数字信号处理实验报告(同名22433)

合集下载

《数字信号处理》实验报告

《数字信号处理》实验报告

数字信号处理》实验报告年级:2011 级班级:信通 4班姓名:朱明贵学号:111100443 老师:李娟福州大学2013 年11 月实验一快速傅里叶变换(FFT)及其应用一、实验目的1. 在理论学习的基础上,通过本实验,加深对FFT的理解,熟悉MATLAB^的有关函数。

2. 熟悉应用FFT对典型信号进行频谱分析的方法。

3. 了解应用FFT进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT。

4. 熟悉应用FFT实现两个序列的线性卷积和相关的方法。

二、实验类型演示型三、实验仪器装有MATLA爵言的计算机四、实验原理在各种信号序列中,有限长序列信号处理占有很重要地位,对有限长序列,我们可以使用离散Fouier变换(DFT)。

这一变换不但可以很好的反映序列的频谱特性,而且易于用快速算法在计算机上实现,当序列x(n)的长度为N时,它的DFT定义为:JV-1 $生反变换为:如-器冃吋科—有限长序列的DFT是其Z变换在单位圆上的等距采样,或者说是序列Fourier变换的等距采样,因此可以用于序列的谱分析。

FFT并不是与DFT不同的另一种变换,而是为了减少DFT运算次数的一种快速算法。

它是对变换式进行一次次分解,使其成为若干小点数的组合,从而减少运算量。

常用的FFT 是以2为基数的,其长度A - o它的效率高,程序简单,使用非常方便,当要变换的序列长度不等于2的整数次方时,为了使用以2为基数的FFT,可以用末位补零的方法,使其长度延长至2的整数次方。

(一)在运用DFT进行频谱分析的过程中可能的产生三种误差1 .混叠序列的频谱是被采样信号频谱的周期延拓,当采样速率不满足Nyquist定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。

避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解,在一般情况下,为了保证高于折叠频率的分量不会出现,在采样前,先用低通模拟滤波器对信号进行滤波。

数字信号处理实验报告

数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。

2、熟悉离散信号和系统的时域特性。

3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。

二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。

2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。

信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。

根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。

三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。

(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

数字信号处理实验报告

数字信号处理实验报告

中南大学《数字信号处理》实验报告课程名称数字信号处理指导教师学院信息科学与工程学院专业班级姓名实验一 常见离散时间信号的产生和频谱分析实验内容及要求(1)复习常用离散时间信号的有关内容;(2) 用MATLAB 编程产生上述任意3种序列(长度可输入确定,对(d) (e) (f)中的参数可自行选择),并绘出其图形;1)单位阶跃序列: n=-20:20; xn=heaviside(n); xn(n==0)=1;plot(n,xn);stem(n,xn);axis([-20 20 0 1.2]);title('单位阶跃序列');xlabel('n');ylabel('u(n)');box on2)单位抽样序列: n=-20:20;xn=heaviside(n)-heaviside(n+1); xn(n==0)=1;plot(n,xn);stem(n,xn);axis([-20 20 0 1.2]);title('单位抽样序列');xlabel('n');ylabel('\delta(n)');box on-20-15-10-5051015200.20.40.60.81单位阶跃序列nu (n )3)矩阵序列: n=-20:20; N=5;xn=heaviside(n)-heaviside(n-N); xn(n==0)=1;xn(n==N)=0;plot(n,xn);stem(n,xn);axis([-20 20 0 1.2]);title('矩阵序列');xlabel('n');ylabel('R_{N}(n)');box on-20-15-10-50510152000.20.40.60.81单位抽样序列n(n )-20-15-10-50510152000.20.40.60.81矩阵序列nR N (n )4)正弦序列:n=-40:40;A=2;w=pi/8;f=pi/4; xn=A*sin(w.*n+f);plot(n,xn);stem(n,xn);axis([-40 40 -4.2 4.2]) title('正弦序列');xlabel('n');ylabel('x(n)');box on(3) 混叠现象对连续信号01()sin(2***)x t pi f t =其中,01500f Hz =进行采样,分别取采样频率2000,1200,800s f Hz Hz Hz =,观察|)(|jw e X 的变化,并做记录(打印曲线),观察随着采样频率降低频谱混叠是否明显存在,说明原因。

数字信号处理课程设计实验报告

数字信号处理课程设计实验报告

数字信号处理课程设计实验报告数字信号处理课程设计实验报告(基础实验篇)实验⼀离散时间系统及离散卷积⼀、实验⽬的和要求实验⽬的:(1)熟悉MATLAB软件的使⽤⽅法。

(2)熟悉系统函数的零极点分布、单位脉冲响应和系统频率响应等概念。

(3)利⽤MATLAB绘制系统函数的零极点分布图、系统频率响应和单位脉冲响应。

(4)熟悉离散卷积的概念,并利⽤MATLAB计算离散卷积。

实验要求:(1)编制实验程序,并给编制程序加注释;(2)按照实验内容项要求完成笔算结果;(3)验证编制程序的正确性,记录实验结果。

(4)⾄少要求⼀个除参考实例以外的实例,在实验报告中,要描述清楚实例中的系统,并对实验结果进⾏解释说明。

⼆、实验原理δ的响应输出称为系统1.设系统的初始状态为零,系统对输⼊为单位脉冲序列()n的单位脉冲响应()h n。

对于离散系统可以利⽤差分⽅程,单位脉冲响应,以及系统函数对系统进⾏描述。

单位脉冲响应是系统的⼀种描述⽅法,若已知了系统的系统函数,可以利⽤系统得出系统的单位脉冲响应。

在MATLAB中利⽤impz 由函数函数求出单位脉冲响应()h n2.幅频特性,它指的是当ω从0到∞变化时,|()|Aω,H jω的变化特性,记为()相频特性,指的是当ω从0到∞变化时,|()|∠的变化特性称为相频特性,H jωω。

离散系统的幅频特性曲线和相频特性曲线直观的反应了系统对不同记为()频率的输⼊序列的处理情况。

三、实验⽅法与内容(需求分析、算法设计思路、流程图等)四、实验原始纪录(源程序等)1.离散时间系统的单位脉冲响应clcclear alla=[1,-0.3];b=[1,-1.6,0.9425];impz(a,b,30);%离散时间系统的冲激响应(30个样值点)title('系统单位脉冲响应')axis([-3,30,-2,2]);2.(1)离散系统的幅频、相频的分析⽅法21-0.3()1 1.60.9425j j j e H z e e ωωω---=-+clcclear alla=[1,-0.3];b=[1,-1.6,0.9425];%a 分⼦系数,b 分母系数 [H,w]=freqz(a,b,'whole'); subplot(2,1,1); plot(w/pi,abs(H));%幅度 title('幅度谱');xlabel('\omega^pi');ylabel('|H(e^j^\omega)'); grid on;subplot(2,1,2);plot(w/pi,angle(H));%相位 title('相位谱');xlabel('\omega^pi'); ylabel('phi(\omega)'); grid on;(2)零极点分布图clc; clear all a=[1,-0.3];b=[1,-1.6,0.9425]; zplane(a,b);%零极图 title('零极点分布图')3.离散卷积的计算111()()*()y n x n h n =clcclear all% x=[1,4,3,5,3,6,5] , -4<=n<=2 % h=[3,2,4,1,5,3], -2<=n<=3 % 求两序列的卷积 clear all;x=[1,4,3,5,3,6,5]; nx=-4:2; h=[3,2,4,1,5,3];nh=-2:3;ny=(nx(1)+nh(1)):(nx(length(x))+nh(length(h))); y=conv(x,h);n=length(ny);subplot(3,1,1);stem(nx,x);xlabel('nx');ylabel('x'); subplot(3,1,2);stem(nh,h);xlabel('nh');ylabel('h'); subplot(3,1,3);stem(ny,y);xlabel('n');ylabel('x 和h 的卷积')五、实验结果及分析(计算过程与结果、数据曲线、图表等)1.离散时间系统的单位脉冲响应051015202530-2-1.5-1-0.500.511.52n (samples)A m p l i t u d e系统单位脉冲响应2.离散系统的幅频、相频的分析⽅法00.20.40.60.81 1.2 1.4 1.6 1.82 102030幅度谱ωp i|H (e j ω)0.20.40.60.811.21.41.61.82-2-1012相位谱ωp ip h i (ω)-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.81Real PartI m a g i n a r y P a r t零极点分布图3.离散卷积的计算-4-3-2-1012nxx-2-1.5-1-0.500.51 1.522.53nhh -6-4-20246nx 和h 的卷积六、实验总结与思考实验⼆离散傅⽴叶变换与快速傅⽴叶变换⼀、实验⽬的和要求实验⽬的:(1)加深理解离散傅⾥叶变换及快速傅⾥叶变换概念; (2)学会应⽤FFT 对典型信号进⾏频谱分析的⽅法; (3)研究如何利⽤FFT 程序分析确定性时间连续信号; (4)熟悉应⽤FFT 实现两个序列的线性卷积的⽅法;实验要求:(1)编制DFT 程序及FFT 程序,并⽐较DFT 程序与FFT 程序的运⾏时间。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告黎美琪通信一、实验名称:(快速傅里叶变换)的探究二、实验目的.学习理解的基本实现原理(注:算法主要有基时间抽取法和基频域抽取法,此实验讨论的是基频率抽取算法,课本上主要讲解的是基时间抽取算法).编写代码实现基频率抽取算法三、实验条件机四、实验过程(一)基础知识储备.基频率抽取( )算法基本原理:输入[]前后分解,输出[]奇偶分解。

设序列的点数为^,为整数(公式中的、定义不一样,打印后统一改正)将输入的[]按照的顺序分成前后两段:对输出的[]进行奇偶分解()、()和()之间可以用下图所示的蝶形运算符表示:的一次分解流图:的二次分解流图:最后完整的分解流图(^一共分解了三次):的运算过程规律。

)^点的共进行级运算,每级由个蝶形运算组成。

同一级中,每个蝶形的两个输入数据只对计算本蝶形有用,而且每个蝶形的输入、输出数据结点又同在一条水平线上,也就是说计算完一个蝶形后,所得输出数据可立即存入原输入数据所占用的存储单元。

这样,经过级运算后,原来存放输入序列数据的个存储单元中便依次存放()的个值。

(注:这种利用同一存储单元存储蝶形计算输入、输出数据的方法称为原位计算。

原位计算可节省大量内存,从而使设备成本降低。

))旋转因子的变化规律 :以点的为例,第一级蝶形,,,,;第二级蝶形,;第三级的蝶形,。

依次类推,对于级蝶形,旋转因子的指数为∙^(−),,,,,……,^()这样就可以算出每一级的旋转因子。

)蝶形运算两节点之间的“距离” :第一级蝶形每个蝶形运算量节点的“距离”为,第二级每个蝶形运算另节点的“距离”为,第三级蝶形每个蝶形运算量节点的“距离”为。

依次类推:对于等于的次方的,可以得到第级蝶形每个蝶形运算量节点的“距离”为的次方。

.旋转因子 的性质1) 周期性 2) 对称性mk N N mk N W W -=+2 )可约性为整数/,//n N W W n mk n N mk N =.频率抽取()基算法和时间抽取()基算法比较:两种算法是等价的,其相同之处:()与两种算法均为原位运算。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。

在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。

本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。

实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。

通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。

实验设置如下:1. 设置采样频率为8kHz。

2. 生成一个正弦信号:频率为1kHz,振幅为1。

3. 生成一个方波信号:频率为1kHz,振幅为1。

4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。

实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。

这体现了正弦信号和方波信号在时域上的不同特征。

实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。

在实际应用中,信号的采样和重构对信号处理的准确性至关重要。

实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。

2. 设置采样频率为8kHz。

3. 对正弦信号进行采样,得到离散时间信号。

4. 对离散时间信号进行重构,得到连续时间信号。

5. 将重构的信号通过DAC输出到示波器上进行显示。

实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。

这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。

【精品】数字信号处理实验报告

【精品】数字信号处理实验报告

【精品】数字信号处理实验报告
1 实验目的
本次实验的目的是在MATLAB软件环境中运用数字信号处理理论,通过实验操作来检验用于数字信号处理的算法的正确性,以便明确数字信号处理理论在实际应用中的重要作用。

2 实验原理
数字信号处理实验的原理是使用MATLAB进行数字信号处理算法实验,首先,设置一些用于数字信号处理的参数,如传输函数、离散时间区间、采样频率、滤波器类型等;其次,按照信号处理的算法进行编程实现,搭建一个数字信号处理系统,在MATLAB下对信号进行处理,包括采样、滤波和量化等;最后,对处理后的信号进行数字分析,监测数字信号处理后的变化趋势,验证数字信号处理算法的正确性。

3 实验步骤
(1) 建立信号处理实验系统:选择一个常见的信号处理算法,运用MATLAB软件分别编写信号发生程序、信号采样程序、滤波程序和信号量化程序;
(2) 运行实验程序:实验同学可以自行设置参数,如传输函数、离散时间区间、采样频率、滤波器类型等,调整完毕后,点击“run”,运行实验程序;
(3) 观察实验结果:运行完毕后,可以观察MATLAB的图形结果,以此来分析信号处理算法的性能;
(4) 对结果进行分析:经过上述实验操作后,可以根据所得到的实验结果来判断信号处理算法的性能,如输出信号的噪声抑制能力、良好的时域和频域性能等,从而验证信号处理理论在实际应用中的价值。

4 总结。

数字信号处理实验报告

数字信号处理实验报告

一、实验目的1. 理解数字信号处理的基本概念和原理。

2. 掌握离散时间信号的基本运算和变换方法。

3. 熟悉数字滤波器的设计和实现。

4. 培养实验操作能力和数据分析能力。

二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。

本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。

2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。

3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。

4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。

三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。

(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。

2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。

(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。

3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。

(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。

4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。

(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。

四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数字信号处理》实验报告课程名称:《数字信号处理》学院:信息科学与工程学院专业班级:通信1502班学生姓名:***学号:**********指导教师:***2017年5月28日实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。

对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号:ˆ()()()a a xt x t p t = 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。

()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。

也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。

因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即()()n P t t nT δ∞=-∞=-∑1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()|j a TX j X e ωω=ΩΩ=而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。

已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。

本实验仅在时域求解,对于差分方程可用Matlab 中的工具箱函数filter()函数求解一个时域离散线性时不变系统的输出与输入间的关系为:可用Matlab 中的工具箱函数conv()函数求解三、实验内容及步骤1. 时域采样定理的验证给定模拟信号:0()sin()()t a x t Ae t u t α-=Ω式中 444.128, A=,α=0/rad s Ω=。

其幅频特性如图所示:选择三种采样频率Fs=1kHz, 300Hz, 200Hz, 生成采样序列0()sin()()064nT x n Ae nT u n n α-=Ω≤<分别用序列123()()()x n x n x n 、、表示。

编写程序计算三个序列的幅频特性曲线123|()|()|()|j j j X e X e X e ωωω、|、|,并绘图显示。

观察|()|j X e ω在折叠频率附近与连续信号频谱有无明显差别,分析频谱混叠现象。

实验程序如下%时域采样定理的验证%Fs=1KHzTp=64/1000; %Tp=64msFs=1000;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;()()()()()m y n x n h n x m h n m ∞=-∞=*=-∑10.80.60.40.200100200300400500x a (j f ) f /Hzxnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xnt,M); %MµãFFTyn='xa(nT)';subplot(3,2,1);stem(xnt); %»-ͼbox on;title('(a) Fs=1000Hz');k=0:M-1;fk=k/Tp;subplot(3,2,2);plot(fk,abs(Xk));title('(a) T*FT[xa(nT)],Fs=1000Hz'); xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))])%Fs=300HzTp=64/1000;Fs=300;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xnt,M);yn='xa(nT)';subplot(3,2,1);stem(xnt);box on;title('(a) Fs=300Hz');k=0:M-1;fk=k/Tp;subplot(3,2,2);plot(fk,abs(Xk),'r');title('(a)T*FT[xa(nT)],Fs=300Hz’) ;xlabel('f(Hz)');ylabel(‘幅度’);axis([0,Fs,0,1.2*max(abs(Xk))])%Fs=200HzTp=64/1000; %64msFs=300;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xnt,M);yn='xa(nT)';subplot(3,2,1);stem(xnt,'.');box on;title('(a) Fs=200Hz');k=0:M-1;fk=k/Tp;subplot(3,2,2);plot(fk,abs(Xk));title('(a) T*FT[xa(nT)],Fs=200Hz'); xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))]);2. 给定一个低通滤波器的差分方程为:()0.05()0.05(1)0.9(1)y n x n x n y n =+-+-输入序列182()(), ()()x n R n x n u n ==(1)分别求出18()()x n R n =和2 ()()x n u n =的系统响应,并画出其波形(2) 求出系统的单位脉冲响应,画出其波形A=[1,-0.9];B=[0.05,0.05];x1n=[ones(1,8),zeros(1,50)]x2n=ones(1,200);hn=impz(B,A,50);subplot(3,1,1);stem(hn);title(‘(1)系统单位脉冲响应h(n)’);y1n=filter(B,A,x1n);subplot(3,1,2);stem(y1n);title('(2)系统对R (8)的响应 y1(n)');y2n=filter(B,A,x2n);subplot(3,1,3);stem(y2n);title(‘(3)系统对u(n)的响应)y2(n)’);3. 给定系统的单位脉冲响应为1102()(), ()() 2.5(1) 2.5(2)(3)h n R n h n n n n n δδδδ==+-+-+-用线性卷积法求18()()x n R n =分别对系统1()h n 和2()h n 的输出响应,并画出波形x1n=ones(1,8);h1n=[ones(1,10) zeros(1,20)];h2n=[1,2.5,2.5,1,zeros(1,10)];y11n=conv(h1n,x1n);y22n=conv(h2n,x1n);subplot(2,2,1);stem(h1n,’.b’);title(‘(4)系统单位脉冲响应h1(n)’);subplot(2,2,2);stem(y11n,'.b');title(‘(5)h1(n)与R8(n)的卷积y11(n)’);subplot(2,2,3);stem(h2n,'.b');title(‘(6)系统单位脉冲响应h2(n)’);subplot(2,2,4);stem(y22n,'.b');title(‘(7)h2(n)与R8(n)的卷积y22(n)’);四、实验思考1. 在分析理想采样序列特性的实验中,采样频率不同时,相应理想采样序列的傅里叶变换频谱的数字频率度量是否都相同?它们所对应的模拟频率是否相同?为什么?答:当采样频率不同时,数字度量不同,但是模拟频率相同。

因为数字频率W是模拟角频率Ω用采样频率F S归一化频率。

数字频率和模拟角频率之间的关系是W=ΩT,模拟信号的模拟角频率Ω不变,当采样频率不同时,T不同,所以数字频率Ω不同。

因此,采样频率不同时,相应理想采样序列的傅里叶变换频谱的数字频率度量不相同,但是它们所对应的模拟频率相同。

2. 如果输入信号为无线长序列,系统的单位脉冲响应是有限长序列,可否用线性卷积法求系统的响应?如何求?答:(1)对输入信号序列分段;(2)求单位脉冲响应与各段的卷积;(3)将各段卷积结果相加。

3. 如果信号经过低通滤波器,把信号的高频分量滤掉,时域信号会有何变化?用前面第二个实验结果进行分析说明答:把信号经过低通滤波器,把信号的高频成分滤掉,时域信号的剧烈将变得平滑。

五、实验心得及体会通过本次实验我重新温习了MATLAB这个软件的使用方法,运行环境。

通过这款软件使我们的学习更加便利。

实验二用FFT对信号作频谱分析一、实验目的1. 进一步加深DFT算法原理和基本性质的理解2. 掌握用FFT对连续信号和时域离散信号进行频谱分析的方法3. 了解用FFT进行频谱分析时可能出现的分析误差及其原因,以便在实际中正确应用FFT二、实验原理用FFT对信号作频谱分析是学习数字信号处理的重要内容,经常需要进行谱分析的信号是模拟信号和时域离散信号。

对信号进行谱分析的重要问题是频谱分辨率F和分析误差。

频谱分辨率直接和FFT的变换区间N有关,FFT能够实现的频率分辨率是2π/N,因此要求2π/N≤F。

可以根据此式选择FFT的变换区间N。

相关文档
最新文档