是△EFB 的外角,∴∠AFB >∠AEB ,∵∠AFB=∠APB ,∴∠APB >∠AEB ,故点P 位于CD 的中点时,∠APB 最大:(3)如图3,过点E 作CE ∥DF 交AD 于点C ,作线段AB 的垂直平分线,垂足为点Q ,并在垂直平分线上取点O ,使OA=CQ ,以点O 为圆心,OA 长为半径作圆,则⊙O 切CE 于点G ,连接OG ,并延长交DF 于点P ,此时点P 即为小刚所站的位置,由题意知DP=OQ=,∵OA=CQ=BD+QB ﹣CD=BD+AB ﹣CD ,BD=11.6米, AB=3米,CD=EF=1.6米,∴OA=11.6+3﹣1.6=13米,∴DP=米,即小刚与大楼AD 之间的距离为4米时看广告牌效果最好. 【点睛】本题考查了矩形的性质,正方形的判定与性质,圆周角定理的推论,三角形外角的性质,线段垂直平分线的性质,勾股定理等知识,难度较大,熟练掌握各知识点并正确作出辅助圆是解答本题的关键.21.(1)2y x 2x 3=--(2)(0,-1)(3)(1,0)(9,0)【解析】【分析】(1)将A(−1,0)、C(0,−3)两点坐标代入抛物线y=ax2+bx−3a中,列方程组求a、b的值即可;(2)将点D(m,−m−1)代入(1)中的抛物线解析式,求m的值,再根据对称性求点D关于直线BC 对称的点D'的坐标;(3)分两种情形①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,②连接BD′,过点C作CP′∥BD′,交x轴于P′,分别求出直线CP和直线CP′的解析式即可解决问题.【详解】解:(1)将A(−1,0)、C(0,−3)代入抛物线y=ax2+bx−3a中,得3033a b aa--=⎧⎨-=-⎩,解得12 ab=⎧⎨=-⎩∴y=x2−2x−3;(2)将点D(m,−m−1)代入y=x2−2x−3中,得m2−2m−3=−m−1,解得m=2或−1,∵点D(m,−m−1)在第四象限,∴D(2,−3),∵直线BC解析式为y=x−3,∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3−2=1,∴点D关于直线BC对称的点D'(0,−1);(3)存在.满足条件的点P有两个.①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,∵直线BD解析式为y=3x−9,∵直线CP过点C,∴直线CP的解析式为y=3x−3,∴点P坐标(1,0),②连接BD′,过点C作CP′∥BD′,交x轴于P′,∴∠P′CB=∠D′BC,根据对称性可知∠D′BC=∠CBD,∴∠P′CB=∠CBD,∵直线BD′的解析式为113y x=-∵直线CP′过点C,∴直线CP′解析式为133y x=-,∴P′坐标为(9,0),综上所述,满足条件的点P坐标为(1,0)或(9,0).【点睛】本题考查了二次函数的综合运用.关键是由已知条件求抛物线解析式,根据抛物线的对称性,直线BC的特殊性求点的坐标,学会分类讨论,不能漏解.22.(1) ∠A=30°;(2)2 233π-【解析】【分析】(1)连接OC,由过点C的切线交AB的延长线于点D,推出OC⊥CD,推出∠OCD=90°,即∠D+∠COD=90°,由OA=OC,推出∠A=∠ACO,由∠A=∠D,推出∠A=∠ACO=∠D再由∠A+∠ACD+∠D=180°﹣90°=90°即可得出.(2)先求∠COD度数及OC长度,即可求出图中阴影部分的面积.【详解】解:(1)连结OC∵CD为⊙O的切线∴OC⊥CD∴∠OCD=90°又∵OA=OC∴∠A=∠ACO又∵∠A=∠D∴∠A=∠ACO=∠D而∠A+∠ACD+∠D=180°﹣90°=90°∴∠A=30°(2)由(1)知:∠D=∠A=30°∴∠COD=60°又∵CD=2∴OC=2∴S阴影=.【点睛】本题考查的知识点是扇形面积的计算及切线的性质,解题的关键是熟练的掌握扇形面积的计算及切线的性质.23.(1) 圆的半径为4.5;(2) EF=32.【解析】【分析】(1)连接OD,根据垂径定理得:DH=25,设圆O的半径为r,根据勾股定理列方程可得结论;(2)过O作OG⊥AE于G,证明△AGO∽△AHF,列比例式可得AF的长,从而得EF的长.【详解】(1)连接OD,∵直径AB⊥弦CD,CD=4,∴DH=CH=CD=2,在Rt△ODH中,AH=5,设圆O的半径为r,根据勾股定理得:OD2=(AH﹣OA)2+DH2,即r2=(5﹣r)2+20,解得:r=4.5,则圆的半径为4.5;(2)过O作OG⊥AE于G,∴AG=AE=×6=3,∵∠A=∠A,∠AGO=∠AHF,∴△AGO∽△AHF,∴,∴,∴AF=,∴EF=AF﹣AE=﹣6=.【点睛】本题考查了垂径定理,勾股定理,相似三角形的判定与性质,解答本题的关键是正确添加辅助线并熟练掌握垂径定理和相似三角形的判定与性质.24.(1)6yx=;(2)(23-,0)或22,03⎛⎫- ⎪⎝⎭【解析】【分析】(1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(x,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于x的方程,解方程可求得P点的坐标.【详解】解:(1)把A(2,n)代入直线解析式得:n=3,∴A(2,3),把A坐标代入y=kx,得k=6,则双曲线解析式为y=6x.(2)对于直线y=12x+2,令y=0,得到x=-4,即C(-4,0).设P(x,0),可得PC=|x+4|.∵△ACP面积为5,∴12|x+4|•3=5,即|x+4|=2,解得:x=-23或x=-223, 则P 坐标为203⎛⎫- ⎪⎝⎭,或2203⎛⎫- ⎪⎝⎭,. 25.(1)(300﹣10x ).(2)每本书应涨价5元.【解析】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x 元,则每天就会少售出10x 本,所以每天可售出书(300﹣10x )本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.试题解析:(1)∵每本书上涨了x 元,∴每天可售出书(300﹣10x )本.故答案为300﹣10x .(2)设每本书上涨了x 元(x≤10),根据题意得:(40﹣30+x )(300﹣10x )=3750,整理,得:x 2﹣20x+75=0,解得:x 1=5,x 2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.26.(1)i )证明见试题解析;ii ;(2;(3)222(2p n m -=+. 【解析】【分析】(1)i )由∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,得到∠ACE=∠BCF ,又由于AC CE BC CF ==故△CAE ∽△CBF ;ii )由AE BF=,再由△CAE ∽△CBF ,得到∠CAE=∠CBF ,进一步可得到∠EBF=1°,从而有222222()6CE EF BE BF ==+=,解得CE =(2)连接BF ,同理可得:∠EBF=1°,由AB EF k BC FC==,得到::1:BC AB AC k =::1:CF EF EC k =,故AC AEBC BF ==BF =2222222211()k k CE EF BE BF k k ++=⨯=+,代入解方程即可; (3)连接BF ,同理可得:∠EBF=1°,过C 作CH ⊥AB 延长线于H ,可得:222::1:1:(22)AB BC AC =+,222::1:1:(22)EF FC EC =+,故22222222(22)(22)()(22)()(22)22p EF BE BF m m n =+=++=++=+++, 从而有222(22)p n m -=+. 【详解】解:(1)i )∵∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,∴∠ACE=∠BCF ,又∵2AC CEBC CF==,∴△CAE ∽△CBF ; ii )∵2AEBF=,∴BF=2,∵△CAE ∽△CBF ,∴∠CAE=∠CBF ,又∵∠CAE+∠CBE=1°,∴∠CBF+∠CBE=1°,即∠EBF=1°,∴222222()6CE EF BE BF ==+=,解得6CE =;(2)连接BF ,同理可得:∠EBF=1°,∵AB EFk BC FC==,∴2::1::1BC AB AC k k =+,2::1::1CF EF EC k k =+,∴21AC AE k BC BF==+,∴21BF k =+,2221AE BF k =+,∴2222222211()k k CE EF BE BF k k ++=⨯=+,∴222222123(1)1k k k +=++,解得10k =; (3)连接BF ,同理可得:∠EBF=1°,过C 作CH ⊥AB 延长线于H ,可得:222::1:1:(22)AB BC AC =+,222::1:1:(22)EF FC EC =+,∴22222222(22)(22)()(22)()(22)22p EF BE BF m m n =+=++=++=+++, ∴222(22)p n m -=+.【点睛】本题考查相似三角形的判定与性质;正方形的性质;矩形的性质;菱形的性质. 27. (1) B (-1.2);(2) y=57x?66x -;(3)见解析. 【解析】 【分析】(1)过A 作AC ⊥x 轴于点C ,过B 作BD ⊥x 轴于点D ,则可证明△ACO ≌△ODB ,则可求得OD 和BD 的长,可求得B 点坐标;(2)根据A 、B 、O 三点的坐标,利用待定系数法可求得抛物线解析式;(3)由四边形ABOP 可知点P 在线段AO 的下方,过P 作PE ∥y 轴交线段OA 于点E ,可求得直线OA 解析式,设出P 点坐标,则可表示出E 点坐标,可表示出PE 的长,进一步表示出△POA 的面积,则可得到四边形ABOP 的面积,再利用二次函数的性质可求得其面积最大时P 点的坐标. 【详解】(1)如图1,过A 作AC ⊥x 轴于点C ,过B 作BD ⊥x 轴于点D ,∵△AOB 为等腰三角形, ∴AO=BO , ∵∠AOB=90°,∴∠AOC+∠DOB=∠DOB+∠OBD=90°, ∴∠AOC=∠OBD , 在△ACO 和△ODB 中AOC OBD ACO ODB AO BO ===∠∠⎧⎪∠∠⎨⎪⎩∴△ACO ≌△ODB (AAS ), ∵A (2,1),∴OD=AC=1,BD=OC=2, ∴B (-1,2);(2)∵抛物线过O 点,∴可设抛物线解析式为y=ax 2+bx ,把A 、B 两点坐标代入可得4212a b a b +⎧⎨-⎩==,解得5676a b ⎧⎪⎪⎨⎪-⎪⎩==,∴经过A 、B 、O 原点的抛物线解析式为y=56x 2-76x ; (3)∵四边形ABOP ,∴可知点P在线段OA的下方,过P作PE∥y轴交AO于点E,如图2,设直线AO解析式为y=kx,∵A(2,1),∴k=12,∴直线AO解析式为y=12x,设P点坐标为(t,56t2-76t),则E(t,12t),∴PE=12t-(56t2-76t)=-56t2+53t=-56(t-1)2+56,∴S△AOP=12PE×2=PE═-56(t-1)2+56,由A(2,1)可求得5∴S△AOB=12AO•BO=52,∴S四边形ABOP=S△AOB+S△AOP=-56(t-1)2+56+52=()2510163t--+,∵-56<0,∴当t=1时,四边形ABOP的面积最大,此时P点坐标为(1,-13),综上可知存在使四边形ABOP的面积最大的点P,其坐标为(1,-13).【点睛】本题为二次函数的综合应用,主要涉及待定系数法、等腰直角三角形的性质、全等三角形的判定和性质、三角形的面积以及方程思想等知识.在(1)中构造三角形全等是解题的关键,在(2)中注意待定系数法的应用,在(3)中用t表示出四边形ABOP的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

邯郸市中考数学二模考试试卷

邯郸市中考数学二模考试试卷

邯郸市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本题共16分,每小题2分)第1-8题均有四个选。

正确 (共8题;共16分)1. (2分) (2019七上·下陆月考) 数轴上到点-2 的距离为 5 的点表示的数为()A . -3B . -7C . 3 或-7D . 5 或-32. (2分)△ABC的两边的长分别为,,则第三边的长度不可能为()A .B .C .D .3. (2分)(2019·遂宁) 如图为正方体的一种平面展开图,各面都标有数字,则数字为的面与其对面上的数字之积是()A .B . 0C .D .4. (2分) (2020九下·云南月考) 一个正方形的面积是15,估计它的边长在().A . 1和2之间B . 2和3之间C . 3和4之间D . 4和5之间5. (2分)(2019·顺义模拟) 为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了甲、乙两类玩具,其中甲类玩具的进价比乙类玩具的进价每个多5元,经调查:用1000元购进甲类玩具的数量与用750元购进乙类玩具的数量相同.设甲类玩具的进价为x元/个,根据题意可列方程为()A .B .C .D .6. (2分)(2019·顺义模拟) 某公司的班车在7:30,8:00,8:30从某地发车,小李在7:50至8:30之间到达车站乘坐班车,如果他到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A .B .C .D .7. (2分)(2019·顺义模拟) 规定:在平面直角坐标系xOy中,如果点P的坐标为(m,n),向量可以用点P的坐标表示为:=(m,n).已知=(x1 , y1),=(x2 , y2),如果x1x2+y1y2=0,那么与互相垂直.下列四组向量中,互相垂直的是()A . ,B . ,C . ,D . ,8. (2分)(2019·顺义模拟) 数学课上,王老师让同学们对给定的正方形ABCD,建立合适的平面直角坐标系,并表示出各顶点的坐标.下面是4名同学表示各顶点坐标的结果:甲同学:A(0,1),B(0,0),C(1,0),D(1,1);乙同学:A(0,0),B(0,﹣1),C(1,﹣1),D(1,0);丙同学:A(1,0),B(1,﹣2),C(3,﹣2),D(3,0);丁同学:A(﹣1,2),B(﹣1,0),C(0,0),D(0,2);上述四名同学表示的结果中,四个点的坐标都表示正确同学是()A . 甲、乙、丙B . 乙、丙、丁C . 甲、丙D . 甲、乙、丙、丁二、填空题(本题共16分,每小题2分) (共8题;共16分)9. (2分) (2017八下·江海期末) 计算: ________。

河北省邯郸市2019年初中毕业生升学模拟考试(二)数学试卷答案

河北省邯郸市2019年初中毕业生升学模拟考试(二)数学试卷答案

河北省邯郸市2019年初中毕业生升学模拟考试(二)数学试卷参考答案及评分标准 一.选择题(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.)二.填空题(本大题共4个小题,每小题3分,共12分.) 17、1≥x 18、3=x19、30 20、15-三.解答题(本大题共6个小题,共66分.)21、解:(1)解原式=(100-64)×25÷9=100 …………………………………………………………4分 (2)()()a a a ÷⨯--+25]11[22…………………………………………………6分()()[]a a a a a ÷⨯+--++=25121222 ……………………………………8分a a ÷⨯=254100= …………………………………………………………………………10分注:其他计算方法结果正确均可得分22、解:(1)24, 12, 0.4, 0.2 ………………………………………………………4分(2)144 ……………………………………………………………6分 (3)由上表可知达到优秀和良好的共有21+24=45人,9604512=⨯万人. ………………………………………………………………8分 (4)61………………………………………………………………10分23、解:(1)35, 50;……………………………………………………………2分(2)①乙队修路的天数为125030901050=+-(天) ……………………5分②由题意,得10505030=++y x )( ∴y 与x 之间的函数关系式为: 801050xy -=810580+-=x y …………………………8分注:函数关系式没有化简不扣分③由题意,得22800)1160600(30600≤⨯++⨯y x22800801050176020≤-⨯+xx解得x ≥150,答:若总费用不超过22800元,甲队至少先修了150米。

2019年河北省邯郸市中考数学二模试卷含答案

2019年河北省邯郸市中考数学二模试卷含答案

2019年河北省邯郸市中考数学二模试卷含答案一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项填在答题卡相应位置)1.9的算术平方根是()A.±3 B.3 C.D.2.2016年,巴彦淖尔市计划投资42亿元,完成300个嘎查村的建设任务.农村牧区“十个全覆盖”推进正酣.将42亿用科学记数法应表示为()A.0.042×107B.0.42×108C.4.2×109 D.42×10103.下列计算正确的是()A.a3+a2=2a5B.(﹣2a3)2=4a6C.(a+b)2=a2+b2D.a6÷a2=a34.不等式组的整数解的和是()A.﹣1 B.1 C.0 D.15.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°6.一个几何体的三视图如图所示,该几何体的侧面积为()A.2πcm2B.4πcm2C.8πcm2D.16πcm27.已知一组数据:1,2,6,3,3,下列说法错误的是()A.众数是3 B.中位数是6 C.平均数是3 D.方差是2.88.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的个数为()A.1 B.2 C.3 D.49.如图,在平行四边形ABCD中,E是CD上的一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F,则S△DEF:S△EBF:S△ABF=()A.2:5:25 B.4:9:25 C.2:3:5 D.4:10:2510.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.二、填空题(本题共6小题,每小题4分,共24分)11.分解因式:﹣3x3y+12x2y﹣12xy=.12.要使式子有意义,则a的取值范围为.13.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球个.14.如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C 点的俯角β为60°.则建筑物CD的高度为m(结果不作近似计算).15.抛物线y=x2﹣2x+3的顶点坐标是,当x=时,y随x的增大而减小.16.如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC,BC相切于点E,F,与AB分别交于点G,H,且EH的延长线和CB的延长线交于点D,则CD的长为.三、解答题(共86分,解答应写成文字说明、证明过程、演算步骤)17.(1)计算:2sin60°﹣()﹣1+(﹣1)0(2)先化简,再求值:(1﹣)÷,其中a=2+.18.某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:(1)求出足球和篮球的单价;(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?19.某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?20.如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.(1)请用列表或画树状图的方法写出所有的可能;(2)求一次函数y=kx+b的图象经过一、二、四象限的概率.21.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.22.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.23.如图,⊙O是Rt△ABC的外接圆,AC是⊙O的直径,弦BD=BA,AB=12,BC=5,BE⊥DC,交DC的延长线于点E.(1)求证:△ABC∽△DEB;(2)求证:BE是⊙O的切线;(3)求DE的长.24.已知,如图二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点C(0,4)与x轴交于点A、B,点B(4,0),抛物线的对称轴为x=1.直线AD交抛物线于点D(2,m).(1)求二次函数的解析式并写出D点坐标;(2)点E是BD的中点,点Q是线段AB上一动点,当△QBE和△ABD相似时,求点Q的坐标;(3)抛物线与y轴交于点C,直线AD与y轴交于点F,点M为抛物线对称轴上的动点,点N在x轴上,当四边形CMNF周长取最小值时,求出满足条件的点M和点N的坐标.参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项填在答题卡相应位置)1.9的算术平方根是()A.±3 B.3 C.D.【考点】22:算术平方根.【分析】根据开方运算,可得算术平方根.【解答】解:9的算术平方根是3,故选:B.2.2016年,巴彦淖尔市计划投资42亿元,完成300个嘎查村的建设任务.农村牧区“十个全覆盖”推进正酣.将42亿用科学记数法应表示为()A.0.042×107B.0.42×108C.4.2×109 D.42×1010【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:42亿=42 0000 0000=4.2×109,故选:C.3.下列计算正确的是()A.a3+a2=2a5B.(﹣2a3)2=4a6C.(a+b)2=a2+b2D.a6÷a2=a3【考点】48:同底数幂的除法;47:幂的乘方与积的乘方;4C:完全平方公式.【分析】根据合并同类项法则;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;完全平方公式,同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a3和a2不是同类项不能合并,故本选项错误;B、(﹣2a3)2=4a6,正确;C、应为(a+b)2=a2+b2+2ab,故本选项错误;D、应为a6÷a2=a4,故本选项错误.故选B.4.不等式组的整数解的和是()A.﹣1 B.1 C.0 D.1【考点】CC:一元一次不等式组的整数解.【分析】先解出不等式组的解集,从而可以得到不等式组的整数解,从而可以得到不等式组的整数解的和.【解答】解:解得,﹣2<x≤,∴的整数解是x=﹣1,x=0,x=1,∵(﹣1)+0+1=0,故的整数解得和是0,故选C.5.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35°B.40°C.50°D.65°【考点】R2:旋转的性质.【分析】根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.【解答】解:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C.6.一个几何体的三视图如图所示,该几何体的侧面积为()A.2πcm2B.4πcm2C.8πcm2D.16πcm2【考点】U3:由三视图判断几何体;MP:圆锥的计算.【分析】由几何体的主视图和左视图都是等腰三角形,俯视图是圆,可以判断这个几何体是圆锥,进而得出圆锥的高以及母线长和底面圆的半径,再利用圆锥侧面积公式求出即可.【解答】解:依题意知母线l=4cm,底面半径r=2÷2=1,则由圆锥的侧面积公式得S=πrl=π×1×4=4πcm2.故选B.7.已知一组数据:1,2,6,3,3,下列说法错误的是()A.众数是3 B.中位数是6 C.平均数是3 D.方差是2.8【考点】W7:方差;W1:算术平均数;W4:中位数;W5:众数.【分析】分别求出这组数据的平均数、中位数、众数和方差,再分别对每一项进行判断即可.【解答】解:A、3出现了2次,出现的次数最多,则众数是3,故本选项正确;B、把这组数据从小到大排列为:1,2,3,3,6,最中间的数是3,则中位数是3,故本选项错误;C、这组数据的平均数是(1+2+6+3+3)÷5=3,故本选项正确;D、这组数据的方差是:[(1﹣3)2+(2﹣3)2+(6﹣3)2+(3﹣3)2+(3﹣3)2]=,故本选项正确;故选B.8.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的个数为()A.1 B.2 C.3 D.4【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KK:等边三角形的性质.【分析】根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,a2+(a﹣)2=4,解得a=,则a2=2+,=2+,∴S④说法正确,∴正确的有①②④.故选C.9.如图,在平行四边形ABCD中,E是CD上的一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F,则S△DEF:S△EBF:S△ABF=()A.2:5:25 B.4:9:25 C.2:3:5 D.4:10:25【考点】S9:相似三角形的判定与性质;K3:三角形的面积;L5:平行四边形的性质.【分析】根据平行四边形的性质求出DC=AB,DC∥AB,求出DE:AB=2:5,根据相似三角形的判定推出△DEF∽△BAF,求出△DEF和△ABF的面积比,根据三角形的面积公式求出△DEF和△EBF的面积比,即可求出答案.【解答】解:根据图形知:△DEF的边DF和△BFE的边BF上的高相等,并设这个高为h,∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∵DE:EC=2:3,∴DE:AB=2:5,∵DC∥AB,∴△DEF∽△BAF,∴==,==,∴====∴S△DEF:S△EBF:S△ABF=4:10:25,故选D.10.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】要找出准确反映s与x之间对应关系的图象,需分析在不同阶段中s随x变化的情况.【解答】解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x≤2,s=,当2<x≤3,s=1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分.故选C.二、填空题(本题共6小题,每小题4分,共24分)11.分解因式:﹣3x3y+12x2y﹣12xy=﹣3xy(x﹣2)2.【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣3xy(x2﹣4x+4)=﹣3xy(x﹣2)2,故答案为:﹣3xy(x﹣2)212.要使式子有意义,则a的取值范围为a≥﹣2且a≠0.【考点】72:二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:a+2≥0且a≠0,解得:a≥﹣2且a≠0.故答案为:a≥﹣2且a≠0.13.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球12个.【考点】X4:概率公式.【分析】设袋中共有球x个,根据概率公式列出等式解答.【解答】解:设袋中共有球x个,∵有3个白球,且摸出白球的概率是,∴=,解得x=12(个).故答案为:12.14.如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为12m(结果不作近似计算).【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】首先过点D作DE⊥AB于点E,可得四边形BCDE是矩形,然后分别在Rt△ABC 与Rt△ADE中,利用正切函数的知识,求得AB与AE的长,继而可求得答案.【解答】解:过点D作DE⊥AB于点E,则四边形BCDE是矩形,根据题意得:∠ACB=β=60°,∠ADE=α=30°,BC=18m,∴DE=BC=18m,CD=BE,在Rt△ABC中,AB=BC•tan∠ACB=18×tan60°=18(m),在Rt△ADE中,AE=DE•tan∠ADE=18×tan30°=6(m),∴DC=BE=AB﹣AE=18﹣6=12(m).故答案为:12.15.抛物线y=x2﹣2x+3的顶点坐标是(1,2),当x=<1时,y随x的增大而减小.【考点】H3:二次函数的性质.【分析】由于二次函数的二次项系数a=1>0,由此可以确定抛物线开口方向,利用y=ax2+bx+c的顶点坐标公式为(﹣,),对称轴是x=﹣可以确定对称轴,然后即可确定在对称轴的左侧y随x的增大而减小,由此得到x的取值范围.【解答】解:∵y=x2﹣2x+3,∴二次函数的二次项系数a=1>0,∴抛物线开口向上,∵y=ax2+bx+c的顶点坐标公式为(﹣,),对称轴是x=﹣,∴此函数对称轴是x=1,顶点坐标是(1,2),∴当x<1时,y随x的增大而减小.故答案为:(1,2),<1.16.如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC,BC相切于点E,F,与AB分别交于点G,H,且EH的延长线和CB的延长线交于点D,则CD的长为a.【考点】MC:切线的性质;MH:切割线定理;S7:相似三角形的性质.【分析】连接OE、OF,由切线的性质结合结合直角三角形可得到正方形OECF,并且可求出⊙O的半径为0.5a,则BF=a﹣0.5a=0.5a,再由切割线定理可得BF2=BH•BG,利用方程即可求出BH,然后又因OE∥DB,OE=OH,利用相似三角形的性质即可求出BH=BD,最终由CD=BC+BD,即可求出答案.【解答】解:如图,连接OE、OF,∵由切线的性质可得OE=OF=⊙O的半径,∠OEC=∠OFC=∠C=90°,∴OECF是正方形,∵由△ABC的面积可知×AC×BC=×AC×OE+×BC×OF,∴OE=OF=a=EC=CF,BF=BC﹣CF=0.5a,GH=2OE=a,∵由切割线定理可得BF2=BH•BG,∴a2=BH(BH+a),∴BH=a或BH=a(舍去),∵OE∥DB,OE=OH,∴△OEH∽△BDH,∴=,∴BH=BD,CD=BC+BD=a+a=a.故答案为:a.三、解答题(共86分,解答应写成文字说明、证明过程、演算步骤)17.(1)计算:2sin60°﹣()﹣1+(﹣1)0(2)先化简,再求值:(1﹣)÷,其中a=2+.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:(1)原式=2×﹣2+1=﹣1;(2)原式=•=,当a=2+时,原式==+1.18.某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:(1)求出足球和篮球的单价;(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?【考点】CE:一元一次不等式组的应用;8A:一元一次方程的应用.【分析】(1)设足球的单价为x元,则篮球的单价为(x+20)元,则根据所花的钱数为1600元,可得出方程,解出即可;(2)根据题意所述的不等关系:不超过3240元,且不少于3200元,等量关系:两种球共50个,可得出不等式组,解出即可;(3)分别求出三种方案的利润,继而比较可得出答案.【解答】解:(1)设足球的单价为x元,则篮球的单价为(x+20)元,根据题意,得8x+14(x+20)=1600,解得:x=60,x+20=80.即足球的单价为60元,则篮球的单价为80元;(2)设购进足球y个,则购进篮球(50﹣y)个.根据题意,得,解得:,∵y为整数,∴y=38,39,40.当y=38,50﹣y=12;当y=39,50﹣y=11;当y=40,50﹣y=10.故有三种方案:方案一:购进足球38个,则购进篮球12个;方案二:购进足球39个,则购进篮球11个;方案三:购进足球40个,则购进篮球10个;(3)商家售方案一的利润:38(60﹣50)+12(80﹣65)=560(元);商家售方案二的利润:39(60﹣50)+11(80﹣65)=555(元);商家售方案三的利润:40(60﹣50)+10(80﹣65)=550(元).故第二次购买方案中,方案一商家获利最多.19.某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有200名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?【考点】VC:条形统计图;VB:扇形统计图.【分析】(1)喜好“核桃味”牛奶的学生人数除以它所占的百分比即可得本次被调查的学生人数;(2)用本次被调查的学生的总人数减去喜好原味、草莓味、菠萝味、核桃味的人数得出喜好香橙味的人数,补全条形统计图即可,用喜好“菠萝味”牛奶的学生人数除以总人数再乘以360°,即可得喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)用喜好草莓味的人数占的百分比减去喜好原味的人数占的百分比,再乘以该校的总人数即可.【解答】解:(1)10÷5%=200(名)答:本次被调查的学生有200名,故答案为:200;(2)200﹣38﹣62﹣50﹣10=40(名),条形统计图如下:=90°,答:喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数为90°;(3)1200×()=144(盒),答:草莓味要比原味多送144盒.20.如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.(1)请用列表或画树状图的方法写出所有的可能;(2)求一次函数y=kx+b的图象经过一、二、四象限的概率.【考点】X6:列表法与树状图法;F7:一次函数图象与系数的关系.【分析】(1)列表得出所有等可能的情况数即可;(2)找出满足一次函数y=kx+b的图象经过一、二、四象限的情况,即可求出所求的概率.【解答】解:(1)列表如下:所有等可能的情况有12种;(2)一次函数y=kx+b的图象经过一、二、四象限时,k<0,b>0,情况有4种,则P==.21.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【考点】L8:菱形的性质;L7:平行四边形的判定与性质.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.22.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B点坐标代入y=可计算出m的值;(3)设P点坐标为(t,t+),利用三角形面积公式可得到••(t+4)=•1•(2﹣t﹣),解方程得到t=﹣,从而可确定P点坐标.【解答】解:(1)当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)把A(﹣4,),B(﹣1,2)代入y=kx+b得,解得,所以一次函数解析式为y=x+,把B(﹣1,2)代入y=得m=﹣1×2=﹣2;(3)设P点坐标为(t,t+),∵△PCA和△PDB面积相等,∴••(t+4)=•1•(2﹣t﹣),即得t=﹣,∴P点坐标为(﹣,).23.如图,⊙O是Rt△ABC的外接圆,AC是⊙O的直径,弦BD=BA,AB=12,BC=5,BE⊥DC,交DC的延长线于点E.(1)求证:△ABC∽△DEB;(2)求证:BE是⊙O的切线;(3)求DE的长.【考点】MD:切线的判定;S9:相似三角形的判定与性质.【分析】(1)根据BDE=∠CAB(圆周角定理)且∠BED=∠CBA=90°即可得出结论;(2)连接OB,OD,证明△ABO≌△DBO,推出OB∥DE,继而判断OB⊥DE,可得出结论.(3)根据△BED∽△CBA,利用对应边成比例的性质可求出DE的长度.【解答】(1)BDE=∠CAB(圆周角定理)且∠BED=∠CBA=90°,∴△ABC∽△DEB;(2)证明:连结OB,OD,在△ABO和△DBO中,,∴△ABO≌△DBO(SSS),∴∠DBO=∠ABO,∵∠ABO=∠OAB=∠BDC,∴∠DBO=∠BDC,∴OB∥ED,∵BE⊥ED,∴EB⊥BO,∴OB⊥BE,∴BE是⊙O的切线.(3)∵△BED∽△CBA,∴,即=,解得:DE=.24.已知,如图二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点C(0,4)与x轴交于点A、B,点B(4,0),抛物线的对称轴为x=1.直线AD交抛物线于点D(2,m).(1)求二次函数的解析式并写出D点坐标;(2)点E是BD的中点,点Q是线段AB上一动点,当△QBE和△ABD相似时,求点Q的坐标;(3)抛物线与y轴交于点C,直线AD与y轴交于点F,点M为抛物线对称轴上的动点,点N在x轴上,当四边形CMNF周长取最小值时,求出满足条件的点M和点N的坐标.【考点】HF:二次函数综合题.【分析】(1)首先运用待定系数法求出二次函数的解析式,然后把点D(2,m)代入二次函数的解析式,就可求出点D的坐标;(2)过点D作DH⊥AB于点H,如图1,根据勾股定理可求出BD,易求出点A的坐标,从而得到AB长,然后分两种情况:①△QBE∽△ABD,②△QBE∽△DBA讨论,运用相似三角形的性质求出BQ,从而得到OQ,即可得到点Q的坐标;(3)根据待定系数法得到直线AD的解析式为:y=x+2,过点F作关于x轴的对称点F′,即F′(0,﹣2),连接DF′交对称轴于M′,x轴于N′,由条件可知,点C,D是关于对称轴x=1对称,则CF+F′N+M′N′+M′C=CF+DF′=2+2,得到四边形CFNM的最短周长为:2+2时直线DF′的解析式为:y=3x﹣2,从而得到满足条件的点M和点N的坐标.【解答】解:(1)由题可得:,解得:,则二次函数的解析式为y=﹣x2+x+4.∵点D(2,m)在抛物线上,∴m=﹣×22+2+4=4,∴点D的坐标为(2,4);(2)过点D作DH⊥AB于点H,如图1,∵点D(2,4),点B(4,0),∴DH=4,OH=2,OB=4,∴BH=2,∴DB==2.∵点E为DB的中点,∴BE=BD=.令y=0,得﹣x2+x+4=0,解得:x1=4,x2=﹣2,∴点A为(﹣2,0),∴AB=4﹣(﹣2)=6.①若△QBE∽△ABD,则=,∴=,解得:BQ=3,∴OQ=OB﹣BQ=4﹣3=1,∴点Q的坐标为(1,0);②若△QBE∽△DBA,则=,∴=,∴BQ=,∴OQ=OB﹣BQ=4﹣=,∴点Q的坐标为(,0).综上所述:点Q的坐标为(1,0)或(,0);(3)如图2,由A(﹣2,0),D(2,4),可求得直线AD的解析式为:y=x+2,即点F的坐标为:F(0,2),过点F作关于x轴的对称点F′,即F′(0,﹣2),连接DF′交对称轴于M′,x轴于N′,由条件可知,点C,D是关于对称轴x=1对称,则CF+F′N+M′N′+M′C=CF+DF′=2+2,则四边形CFNM的周长=CF+FN+NM+MC≥CF+FN′+M′N′+M′C,即四边形CFNM的最短周长为:2+2.此时直线DF′的解析式为:y=3x﹣2,所以存在点N的坐标为N(,0),点M的坐标为M(1,1).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年邯郸市初中毕业生升学模拟考试(二)数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 2014-的值是A .20141 B .20141- C .2019 D .-2019 2. 下列运算正确的是A .523x x x =⋅B .336()x x = C .5510x x x +=D .336x x x=-3.如图1所示的工件的主视图是A .B .C .D .4.规定:用符号[m ]表示一个实数m 的整数部分,例如:⎥⎦⎤⎢⎣⎡32=0,[3.14]=3.按此规定[]110+的值为A .3B . 4C . 5D . 65.三角形的两边长分别为3和6,第三边的长是方程0862=+-x x 的一个根,则这个三角图1形的周长是 A .2或4B .11或13C .11D .136.不等式组⎩⎨⎧≤->+132,02x x 的解集在数轴上表示正确的是A B C D7.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件,则x 应满足的方程为A .572048720=-+xxB .x+=+48720548720 C .572048720=-x D .-48720x+48720=5 8.如图2,AD 为⊙O 直径,作⊙O 的内接正三角形ABC ,甲、乙两人的作法分别如下:对于甲、乙两人的作法,可判断A .甲、乙均正确B .甲、乙均错误C .甲正确,乙错误D .甲错误,乙正确9.一个不透明的口袋中放着若干只红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,从口袋中随机取出一只球,取出红球的概率是14.如果袋中的白球有24只,那么袋中的红球有A .4只B .6只C .8只D .10只10.已知084=--+-m y x x ,当y =2时,m 的值为图2A .0B .1C .2D .411.如图3,某市进行城区规划,工程师需测某楼AB 的高度,工程师在D 得用高2m 的测角仪CD ,测得楼顶端A 的仰角为30°,然后向楼前进30m 到达E ,又测得楼顶端A 的仰角为60°,楼AB 的高为A .()103+2m B .()203+2m C .()53+2mD .()153+2m12.如图4,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A 、D 两点表示的数的分别为-5和6,那么,该数轴上上述五个点所表示的整数中,离线段BD 的中点最近的整数是A . 0B .1C .2D .3 13.图5为八个全等的正六边形(六条边相等,六个角相等)紧密排列在同一平面上的情形.根据图中标示的各点位置,下列三 角形中与△ACD 全等的是A .△ACFB .△ADEC .△ABCD .△BCF14.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y (单位:万元)与销售量x (单位:辆)之间分别满足:x x y 1021+-=,x y 22=,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为 A .30万元 B .40万元 C .45万元 D .46万元15.如图6,圆柱底面半径为π2cm ,高为9cm ,点A 、B 分别是圆柱两底面圆周上的点,且ABC D图4图3ABCDEF 图5A 、B 在同一母线上,用一根棉线从A 点顺着圆柱侧面绕3圈到B 点,则这根棉线的长度最短为A .12cmB .97cmC .15 cmD .21cm16.如图7,在矩形ABCD 中,O 是对角线AC 的中点,动点P ,Q 分别从点C ,D 出发,沿线段CB ,DC 方向匀速运动,已知P ,Q 两点同时出发,并同时到达终点B ,C .连接OP ,OQ .设运动时间为t ,四边形OPCQ 的面积为S ,那么下列图象能大致刻画S 与t 之间的关系的是A B C D总 分核分人图7Q卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17. 已知2a -3b 2=5,则代数式7-4a +6b 2的值为 . 18.比较大小:37 2.19.如图8,Rt △ABO 在直角坐标系中,AB ⊥x 轴于点B ,AO =10,3sin 5AOB =∠,反比例函数(0)ky x x=>的图象经过AO 的中点C ,且与AB 交于点D ,则BD = .20.如图9,在直角坐标系中,已知点)0,3(-A ,)4,0(B ,对△OAB 连续作旋转变换,依次得到三角形①、②、③、 ④…,则有一顶点坐标为(36,3)的三角形是 (填 三角形的序号).x图8三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)先化简:12122122--÷+----x x x x x x x ,再从0,1,2,3中选取一个合适的数作为x 的值代入求值(简要说明选这个数的理由).小伟调查了某校八年级学生和家长对“中学生不穿校服”现象的看法,制作了如下的统计图(图10-1和图10-2):(1)求参加这次调查的家长人数;(2)求图2中表示家长“反对”的圆心角的度数;(3)小伟随机调查了表示“赞成”的10位学生的成绩,其各科平均分如下:57,88,72,60,58,80,78,78,91,65,请写出这组数据的中位数和众数;(4)小伟从表示“赞成”的4位同学中随机选择2位进行深入调查,其中包含小明和小亮,请你利用树状图或列表的方法,求出小明和小亮被同时选中的概率.图10-1 图10-2如图11,抛物线c bx x y ++=221经过A (1-,0),C (2,-3)两点,与y 轴交于点D ,与x 轴交于另一点B .(1)求此抛物线的解析式及顶点坐标;(2)若将此抛物线平移,使其顶点为点D ,需如何平移?写出平移后抛物线的解析式; (3)过点P (m ,0)作x 轴的垂线(1≤m ≤2),分别交平移前后的抛物线于点E ,F ,交直线OC 于点G ,求证:PF =EG .图11-1图11-2如图12,两个同心圆的圆心为O ,两圆的半径分别为5,3,其中A ,B 两点在大圆上,C ,D 在小圆上,且∠AOB =∠COD .(1)求证:AC =BD ;(2)若∠AOB =120°,求线段AC ,弧CD ,线段BD ,弧AB 组成的封闭图形的面积; (3)若AB 与小圆相切,分别求AB ,CD 的长.图12小明家今年种植樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行了跟踪记录,并将记录情况绘成图表.日销售量y (单位:kg )与上市时间x (单位:天)的函数关系如图13所示,樱桃单价w (单位:元/ kg )与上市时间x (单位:天)的函数关系列表所示,第1天到第a 天的单价相同,第a 天之后,单价下降,w 与x 之间是一次函数关系.请解答下列问题:(1)观察图象,直接写出日销售量的最大值;(2)求小明家樱桃的日销售量y 与上市时间x 的函数解析式; (3)求a 的值;(4)第12天的销售金额是最多的吗?请说明你的观点和依据.图13樱桃单价w 与上市时间x 的关系如图14-1,在锐角△ABC 中,AB = 5,AC =24,∠ACB = 45°.计算:求BC 的长;操作:将图14-1中的△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.如图14-2,当点C 1在线段CA 的延长线上时.(1)证明:A 1C 1⊥CC 1;(2)求四边形A 1BCC 1的面积;B AC 图14-1B AC A 1 C 1图14-2探究:将图14-1中的△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.连结AA 1,CC 1,如图14-3.若△ABA 1的面积为5,求点C 到BC 1的距离;拓展:将图14-1中的△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点P 1, 如图14-4.(1)若点P 是线段AC 的中点,求线段EP 1长度的最大值与最小值;(2)若点P 是线段AC 上的任一点,直接写出线段EP 1长度的最大值与最小值.A BC C 1A 1图14-3A 图14-4数学二模参考答案及评分标准一.选择题二.填空题17. -3 ; 18. < ; 19. 23; 20. ⑩(写成10也对). 三.解答题 21.解原式=21)1(2122--⋅----x x x x x x ………………………………………… 2分=11)1(1---x x x=)1(1--x x x=x1-………………………………………… 6分 当x =0,1,2时,原式无意义,所以取3=x ,当3=x 时,原式=31-=33-. ……………………………………9 分 22.解:(1)家长人数是80÷20%=400人; ……………………………………2分(2)表示家长“反对”的圆心角的度数为4008040400--×360=252° ; ………4分(3)中位数是75,众数是78. ……………………………………6分(4)设小明和小亮分别用A 、B 表示,另外两个同学用C 、D 表示,列树状图如下:第一次选择第二次选择∴一共有12种等可能的结果,同时选中小明和小亮有2种情况,∴P (小明和小亮同时被选中)=61. ……………………………………9 分 23.(1)解:把A (1-,0),C (2,-3)代入c bx x y ++=221得:⎪⎩⎪⎨⎧-=++=+-322021c b c b ,解得:⎪⎩⎪⎨⎧-=-=223c b ∴抛物线的解析式为:223212--=x x y , ……………………………………2 分 ∵825)23(212232122--=--=x x x y ∴其顶点坐标为:(23,825-). ……………………………………4 分 (2)、解:向左23个单位长度,再向上平移89个单位长度. 平移后的抛物线解析式为:2212-=x y . ……………………………………7分 (3)证明:用待定系数法求直线OC 的解析式为y = -23x , ABCDB C D A C D A B D A B C(√) (×) (×) (√) (×) (×) (×) (×) (×) (×) (×) (×)当x=m 时,F y =2212-m ,则PF =-(2212-m )=2-221m , 当x=m 时,E y =223212--m m ,G y =m 23-, 则EG =G y -E y =2-221m , ∴PF =EG . ……………………………………10 分 24.(1)证明:在△AOC 和△BOD 中, ∵∠AOB =∠COD ∴∠AOC =∠BOD ∵OA=OB ,OC=OD ∴△AOC ≌△BOD ,∴ AC =BD . ……………………………………4分 (2)封闭图形的面积=360120×16π=316π. ……………………………………6 分 (3)解:设切点为E ,连接OE , ∵AB 与小圆相切, ∴OE ⊥AB ,AB =2BE 由勾股定理得,BE =4,∴AB =8.9 分 ∵∠AOB =∠COD ,ODOBOC OA =, ∴△AOC ∽△BOD , ∴35==OC OA CD AB ∴CD =524. ……………………………………12分 25.解:(1)120 kg ; ……………………………………2 分设日销售量y 与上市时间x 的函数解析式为y=kx, 由待定系数法得,120=12k ,∴k =10,即日销售量y 与上市时间x 的函数解析式为y =10x ; ………………………4 分 ②当12≤x ≤20时,函数图象过(20,0)和(12,120)两点, 设日销售量y 与上市时间x 的函数解析式为y=kx+b, 由待定系数法得,⎩⎨⎧=+=+02012012k b k b ,解得⎩⎨⎧==30015-b k ,即日销售量y 与上市时间x 的函数解析式为y = -15x +300;…………………6分 (3)设第a 天之后,樱桃单价w 与上市时间x 的函数解析式为w=kx+b ,由待定系数法得,⎩⎨⎧=+=+2011,249b k b k ,解得⎩⎨⎧==42-2b k ,即樱桃单价w 与上市时间x 的函数解析式为w = -2x +42,当w =32时,x =5,所以a 的值为5. ……………………………………9分 (4)第12天的销售金额不是最多的.当x=12时,日销售量y=120千克,樱桃单价w=18元,销售金额为18×120=2160元; 当x=10时,日销售量y=100千克,樱桃单价w=22元,销售金额为22×100=2200元; ∵2200>2160,∴第12天的销售金额不是最多的. ……………………………………12 分 (注:只要能说明第12天的销售金额不是最多的,均相应给分.例x =11时销售金额也大于第12天的销售金额,或者用函数最值说明也可以.) 26.计算:解:过点A 做A G ⊥BC 于G , ∵∠ACB = 45°∴∠GAC = 45°∴AG =CG ∴在Rt △AGC 中, AG =CG =C∠sin 24=4∴在Rt △ABG 中,由勾股定理得,BG =3∴BC =BG +CG =4+3=7. ……………………………………2分G操作:(1)证明:由旋转的性质可得∠A 1C 1B =∠ACB =45°,BC =B C 1∴∠C C 1B =∠C 1CB =45°∴∠C C 1A 1 =∠C C 1B +∠A 1 C 1B =45°+45°=90°∴A 1C 1⊥CC 1 ……………………………………4分 (2)四边形A 1BCC 1的面积=△C C 1B 的面积+ △A 1C 1B 的面积=21×7×7+21×7×4=277. ……………………………………5分 探究:解:设△BA A 1中A 1B 边为的高为m ;△C 1CB 中BC 1边为的高为n . ∵21×5m=5∴m =2 ∵∠ABC=∠A 1B C 1 ∴∠ C 1BC=∠A 1BA ∵7511==BC AB BC B A ∴△BA A 1∽△ C 1BC∴n m =BC AB =75 ∴n =514∴点C 到BC 1的距离514. ……………………………………8分 拓展:(1)过点P 做P H ⊥B C ,得到:PH =CH =2, ∴BH =BC -CH =7-2=5.在Rt △BHP 中,根据勾股定理得:BP =2252+=29.①△ABC 绕点B 旋转,点P 的对应点P 1在线段BA 的延长线上时,EP 1最小,最小值为B P 1-BE=BP -BE =29-25; ②△ABC 绕点B 旋转,点P 的对应点P 1在线段AB 的延长线上时, EP 1最大,最大值为BP 1+ BE =BP + BE =29+25.………………………………11分A(2)过点B 作BD ⊥AC ,D 为垂足,∵△ABC 为锐角三角形 ∴点D 在线段AC 上在Rt △BCD 中,BD =BC ×sin45°=227.①当P 在AC 上运动至垂足点D ,△ABC 绕点B 旋转,点P 的对应点P 1在线段AB 上时,EP 1最小,最小值为 227-25② 当P 在AC 上运动至点C ,△ABC 绕点B 旋转, 点P 的对应点P 1在线段AB 的延长线上时, EP 1最大,最大值为25+7=219 . ……………………………………14分。

相关文档
最新文档