人教版初三数学下册相似三角形章节复习

合集下载

新人教版九年级下册数学[《相似》全章复习与巩固--知识点整理及重点题型梳理](提高)

新人教版九年级下册数学[《相似》全章复习与巩固--知识点整理及重点题型梳理](提高)

新人教版九年级下册初中数学重难点突破知识点梳理及重点题型巩固练习《相似》全章复习与巩固--知识讲解(提高)【学习目标】1、了解比例的基本性质,线段的比、成比例线段;2、通过具体实例认识图形的相似,探索相似图形的性质,理解相似多边形对应角相等、对应边成比例、周长的比等于相似比、面积的比等于相似比的平方,探索并掌握相似三角形的判定方法,并能利用这些性质和判定方法解决生活中的一些实际问题;3、了解图形的位似,能够利用位似将一个图形放大或缩小,在同一直角坐标系中,感受位似变换后点的坐标的变化;4、结合相似图形性质和判定方法的探索和证明,进一步培养推理能力,发展逻辑思维能力和推理论证的表达能力,以及综合运用知识的能力,运用学过的知识解决问题的能力. 【知识网络】【要点梳理】要点一、相似图形及比例线段1.相似图形:在数学上,我们把形状相同的图形称为相似图形(similar figures).要点诠释:(1) 相似图形就是指形状相同,但大小不一定相同的图形;(2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形全等;2.相似多边形如果两个多边形的对应角相等,对应边的比相等,我们就说它们是相似多边形.要点诠释:(1)相似多边形的定义既是判定方法,又是它的性质.(2)相似多边形对应边的比称为相似比.3.比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段.要点诠释:(1)若a:b=c:d,则ad=bc;(d也叫第四比例项)(2)若a:b=b:c,则2b =ac(b称为a、c的比例中项).要点二、相似三角形1.相似三角形的判定:判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.判定方法(二):如果两个三角形的三组对应边的比相等,那么这两个三角形相似.判定方法(三):如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.要点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必须是两边的夹角,否则,判断的结果可能是错误的.判定方法(四):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.2.相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等;(2)相似三角形中的重要线段的比等于相似比;相似三角形对应高,对应中线,对应角平分线的比都等于相似比.要点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段.(3) 相似三角形周长的比等于相似比;(4)相似三角形面积的比等于相似比的平方。

最新人教版九年级数学下册《相似三角形的小结与复习课》教案(精品教学设计)

最新人教版九年级数学下册《相似三角形的小结与复习课》教案(精品教学设计)

《相似三角形的小结与复习课》教案一、教学目标:知识目标:1、通过例题的讲解使学生进一步巩固相似三角形的概念、三角形相似的判定及相似三角形的性质等知识。

能力目标:2、培养学生把课本上所学知识应用到实践中去的认识以及提高学生解决实际问题的能力。

3、培养学生将实际问题抽象成数学问题的思想方法。

情感目标:4、通过学习,养成严谨科学的学习品质。

二、教学重点与难点:1、通过例题的分析、研究,揭示应用相似三角形有关知识解题的规律,提高分析问题和解决问题的能力。

2、数学知识的综合运用。

三、教学方法:启发式。

四、教学过程:(一)复习提问:请同学口述判定三角形相似的方法及性质,教师用投影加以总结:1、相似三角形的判定:1)相似三角形的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。

2)相似三角形的预备定理:如果一条直线平行于三角形的一条边,且这条直线与原三角形的两条边(或其延长线)分别相交,那么所构成的三角形与原三角形相似。

3)判定定理:两角对应相等,两三角形相似。

4)判定定理2:两边对应成比例且夹角相等,两三角形相似。

5)判定定理3:三边对应成比例,两三角形相似。

6)直角三角形相似的判定定理:斜边和一条直角边对应成比例,两直角三角形相似。

2、相似形的性质:相似三角形除具有对应角相等、对应边成比例的性质外,还具有如下性质:(1)相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比。

(2)相似三角形周长的比等于相似比。

(3)相似三角形面积的比等于相似比的平方。

指出判定中第6个定理只适用于直角三角形相似的判定,而第1个相似三角形的定义因用起来较烦,因此平时不使用。

在性质中强调前提条件是相似。

(二):基础训练1:判断题1).所有的等边三角形都相似( ) 2).所有的等腰直角三角形都相似( ) 3).所有的直角三角形都相似( ) 4).所有等腰三角形都相似( ) 5).有一个角是100°的两个等腰三角形相似( ) 6).有一个角是70°的两个等腰三角形相似( ) 7).如果两个三角形周长之比是1∶2,那么它的面积之比为1∶4( )8).若两等腰三角形面积之比为9∶25,则它的底边之比为3∶5( )2:填空1).已知两个相似三角形的对应角平分线的比是1∶4,则对应高的比为_____,面积的比为_____。

人教版中考数学知识点复习资料-相似三角形

人教版中考数学知识点复习资料-相似三角形

第17讲相似三角形一、知识清单梳理知识点一:比例线段关键点拨与对应举例1.比例线段在四条线段a,b,c,d中,如果a与b的比等于c与d的比,即a cb d=,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.列比例等式时,注意四条线段的大小顺序,防止出现比例混乱.2.比例的基本性质(1)基本性质:a cb d=⇔ ad=bc;(b、d≠0)(2)合比性质:a cb d=⇔a bb±=c dd±;(b、d≠0)(3)等比性质:a cb d==…=mn=k(b+d+…+n≠0)⇔......a c mb d n++++++=k.(b、d、···、n≠0)已知比例式的值,求相关字母代数式的值,常用引入参数法,将所有的量都统一用含同一个参数的式子表示,再求代数式的值,也可以用给出的字母中的一个表示出其他的字母,再代入求解.如下题可设a=3k,b=5k,再代入所求式子,也可以把原式变形得a=3/5b代入求解.例:若35ab=,则a bb+=85.3.平行线分线段成比例定理(1)两条直线被一组平行线所截,所得的对应线段成比例.即如图所示,若l3∥l4∥l5,则AB DEBC EF=.利用平行线所截线段成比例求线段长或线段比时,注意根据图形列出比例等式,灵活运用比例基本性质求解.例:如图,已知D,E分别是△ABC的边BC和AC上的点,AE=2,CE=3,要使DE∥AB,那么BC:CD应等于53. (2)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.即如图所示,若AB∥CD,则OA OBOD OC=.(3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.如图所示,若DE∥BC,则△ADE∽△ABC.4.黄金分割点C把线段AB分成两条线段AC和BC,如果ACAB==5-12≈0.618,那么线段AB被点C黄金分割.其中点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.例:把长为10cm的线段进行黄金分割,那么较长线段长为5(5-1)cm.知识点二:相似三角形的性质与判定5.相似三角形的判定(1) 两角对应相等的两个三角形相似(AAA).如图,若∠A=∠D,∠B=∠E,则△ABC∽△DEF.判定三角形相似的思路:①条件中若有平行线,可用平行线找出相等的角而判定;②条件中若有一对等角,可再找一对等角或再找夹这对等角的两组边对应成比例;③条件中若有两边对应成比例可找夹角相等;④条件中若有一对直角,可考虑再找一对等角或证明直角边和斜边对应成比例;⑤条件中若有等腰关系,可找顶角相等或找一对底角相等或找底、腰对应成比例.(2) 两边对应成比例,且夹角相等的两个三角形相似.如图,若∠A=∠D,AC ABDF DE=,则△ABC∽△DEF.(3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC∽△DEF.FEDCBAl5l4l3l2l1ODCBAEDCBAFEDCBAFEDCBAFEDCBA6.相似三角形的性质(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方.(3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例:(1)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为2,则△ABC与△DEF的面积之比为9:4.(2) 如图,DE∥BC,AF⊥BC,已知S△ADE:S△ABC=1:4,则AF:AG=1:2.7.相似三角形的基本模型(1)熟悉利用利用相似求解问题的基本图形,可以迅速找到解题思路,事半功倍. (2)证明等积式或者比例式的一般方法:经常把等积式化为比例式,把比例式的四条线段分别看做两个三角形的对应边.然后,通过证明这两个三角形相似,从而得出结果.。

《相似》全章复习与巩固(知识讲解)九年级数学下册基础知识专项讲练(人教版)

《相似》全章复习与巩固(知识讲解)九年级数学下册基础知识专项讲练(人教版)

专题27.43《相似》全章复习与巩固(知识讲解)【学习目标】1、了解比例的基本性质,线段的比、成比例线段;2、通过具体实例认识图形的相似,探索相似图形的性质,理解相似多边形对应角相等、对应边成比例、周长的比等于相似比、面积的比等于相似比的平方,探索并掌握相似三角形的判定方法,并能利用这些性质和判定方法解决生活中的一些实际问题;3、了解图形的位似,能够利用位似将一个图形放大或缩小,在同一直角坐标系中,感受位似变换后点的坐标的变化;4、结合相似图形性质和判定方法的探索和证明,进一步培养推理能力,发展逻辑思维能力和推理论证的表达能力,以及综合运用知识的能力,运用学过的知识解决问题的能力.【要点梳理】【知识点一】成比例线段1、定义:四条线段,,,a b c d 中,如果a 与b 的比等于c 与d 的比,即a cb d=,那么这四条线段,,,a b c d 叫做成比例线段,简称比例线段。

2、性质:(1)基本性质:如果a cb d=,那么ad bc =;反之,若ad bc =(),,,0a b c d 都不等于,那么a c b d =(2)等比性质:如果()==0a c m b d n b d n =+++≠ ,那么a c m a b d n b +++=+++ (3)合比性质:如果a c b d =,那么a b c d b d ++=,a b c d b d --=【知识点二】平行线分线段成比例1、定理:两条直线被一组平行线所截,所得的对应线段成比例2、推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例【知识点三】相似多边形1、定义:各角分别相等,各边成比例的两个多边形叫做相似多边形。

相似多边形对应边的比叫做相似比2、性质:相似多边形的周长比等于相似比,面积比等于相似比的平方【知识点四】相似三角形1、定义:三角分别相等,三边成比例的两个三角形叫做相似三角形2、判定:(1)两角分别相等的两个三角形相似(2)两边成比例且夹角相等的两个三角形相似(3)三边成比例的两个三角形相似3、性质:(1)相似三角形的对应角相等,对应边成比例(2)相似三角形对应高的比,对应中线的比,对应角平分线的比都等于相似比(3)相似三角形的周长比等于相似比,面积比等于相似比的平方【知识点五】黄金分割点C 把线段AB 分成两条线段AC 和BC ()AC BC >,如果AC BC AB AC=,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比,即:0.618:1AC AB ≈【知识点六】位似图形1、定义:一般的,如果两个相似多边形任意一组对应顶点P ,'P 所在的直线都经过同一点O ,且有'OP =()0k OP k ⋅≠,那么这样的两个多边形叫做位似多边形,点O 叫做位似中心2、性质:位似图形上任意一对对应点到位似中心的距离之比等于相似比3、画图步骤:(1)尺规作图法:①确定位似中心;②确定原图形中的关键点关于中心的对应点;③描出新图形(2)坐标法:在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘于同一个数()0k k ≠,所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为k【典型例题】类型一、成比例线段和平行线分线段成比例1.已知三条线段a b c ,,满足1324a b c +==,且17a b c ++=.(1)求a b c ,,的值;(2)若线段d 是线段a 和b 的比例中项,求d 的值.【点拨】本题考查了比例的性质,比例线段,利用“设k 法”用k 表示出a 、b 、c 可以使计算更加简便.【变式1】已知:2:3,:3:4a b b c ==,且26a b c +-=,求,,a b c 的值【答案】4a =,6b =,8c =.【分析】根据比的性质,可得a ,b ,c 用k 表示,根据解方程,可得k 的值,即可得答案.解:∵:2:3a b =,:3:4b c =,∴设2a k =,3b k =,4c k =,∴()22346k k k ⋅+-=,整理得:36k = ,解得:2k =,∴24a k ==,36b k ==,48c k ==.【点拨】本题考查了比例的性质,利用比例的性质得出2a k =,3b k =,4c k =是解题关键.【变式2】如图所示,以长为2的定线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F,使PF PD=,以AF为边作正方形AMEF,点M在AD上.,的长;(1)求AM DM(2)点M是AD的黄金分割点吗?为什么?【点拨】此题综合考查了正方形的性质、勾股定理和黄金分割的概念.先求得线段AM,DM的长,然后求得线段AM和AD,DM和AM之间的比,根据黄金分割的概念进行判断.2.如图,已知AD∥BE∥CF,它们以此交直线l1、l2于点A、B、C和D、E、F.若25DE EF =,AC=14,(1)求AB 的长.(2)如果AD=7,CF=14,求BE 的长.【点拨】本题考查平行线分线段成比例的知识,解题的关键是掌握三条平行线截两条直线,所得的对应线段成比例.【变式1】如图,已知AD//BE//CF,它们依次交直线1l、2l于点A、B、C和点D、E、F,且AB=6,BC=8.(1)求DEDF的值;(2)当AD=5,CF=19时,求BE的长.【点拨】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例;熟练掌握平行线分线段成比例,通过作辅助线运用平行线分线段成比例求出BH 是解决问题的关键.【变式2】如图,在ABC ∆中,点D 是边AB 上的一点.(1)请用尺规作图法,在ABC ∆内,求作ADE ∠,使ADE B ∠=∠,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若2AD DB =,求AE EC的值.【点拨】本题考查了作一个角等于已知角,平行线分线段成比例定理,熟练掌握利用尺规作一个角等于已知角的作图方法是解题的关键.类型二、相似三角形判定和性质3.如图,在ABC 中,90ACB ∠=︒,CD 是边AB 上的中线,EF 垂直平分CD ,分别交AC ,BC 于E ,F ,连接DE ,DF .(1)求证:OCE OFD ∽△△.(2)当7AE =,24BF =时,求线段EF 的长.【答案】(1)见分析(2)25EF =【分析】(1)如图(见分析),先根据线段垂直平分线的性质可得90EOC DOF ∠=∠=︒,ED EC =,FD FC =,再根据三角形全等的判定定理证出EDF ECF ≅ ,根据全等三角形的性质可得12∠=∠,从而可得421∠=∠=∠,然后根据相似三角形的判定即可得证;(2)如图(见分析),延长FD 至G ,使DG DF =,连接AG ,EG ,先根据线段垂直平分线的判定与性质可得EG EF =,再根据三角形全等的判定定理证出ADG BDF ≅△△,根据全等三角形的性质可得24AG BF ==,7B ∠=∠,然后根据平行线的判定与性质可得90EAG ∠=︒,最后在Rt AEG △中,利用勾股定理即可得.(1)证明:∵EF 垂直平分CD ,∴90EOC DOF ∠=∠=︒,ED EC =,FD FC =,在EDF 和ECF △中,ED EC FD FC EF EF =⎧⎪=⎨⎪=⎩,∴()EDF ECF SSS ≅ ,∴12∠=∠,∵90ACB ∠=︒,90EOC ∠=︒,∴233490∠+∠=∠+∠=︒,∴421∠=∠=∠,在OCE △和OFD △中,9014EOC DOF ∠=∠=︒⎧⎨∠=∠⎩,∴OCE OFD .(2)解:如图,延长FD 至G ,使DG DF =,连接AG ,EG .则ED 垂直平分FG ,【点拨】本题考查了相似三角形的判定、三角形全等的判定定理与性质、线段垂直平分线的判定与性质等知识点,较难的是题(2),构造全等三角形和直角三角形是解题关键.【变式1】如图,四边形ABCD 中,AC 平分∠DAB ,∠ADC=∠ACB=90°,E 为AB 的中点,(1)求证:AC 2=AB•AD ;(2)求证:CE ∥AD ;(3)若AD=4,AB=6,求的值.=.∴AF4【变式2】如图,在△ABC中,(1)求作:∠BAD=∠C,AD交BC于D.(用尺规作图法,保留作图痕迹,不要求写作法).(2)在(1)条件下,求证:AB2=BD•BC.【点拨】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了相似三角形的判定与性质.中,过点C作CD//AB,E是AC的中点,连接DE并延长,4.如图,在ABC交AB于点F,交CB的延长线于点G,连接AD,CF()1求证:四边形AFCD是平行四边形.()2若GB3=,BC6=,3BF=,求AB的长.2【变式1】已知:如图6,菱形ABCD,对角线AC、BD交于点O,BE⊥DC,垂足为E,交AC于点F.求证:(1)△ABF∽△BED;(2)求证:AC BD BE DE=.【变式2】如图,已知▱ABCD.(1)用直尺和圆规在BC边上取一点E,使AB=AE,连结AE;(保留作图痕迹,不写作法)(2)在(1)的前提下,求证:AE=CD;∠EAD=∠D;(3)若点E为BC的中点,连接BD,交AE于F,直接写出EF:FA的值.【答案】(1)见分析(2)证明见分析(3)1:2分析:(1)以点A为圆心,AB为半径作圆,该圆与BC的交点即为所求的点E;(2)根据平行四边形的对边互相平行可得AD∥BC,再根据两直线平行,内错角相等可得∠AEB=∠EAD,根据等边对等角可得∠ABE=∠AEB,即可得证;(3)由四边形ABCD是平行四边形,可证得△BEF∽△AFD即可求得EF∶FA的值.解:(1)如图所示:;(2)证明:在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD,∵AE=AB,∴∠ABE=∠AEB,∴∠B=∠EAD,∵∠B=∠D,∴∠DAE=∠D;(3)解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△BEF ∽△AFD ,∴=,∵E 为BC 的中点,∴BE=BC=AD ,∴EF :FA=1:2.【点拨】此题考查了相似三角形的判定与性质与平行四边形的性质,熟练掌握平行四边形的性质是关键.5.如图,在ABC 中,点D 、点E 分别在AC 、AB 上,点P 是BD 上的一点,联结EP 并延长交AC 于点F ,且A EPB ECB ∠=∠=∠.(1)求证:BE BA BP BD ⋅=⋅;(2)若90ACB ∠=︒,求证:CP BD ⊥.【变式1】已知ADE C ∠=∠,AG 平分BAC ∠交DE 于F ,交BC 于G .(1)求证:ADF ∽ACG ;(2)连接DG ,若DG AC ∥,25AF AG =,6AD =,求CE 的长度.【点拨】本题考查了相似三角形的判定和性质、角平分线的性质、平行线的性质、等腰三角形的判定和性质,解决本题的关键是掌握以上的定理并熟练的运用.【变式2】如图,∠A=∠C=∠EDF,CF=4,CD=AD=6;(1)求AE的长.(2)求证:△ADE∽△DFE.【点拨】此题考查了相似三角形的判定和性质,掌握相似三角形的判定方法以及根据相似三角形性质列出比例式进行求解是解题的关键.类型三、相似三角形拓展与提升6.已知△ABC中,∠ACB=90°,AC=BC=4cm,点P从点A出发,沿AB方向cm的速度向终点B运动,同时动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,设运动的时间为t秒.(1)如图①,若PQ⊥BC,求t的值;(2)如图②,将△PQC沿BC翻折至△P′QC,当t为何值时,四边形QPCP′为菱形?【点拨】此题是相似形综合题,主要考查的是菱形的性质、等腰直角三角形的性质,线段垂直平分线的性质,用方程的思想解决问题是解本题的关键.【变式1】已知,点E 、F 、G 、H 分别在正方形ABCD 的边AB 、BC 、CD 、AD 上.(1)如图1,当四边形EFGH 是正方形时,求证:AE AH AB +=;(2)如图2,已知AE AH =,CF CG =,当AE 、CF 的大小有_________关系时,四边形EFGH 是矩形;(3)如图3,AE DG =,EG 、FH 相交于点O ,:4:5OE OF =,已知正方形ABCD 的边长为16,FH 长为20,当OEH △的面积取最大值时,判断四边形EFGH 是怎样的四边形?证明你的结论.【答案】(1)见分析(2)AE CF =(3)平行四边形,证明见分析【分析】(1)利用平行四边形的性质证得BEF AHE ∠=∠,根据角角边证明AEH BFE △≌△.(2)当AE CF =,证得AEH FCG △≌△,EBF △是等腰直角三角形,∠HEF =∠EFG =90°,即可证得四边形EFGH 是矩形.(3)利用正方形的性质证得AEGD 为平行四边形,过点H 作HM BC ⊥,垂足为点M ,交EG 于点N ,由平行线分线段成比例,设4OE x =,5OF x =,HN h =,则可表示出HN ,从而把△OEH 的面积用x 的代数式表示出来,根据二次函数求出最大值,则可得OE =OG ,OF =OH ,即可证得平行四边形.解:(1)∵四边形ABCD 为正方形,∴90A B ∠=∠=︒,∴90AEH AHE ∠+∠=°.∵四边形EFGH 为正方形,∴EH EF =,90HEF ∠=︒,∴90AEH BEF ∠+∠=︒,∴BEF AHE ∠=∠.在AEH △和BFE △中,∵90A B ∠=∠=︒,AHE BEF ∠=∠,EH FE =,∴AEH BFE △≌△.∴AH BE =.∴AE AH AE BE AB +=+=;(2)AE CF =;证明如下:∵四边形ABCD 为正方形,∴90A B ∠=∠=︒,AB =BC =AD =CD ,∵AE =AH ,CF =CG ,AE =CF ,∴AH =CG ,∴AEH FCG △≌△,∴EH =FG .∵AE =CF ,∴AB -AE =BC -CF ,即BE =BF ,∴EBF △是等腰直角三角形,∴∠BEF =∠BFE =45°,∵AE =AH ,CF =CG ,∴∠AEH =∠CFG =45°,∴∠HEF =∠EFG =90°,∴EH ∥FG ,∴四边形EFGH 是矩形.(3)∵四边形ABCD 为正方形,∴AB CD ∥.【点拨】此题考查了正方形的性质,矩形的判定和平行四边形的性质与判定,平行线分线段成比例定理,全等三角形的判定与性质,等腰三角形的性质,二次函数的最值,有一定的综合性,解题的关键是熟悉这些知识并灵活运用.【变式2】已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G 在AD 上,F 在AB(2)将正方形AFEG 绕A 点逆时针方向旋转9(0)0αα︒<<︒,如图2,求:CE DG 的值为多少;(3)AB =AG AD =,将正方形AFEG 绕A 逆时针方向旋转(0360)αα︒<<︒,当C ,G ,E 三点共线时,请直接写出DG 的长度.正方形AFEG 绕A 点逆时针方向旋转DAG CAE∴∠=∠12AG AD AE AC == GAD EAC ∴ ∽ 82AB =,22AG =82AD AB ∴==,AG =,,G E C 三点共线,Rt AGC △中,GC AC =由(2)知△ADG∽△【点拨】本题考查了平行线分线段成比例,相似三角形的性质与判定,正方形的性质,勾股定理,旋转的性质,综合运用以上知识是解题的关键.类型三、位似7.如图,在6×8的网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.⑴以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1:2⑵连接⑴中的AA′,求四边形AA′C′C的周长.(结果保留根号)【点拨】此题主要考查了位似图形的画法以及勾股定理等知识,利用位似比得出对应点位置是解题关键.【变式一】如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(5,2).(1)以点B为位似中心,在网格内画出△ABC的位似△A1BC1,使得△A1BC1与△ABC的位似比为2;(2)直接写出点A1的坐标和△A1BC1的面积.(2)如图所示1A :()3,7;11Δ116846222A BC S =⨯-⨯⨯-⨯【点拨】此题考查了位似变换和三角形面积求法,【变式二】如图,ABC 在平面直角坐标系内,三个顶点的坐标分别为()1,3A ,()2,1B ,()5,2C (正方形网格中,每个小正方形的边长为1),以点O 为位似中心,把ABC 按相似比2:1放大,得到对应A B C '''V .(1)请在第一象限内画出A B C '''V ;(2)若以点A 、B 、C 、D 为顶点的四边形是平行四边形,请直接写出满足条件的点D 的坐标.【答案】(1)见分析(2)()14,4D ;()26,0D ;()32,2D -【分析】(1)根据点O 为位似中心,()1,3A ,()2,1B ,()5,2C ,把ABC 按相似比2:1放大,得到对应A B C '''V ,求出点'A ,'B ,'C 的坐标,在网格中描点顺次连线即得;C(2)设D(x,y),∵平行四边形的对角线互相平分,且综上,()14,4D ;()26,0D ;()32,2D -.【点拨】本题主要考查了位似三角形,平行四边形,解决问题的关键是熟练掌握位似三角形的定义及画法,平行四边形对角线的性质和线段中点坐标公式.。

数学人教版九年级下册相似三角形的性质

数学人教版九年级下册相似三角形的性质

练习2 (3).判断 一个三角形的各边长扩大为原来的5倍,这个
三角形的角平分线也扩大为原来的5倍;( )
一个三角形的各边长扩大为原来的9倍,这个 三角形的面积也扩大为原来的9倍. (

×)
应用提高
例:如图,在△ABC 和△DEF 中,AB=2DE, AC=2DF,∠A=∠D.若△ABC 的边 BC 上的高是 6,面积为 1 2 5 ,求△DEF 的边 EF上的高和面积. 解:在△ABC 和△DEF 中, ∵AB=2DE,AC=2DF,
对应角平分线的比等于相似比
归纳1 结论:相似三角形对应高的比,对应中线 的比与对应角平分线的比都等于相似比. 对应边的比 相 对应高的比 似 对应中线的比 =相似比k 三 角 对应角平分线的比 形 …… 推广:相似三角形对应线段的比等于相似 比.
练习1 (1)已知△ABC与△ A′B′C′的相似比为2:3, 2:3 ,对应高的比为 则对应边上中线之比 2:3 ,对应角平分线的比为 2:3 . (2)两个相似三角形对应高的比为3∶7,它 们的对应角平分线的比为( D ) A.7∶3 B.49∶9 C.9∶49 D.3∶7
1.如图,△ABC∽△A′B′C′,它们的周长分 别为60和72,且AB=15,B′C′=24,求BC、AC、 A′B′、A′C′的长. A
解: ∵△ABC∽△A′B′C′
60 5 k 72 6
A B B C 5 BC 6 AB
5 5 B C 2 4 B C 2 0 6 6 6 A B 6 1 5 A B 1 8 5 5
AB BC AC A B B C A C k A B k B C k A C A B B C A C k.

九年级数学相似三角形知识点汇总参考(搜集整理全面细致)

九年级数学相似三角形知识点汇总参考(搜集整理全面细致)

.
( 5)平行线分线段成比例定理 :两条直线被三条平行的直线所截,截得的对应线段成比例
.
( 6)平行线等分线段定理:两条直线被三条平行的直线所截,如果在一条直线上截得的线段相等,那么在
另一条直线上截得的线段也相等 .
这几个定理主要提出由平行线可得到比例式;反之
, 有比例可得到平行线 . 首先要弄清三个基本图形:
九年级数学相似三角形知识点汇总参考
一、比例线段及比例的性质
1.比例线段: ( 1)线段的比:如果选用同一长度单位量得两条线段
a, b 的长度分别是 m, n,那么就说这两条线段的比是
a:b=m:n ,或写成
, 其中 a 叫做比的前项 ;b 叫做比的后项 .
( 2)成比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比
( 3)向量平行的 判定定理: a 是一个非零向量,若存在一个实数 m ,使 b ma ,则向量 b 与非零向量 a 平行 .
( 4)向量平行的性质定理:若向量 b与非零向量 a 平行 ,则存在一个实数 m ,使 b ma .
( 5) A、 B、 C 三点的共线
AB// BC 若存在实数 λ ,使 AB λBC .
3
诠释: ( 1)向量数乘结果是一个与已知向量平行(或共线)的向量; ( 2)实数与向量不能进行加减运算;
( 3) ka 表示向量的数乘运算, 书写时应把实数写在向量前面且省略乘号,
面;
( 4)向量的数乘体现几何图形中的位置关系和数量关系
.
3.实数与向量相乘的运算律
设 m 、 n 为实数,则:
注意不要将表示向量的箭头写在数字上
, 所截得的三角形的
三边与原三角形三边的对应成比例 .

(完整word版)九年级数学相似三角形知识点及习题

相似三角形要点一、本章的两套定理第一套(比例的有关性质): b a n d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质 涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。

二、有关知识点:1.相似三角形定义: 对应角相等,对应边成比例的三角形,叫做相似三角形。

2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。

3.相似三角形的相似比: 相似三角形的对应边的比叫做相似比。

4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。

5.相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:类型斜三角形 直角三角形 全等三角形的判定 SASSSS AAS (ASA ) HL 相似三角形的判定 两边对应成比例夹角相等 三边对应成比例 两角对应相等一条直角边与斜边对应成比例 从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。

6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

7.相似三角形的性质定理:(1)相似三角形的对应角相等。

(2)相似三角形的对应边成比例。

(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

(4)相似三角形的周长比等于相似比。

(5)相似三角形的面积比等于相似比的平方。

8.相似三角形的传递性 如果△ABC ∽△A 1B 1C 1,△A 1B 1C 1∽△A 2B 2C 2,那么△ABC ∽A 2B 2C 2三、注意1、相似三角形的基本定理,它是相似三角形的一个判定定理,也是后面学习的相似三角形的判定定理的基础,这个定理确定了相似三角形的两个基本图形“A ”型和“ X ”型。

人教版九年级数学下册 第27章 相 似 相似三角形 相似三角形的判定 第3课时 由两角判定三角形相似

数学 九年级下册 人教版
第二十七章 相 似
27.2 相似三角形
27.2.1 相似三角形的判定
第3课时 由两角判定三角形相似
知识点❶:两角对应相等的两个三角形相似
1.在△ABC和△A′B′C′中,∠A=68°,∠B=40°,∠A′=68°,∠C′=72°,
则这两个三角形( )
B
A.全等 B.相似
C.不相似 D.无法确定
14.如图,等边三角形 ABC 的边长为 6,在 AC,BC 边上各取一点 E,F, 使 AE=CF,连接 AF,BE 相交于点 P.
(1)求证:AF=BE,并求∠APB 的度数; (2)若 AE=2,试求 AP·AF 的值.
解:(1)∵△ABC 为等边三角形,∴AB=AC,∠C=∠CAB=60°,在△ABE 和
4.(南京中考)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分 ∠ACB.若AD=2,BD=3,则AC的长为__1_0_.
5.(通辽中考)如图,⊙O的直径AB交弦(不是直径)CD于点P,且PC2=PB·PA, 求证:AB⊥CD.
证 明 : 连 接 AC , BD , ∵ ∠ A = ∠ D , ∠ C = ∠ B , ∴ △ APC∽△DPB , ∴ PC∶PB = PA∶PD , ∴ PC·PD = PA·PB , ∵ PC2 = PB·PA , ∴ PC = PD , ∵ AB 为 直 径 , ∴AB⊥CD
解:(1)在△AOF 和△EOF 中,
பைடு நூலகம்
OA=OE, ∠AOD=∠EOD, ∴△AOF≌△EOF(SAS),∴∠OAF=∠OEF,∵BC 与⊙O 相 OF=OF,
切,∴OE⊥FC,即∠OEF=90°,∴∠OAF=90°,即 OA⊥AF,又∵OA 是⊙O 的半径,

九年级数学《相似-复习课》教案

《第27章相似》复习课教学设计1.教材内容义务教育课程标准实验教科书(人教版)《数学》九年级下册第27章相似的全章复习。

2.知识背景分析本章隶属于“空间与图形”领域,本章共有三节内容第1节图形的相似主要介绍相似图形,相似多边形的概念,并探索相似多边形的性质;第2节相似三角形主要研究相似三角形的判定方法、相似三角形在测量中的应用及相似三角形的周长和面积;第3节位似研究了一种特殊的相似-位似,研究了位似图形的画法及平面直角坐标系中的位似变化。

本节课是在学习前三节的基础上进行的,通过对一些图形性质的探索、证明等,进一步发展学生的探究能力,培养学生的逻辑思维能力等。

3.学情背景分析教学对象是九年级学生,学生的逻辑思维能力得到了一定的发展。

本章正处于学生对于掌握的推理论证方法的进一步巩固和提高阶段,要求学生能熟练运用综合法证明命题,熟悉探索法德推理过程,因此在教学中要注意多帮助学生复习已有的知识,做到以新带旧,新旧结合。

要加强解题思路的分析,帮助学生树立已知与未知,简单与复杂,特殊与一般在一定的条件下可以转换的思想,使学生学会把未知化为已知,把复杂问题化为简单问题,把一般问题化为特殊问题的思考方法。

通过小结对于学生推理证明的训练,进一步提高学生的逻辑思维能力和分析解决问题的能力。

4.学习目标4.1知识与技能目标(1)通过复习,梳理本章知识,构建知识网络.(2)通过具体实例认识图形的相似,探索相似图形的性质,知道相似多边形的对应角相等,对应边成比例,面积的比等于对应边的比的平方。

(3)了解两个三角形相似的概念,探索两个三角形相似的条件。

(4)了解图形的位似,能够利用位似将一个图形放大或缩小。

(5)通过典型实例观察和认识现实生活中物体的相似,使学生综合运用图形的相似解决一些实际问题。

(5)在同一直角坐标系中,感受图形变换后点的坐标的变化特点。

4.2过程与方法目标经历小结的过程,使学生学会建立本章的知识结构图。

九年级下册数学《相似》相似三角形 知识和点整理

相似三角形一、本节学习指导本节知识虽然没有三角形全等运用广泛,但是却跟三角形全等一样重要,一样难懂。

在理解判断相似条件后,一定要多做练习。

判断三角形是否相似最常用的方法是下面列出的前面两种,同学们一定牢固掌握。

本节有配套学习视频。

二、知识要点1、相似三角形:形状相同,但大小不一样的两个三角形就称为相似三角形。

定义:三角对应相等,三边对应成比例的两个三角形叫做相似三角形。

注:所有的边数相同的正多边形都相似(正三角形,正方形,正五边形等等)2、相似三角形的判定(1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

即:注:两个夹角相等那么第三个角必定相等,三个角都相等的三角形必定相似。

(2)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。

即:注:在上图中,DE∥BC,所以△ADE∽△ABC(3)如果两个三角形的两组对应边的比相等,且相应的夹角相等,那么这两个三角形相似即:注:如上图,8/4=6/3=2,两组对边比相等,再加上中间的夹角相等,则两个三角形相似。

(4)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。

即:注:如上图,三组对边相比8/4=6/3=5/2。

5=2,由此两个三角相似。

3、相似三角形的性质(1)对应边的比相等,对应角相等。

(2)相似三角形的周长比等于相似比。

(3)相似三角形的面积比等于相似比的平方。

(4)相似三角形的对应边上的高、中线、角平分线的比等于相似比。

4、位似:位似:如果两个图形不仅是相似图形,而且是每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形。

这个点叫做位似中心。

这时的相似比又称为位似比。

位似性质:位似图形上任意一对对应点到位似中心的距离之比等于位似比三、经验之谈:判定三角形相似和全等的几个方法我们一定要区分开,全等要求的是边、角都相等,而相似只要求对应角相等即可。

灵活运用:相似三角形的对应边上的高、中线、角平分线的比等于相似比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形章节复习教案
2017年3月16日 授课人:汪辉
复习目标:
(1)理解掌握以下重要的概念和定理
(相似三角形、位似概念;相似三角形的判定和性质)
(2)熟练掌握解决以下问题的方法和规律
(三角形相似的判定;利用相似进行有关计算和推理;
根据位似,进行有关计算或在坐标系中求点的坐标。


重点:相似三角形的性质和判定
难点:利用相似进行有关计算和推理解决问题
复习过程:
1、 预备练习,导入新课:
完成下列练习,说说相关知识点。

(1)已知:△ABC ∽△DEF, AB=8,AC=10, DE=4, ∠C=∠F=45°,∠B=75° 则 ∠E = ,DF= .
(2)已知:在平行四边形 ABCD 中,点M 为CD 上一点,连接AM 并延长与BC 的延长线相交于点F ,则图形中相似三角形共有 对。

(3)在△ABC 与△ A ′B ′C ′中,有下列条件① ②∠A= ∠A ′ ; ③∠C= ∠C ′ ④ 如果从中任取两个条件组成一组,
那么能判断△ABC ∽△ A ′B ′C ′的共有 组。

(4)已知:△ABC ∽△DEF,它们的相似比为2:3, 则△ABC 与△DEF 对应高的比为 ,周长的比 ,面积的比为
(5)△ABC 和△A 1B 1C 1是以点O 为位似中心的位似三角形,若C 1为OC 的中点,AB =4, 则A 1B 1的长为 .
2、 知识点整理:
(1)相似多边形的定义:各边 ,各角 的两个多边形叫相似多边形。

(2)相似三角形的判定
判定1:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的 三角形与原三角形 。

判定2: 对应成比例的两个三角形相似。

判定3: 对应成比例且夹角相等的两个三角形相似。

判定4: 分别相等的两个三角形相似
对于直角三角形还有特殊的判定方法是 。

(3)相似三角形的性质
①相似三角形的对应角 ,对应边 。

C B BC B A AB '
'=''C A AC C B BC ''='
' F
A D M
B C
②相似三角形对应高的比、对应中线的比、对应角平分线的比等于。

③相似三角形周长的比等于。

面积的比等于。

(4)位似图形
位似图形的定义:如果两个图形不仅是,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做。

利用位似可以将一个图形。

位似图形与坐标:在平面直角坐标系中,如果以原点为位似中心,画出一个与原图形位似的图形,使它原图形的相似比为k,那么与原图形上的点(x,y)对应的位似图形上的点的坐标为
3、综合运用(变式训练)
例、有一块三角形余料ABC,它的边BC=120 mm,高AD=80 mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问:加工成的正方形零件的边长是多少毫米?
变式1:如果原题中要加工的零件是一个矩形,如图1,且此矩形是由两个并排放置的正方形所组成,此时,这个矩形零件的两条边长又分别为多少毫米?
变式2:如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.
3、课堂巩固练习:(见PPT)
4、课堂小结:
5、课后反思:。

相关文档
最新文档