高一直线和圆知识点复习教案
《直线与圆的位置关系》教案

《直线与圆的位置关系》教案第一章:引言教学目标:1. 让学生了解直线与圆的位置关系的概念。
2. 引导学生通过观察和思考,探索直线与圆的位置关系。
教学内容:1. 直线与圆的定义。
2. 直线与圆的位置关系的分类。
教学步骤:1. 引入直线和圆的定义,让学生回顾相关概念。
2. 提问:直线和圆有什么关系?它们可以相交、相切还是相离?3. 引导学生观察和思考直线与圆的位置关系,让学生举例说明。
练习题目:a) 直线x=2与圆x^2+y^2=4b) 直线y=3与圆x^2+y^2=9c) 直线x+y=4与圆x^2+y^2=8第二章:直线与圆的相交教学目标:1. 让学生了解直线与圆相交的概念。
2. 引导学生通过观察和思考,探索直线与圆相交的性质。
教学内容:1. 直线与圆相交的定义。
2. 直线与圆相交的性质。
教学步骤:1. 引入直线与圆相交的概念,让学生了解相交的含义。
2. 提问:直线与圆相交时,会有什么特殊的性质?3. 引导学生观察和思考直线与圆相交的性质,让学生举例说明。
练习题目:a) 直线y=2x+3与圆x^2+y^2=16b) 直线x-y+4=0与圆x^2+y^2=16c) 直线x+y-6=0与圆x^2+y^2=36第三章:直线与圆的相切教学目标:1. 让学生了解直线与圆相切的概念。
2. 引导学生通过观察和思考,探索直线与圆相切的性质。
教学内容:1. 直线与圆相切的定义。
2. 直线与圆相切的性质。
教学步骤:1. 引入直线与圆相切的概念,让学生了解相切的含义。
2. 提问:直线与圆相切时,会有什么特殊的性质?3. 引导学生观察和思考直线与圆相切的性质,让学生举例说明。
练习题目:a) 直线y=3x+2与圆x^2+y^2=16b) 直线x-y+4=0与圆x^2+y^2=16c) 直线x+y-6=0与圆x^2+y^2=36第四章:直线与圆的相离教学目标:1. 让学生了解直线与圆相离的概念。
2. 引导学生通过观察和思考,探索直线与圆相离的性质。
【精品】(解析几何)直线与圆、圆与圆复习优秀教案.docx

总第74. 75教时课题:直线与圆、圆与圆的位置关系教学目标:1、知道直线和圆相交,相切,相离的定义并会根据定义来判断直线和圆的位置关系;2、能根据圆心到直线的距离与圆的半径之间的数量关系来揭示直线和圆的位置关系;也能根据联立方程组的解的个数来判断直线与圆的位置关系。
3、掌握直线和圆的位置关系的应用,能解决弦长、切线以及最值问题。
4、掌握圆和圆的五种位置关系。
使学生掌握各种位置关系中圆心距与半径之间的数量关系,并了解它是性质又是判定。
培养学生分析问题、解决问题、归纳总结的能力。
高考要求:教学重点:直线和圆位置关系的判断和应用两圆相交、相切的及两圆相切的性质和判定。
教学难点:通过解方程组来研究直线和圆的位置关系。
各种位置关系中圆心距与半径之间的数量关系的应用。
教具:多媒体教时安排:2教时教程:第一教时一、知识点复习回顾(一)、直线与圆的位置关系1、直线与圆有三种位置关系:相离、相切和相交。
有两种判断方法:A > 0 <=>相交(1)代数法(判别式法)< △ = 0 o 相切,A<0 o相离d < r o相交(2)(几何法)(〃为圆心到直线的距离)圆心到直线的距离{d = ^o 相切d〉r <=>相离注意:一般宜用儿何法。
2、圆的切线方程:主要元素:切点坐标、切线方程、切线长等问题:直线/与圆C相切意味着什么:圆心C到直线/的距离恰好等于半径厂(1 )过圆X2 + y2 =厂彳上一点M(兀0,儿)的切线的方程为y Q y = r2(2 )过圆(兀一°)2 +(y-/?)2 =厂$上一点M(兀0,儿)的切线的方程为(x0 -6Z)(x-6Z)+ (y0-bXy-b) = r2(3 )过圆x2 + y2 + Dx+ Ey + F = 0上一点M(兀。
,儿)的切线方程为“+y°y+D.d+E.Z±21+F=02 2(4 )自圆外一点M(兀o,y°)作圆x2 + y2 = r2的两条切线,则点A/(x0,y0)关于该圆的切点弦所在的直线方程是兀()兀+ y()y = r2(5)常见题型一一求过定点的切线方程①切线条数:点在圆外--- 两条;点在圆上---- 条;点在圆内--- 无②求切线方程的方法及注意点• • •(1)点在圆外如定点卩(兀0,儿),圆:(%-。
2022年 《直线和圆的方程知识点总结》优秀教案

直线与圆的方程复习〔一〕知识回忆一、直线方程.1.直线的倾斜角〔0°≤<180°〕、斜率:2.过两点的直线的斜率____________.当〔即直线和x轴垂直〕时,直线的倾斜角=,没有斜率3.直线方程的五种形式:点斜式:__________________;斜截式:__________________;两点式:_______________;截距式:____________________;一般式:______________________.3. ⑴两条直线平行:①假设_____________. ②不存在__________.⑵两条直线垂直:①假设_____________. ②不存在_______ ___ .4.过两直线的交点的直线系方程为参数,不包括在内〕6.两点P1(x1,y1)、P2(x2,y2)的距离公式:______________________.7. 点到直线的距离:⑴点到直线的距离公式:设点,直线到的距离为,那么有__________________.⑵两条平行线间的距离公式:设两条平行直线,它们之间的距离为,那么有_______________.8.直线与平面所成夹角范围_________________.9.平面与平面所成夹角范围__________________.二、圆的方程.1. 圆的标准方程:以点为圆心,为半径的圆的标准方程是___________________.2. 圆的一般方程:____________________ .当时,方程表示一个圆,其中圆心____________,半径_____________.当时,方程表示一个点__________,当时,方程无图形.3. 点和圆的位置关系:给定点及圆.①__________;②__________;③__________.5. 直线和圆的位置关系:设圆:;直线:;(1)代数法:〔判别式法〕时分别相离、相交、相切.(2)几何法圆心到直线的距离.①时,与________;②时,与_______;③时,与_________.6.弦长求法〔1〕几何法:弦心距d,圆半径r,弦长l,那么.〔2〕解析法:联立方程求交点坐标,利用两点间的距离公式.7.圆与圆的位置关系1、判断方法:〔1〕代数法:〔判别式法〕时分别相离、相交、相切.〔2〕几何法:圆心到圆心的距离,时__________; 时__________;时____________;时_____________;____________.2、圆(1)两圆相交时,公共弦所在直线方程为.(2)经过两圆交点的圆系方程为:〔其中,不包括圆〕8、空间中任意一点与点之间的距离公式.【根底知识稳固】1、直线的倾斜角____________;在轴上的截距为_____________.2、直线平行于直线,那么实数________.3、以点为圆心且与直线相切的圆的方程为 ___________________.4、直线x+y-2=0被圆〔x-1〕2+y2=1所截得的线段的长为_____________________.6、两圆和相交于两点,那么直线的方程是_______________;________________.7、在圆内,过点的最短弦和最长弦分别为和,那么四边形的面积为_______________.探究一:圆的切线1、圆的方程是,求过圆上一点的切线方程.2、过点作圆的切线,求此切线的方程.探究二:与圆有关的最值问题〔1〕实数满足方程①求的最大值和最小值;②求的最大值和最小值;③求的最大值和最小值.【变式一】实数满足方程〔1〕求的最值;〔2〕求的最值;〔3〕求的最值.。
高中数学直线与圆的教案

高中数学直线与圆的教案
教学目标:
1. 理解直线与圆的基本概念与性质;
2. 掌握直线与圆的交点求解方法;
3. 能够解决直线与圆的相关问题,并运用所学知识进行实际应用。
教学重点:
1. 直线与圆的基本概念;
2. 直线与圆的位置关系;
3. 直线与圆的交点求解方法。
教学难点:
1. 解决直线与圆的相关问题;
2. 运用所学知识解决实际问题。
教学准备:
1. 教师准备教学课件、教学录像等教具;
2. 学生准备书写工具、作业本。
教学过程:
一、导入:
通过展示一些直线与圆相关的图片或实际问题,引导学生思考直线与圆的位置关系。
二、讲解:
1. 直线与圆的基本概念;
2. 直线与圆的位置关系;
3. 直线与圆的交点求解方法。
三、练习:
1. 给学生几道直线与圆的相关题目,让学生尝试解答;
2. 学生相互交流、讨论,解决问题。
四、拓展:
引导学生总结直线与圆的性质,提出更深层次的问题。
五、归纳:
总结本节课的内容,重点强调直线与圆的关系及解题方法。
六、作业:
布置相关作业,巩固学生所学内容。
教学反思:
通过此教学过程,学生能够加深对直线与圆的理解,掌握相关的解题技巧,提高数学解题能力和应用能力。
同时,教师需不断调整教学方法,促进学生的学习兴趣和自主学习能力的提升。
点、直线、圆和圆的位置关系复习课教案

点、直线、圆和圆的位置关系复习课教案一、教学目标1. 知识与技能:(1)理解点、直线、圆的基本概念及其性质;(2)掌握点与直线、直线与圆、圆与圆之间的位置关系及判定方法。
2. 过程与方法:(1)通过复习,巩固点、直线、圆的基本性质;(2)运用位置关系判定方法,解决实际问题。
3. 情感态度与价值观:(1)培养学生的逻辑思维能力;(2)激发学生对几何学科的兴趣。
二、教学重点与难点1. 教学重点:(1)点、直线、圆的基本性质;(2)点与直线、直线与圆、圆与圆之间的位置关系及判定方法。
2. 教学难点:(1)点与直线、直线与圆、圆与圆之间的位置关系的判定;(2)运用位置关系解决实际问题。
三、教学过程1. 复习导入:(1)回顾点、直线、圆的基本概念及其性质;(2)引导学生通过图形直观理解点与直线、直线与圆、圆与圆之间的位置关系。
2. 知识梳理:(1)点与直线的位置关系:点在直线上、点在直线外;(2)直线与圆的位置关系:直线与圆相切、直线与圆相交、直线与圆相离;(3)圆与圆的位置关系:圆与圆相切、圆与圆相交、圆与圆相离。
3. 典例分析:(1)分析点与直线、直线与圆、圆与圆的位置关系;(2)运用位置关系解决实际问题。
四、课堂练习1. 判断题:(1)点A在直线BC上。
(对/错)(2)直线AB与圆O相切。
(对/错)(3)圆O1与圆O2相交。
(对/错)2. 选择题:(1)点P在直线AB上,点Q在直线CD上,则点P与点Q的位置关系是(A. 相交B. 平行C. 异面D. 无法确定)。
(2)直线EF与圆O相交,则直线EF与圆O的位置关系是(A. 相切B. 相离C. 相交D. 平行)。
五、课后作业1. 请总结点、直线、圆的基本性质及其位置关系;(1)已知点A在直线BC上,点D在直线BC外,求证:直线AD与直线BC 的位置关系;(2)已知圆O的半径为r,点P在圆O上,求证:点P到圆心O的距离等于r。
六、教学拓展1. 利用多媒体展示点、直线、圆在实际生活中的应用,如交通导航、建筑设计等;2. 探讨点、直线、圆的位置关系在其他学科领域的应用,如物理学、计算机科学等。
圆与直线方程高中数学教案

圆与直线方程高中数学教案
教学内容:圆与直线的方程
一、教学目标:
1. 理解圆的标准方程和一般方程的概念;
2. 能够根据给定的圆心和半径,写出圆的标准方程;
3. 能够通过圆心和过圆上一点的坐标,写出圆的一般方程;
4. 理解直线的点斜式和一般式方程的概念;
5. 能够根据给定的直线上两点的坐标或直线的斜率和截距,写出直线的方程。
二、教学内容:
1. 圆的标准方程和一般方程;
2. 直线的点斜式和一般式方程。
三、教学重点与难点:
重点:理解圆的标准方程和一般方程的概念,能够根据给定的条件写出圆的方程。
难点:理解直线的点斜式和一般式方程的概念,能够准确地写出直线的方程。
四、教学方法:
1. 讲解结合示例:通过解题示例帮助学生理解圆与直线的方程;
2. 课堂练习:让学生进行相关练习,巩固所学知识;
3. 课堂讨论:鼓励学生展示自己的解题思路,促进学生之间的交流。
五、教学步骤:
1. 导入:通过一个实际生活中的问题引入圆与直线的方程的概念;
2. 讲解圆的方程:分别介绍圆的标准方程和一般方程的概念,并通过示例进行讲解;
3. 讲解直线的方程:介绍直线的点斜式和一般式方程的概念,并通过示例进行讲解;
4. 练习:让学生进行相关练习,巩固所学知识;
5. 总结:总结本节课所学内容,强调重点知识点。
六、课后作业:
1. 练习册相关练习题;
2. 查找生活中的例子,分析其中圆与直线方程的应用。
七、教学反馈:
根据学生在课堂上的表现和课后作业的完成情况,及时给予反馈,并对学生的错误进行纠正和指导。
同时,根据学生的学习情况做出相应调整,帮助学生掌握课程内容。
高中数学第十节讲解教案

高中数学第十节讲解教案
主题:直线与圆的位置关系
一、教学目标:
1. 理解直线和圆的位置关系的基本概念。
2. 掌握直线与圆的位置关系的判定方法。
3. 能够应用直线与圆的位置关系解决相关问题。
二、教学重点:
1. 直线与圆的位置关系的基本概念。
2. 直线与圆的位置关系的判定方法。
三、教学难点:
1. 圆的切线与切点的概念。
2. 如何判断一条直线与圆的位置关系。
四、教学过程:
1. 复习:回顾上节课所学的直线和圆的相关知识。
2. 引入:通过一个实际问题引入直线与圆的位置关系的概念,激发学生的学习兴趣。
3. 学习:讲解直线与圆的位置关系的基本概念,并介绍判定直线与圆位置关系的方法。
4. 实践:让学生通过练习题巩固所学知识,提出问题并引导学生解决。
5. 总结:对本节课所学知识进行总结,强调重点和难点,帮助学生理清思路。
六、作业布置:
1. 完成课堂练习题。
2. 自主学习相关知识,做好预习。
七、教学反思:
通过本节课的教学,学生对直线与圆的位置关系有了更深入的理解,掌握了相关判定方法,并能够运用所学知识解决相关问题。
在教学过程中,要充分引导学生思考,灵活运用知识,培养学生的解决问题能力和创新意识。
直线与圆的位置关系教案

直线与圆的位置关系教案教学目标:1. 理解直线与圆的位置关系,掌握相关概念。
2. 学会利用直线与圆的位置关系解决实际问题。
3. 培养学生的空间想象能力和逻辑思维能力。
教学重点:1. 直线与圆的位置关系的判定。
2. 直线与圆的位置关系的应用。
教学难点:1. 理解并掌握直线与圆的位置关系的判定条件。
2. 解决实际问题时,如何正确运用直线与圆的位置关系。
教学准备:1. 教学课件或黑板。
2. 直线与圆的位置关系的相关例题和练习题。
教学过程:第一章:直线与圆的基本概念1.1 直线的定义及性质1.2 圆的定义及性质1.3 直线与圆的位置关系的基本概念第二章:直线与圆的位置关系的判定2.1 直线与圆相交的判定条件2.2 直线与圆相切的判定条件2.3 直线与圆相离的判定条件第三章:直线与圆的位置关系的应用3.1 求圆的方程3.2 求直线的方程3.3 求直线与圆的位置关系第四章:实际问题中的应用4.1 求点到直线的距离4.2 求点到圆心的距离4.3 求直线与圆的交点坐标第五章:综合练习5.1 判断直线与圆的位置关系5.2 求直线与圆的位置关系5.3 解决实际问题教学反思:通过本章的学习,学生应能掌握直线与圆的位置关系的基本概念,判定条件以及应用。
在教学过程中,应注意引导学生运用数学知识解决实际问题,培养学生的空间想象能力和逻辑思维能力。
通过练习题的训练,使学生巩固所学知识,提高解题能力。
第六章:直线与圆的位置关系的性质6.1 直线与圆相交的性质6.2 直线与圆相切的性质6.3 直线与圆相离的性质本章主要学习直线与圆的位置关系的性质。
学生将学习到在直线与圆相交、相切、相离的情况下,直线和圆的特定性质。
这些性质包括交点的数量、切点的位置、距离的关系等。
教学活动:通过图形和实例,让学生观察和总结直线与圆相交、相切、相离时的性质。
引导学生通过几何推理证明这些性质。
提供练习题,让学生应用这些性质解决具体问题。
教学评估:通过课堂讨论和练习题,评估学生对直线与圆位置关系性质的理解程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一直线和圆知识点复习教案
直线与圆 复习
(一) 直线的倾斜角α与斜率k 求k 方法:
1.已知直线上两点1p (1x ,1y )2p (2x ,2y )(1x ≠2x ) 则 2.已知α时,k=tan α(α≠900) k 不存在(α=900) 3.直线Ax+By+C=0,(A ,B 不全为0,) B=0时k 不存在, B ≠0时 k=-B
A
(二)直线方程
(三)位置关系判定方法:
当直线不平行于坐标轴时(要特别注意这个限制条件)
1212
y y x x k --=
(四)点P(x0,y0)到直线Ax+By+C=0的距离是
d=
两平行直线Ax+By+C1=0和Ax+By+C2=0间的距离为 d= .
(五)直线过定点。
如直线(3m+4)x+(5-2m)y+7m-6=0,不论m 取
何值恒过定点(-1,2) (六)直线系方程
(1)与已知直线Ax+By+C=0平行的直线的设法: Ax+By+m=0 (m ≠C)
( 2 ) 与已知直线Ax+By+C=0垂直的直线的设法: Bx-Ay+m=0
(3)经过直线1l ∶1A x+1B y+1C =0,2l ∶2A x+2B y+2C =0交点的直线设法: 1A x+1B y+1C +λ(2A x+2B y+2C )=0(λ为参数,不包括2l )
2
200B A C By Ax +++222
1B A C
C +-
(七)关于对称
(1)点关于点对称(中点坐标公式)
(2)线关于点对称(转化为点关于点对称,或代入法,两条直线平行) (3)点关于线对称(点和对称点的连线被线垂直平分,中点在对称轴上、
kk’= -1二个方程)
(4)线关于线对称(求交点,转化为点关于线对称)
(八)圆的标准方程: 222b)-(y a)-(x r =+ 圆心(a,b ) 半径r >0
圆的一般方程:022=++++F Ey Dx y x (F E D 422-+>0)
圆心(2,2E D ) r=
(九)点与圆的位置关系
设圆C ∶222b)-(y a)-(x r =+,点M(00,y x )到圆心的距离为d ,则有:
(1)d >r 点M 在圆外;
(2)d=r 点M 在圆上; (3)d <r 点M 在圆内. (十)直线与圆的位置关系
设圆 C ∶222b)-(y a)-(x r =+,直线l 的方程Ax+By+C=0,圆心(a ,b)到直线l 的距离为d,判别式为△,则有:(几何特征) (1)d <r 直线与圆相交; (2)d=r 直线与圆相切; (3)d >r 直线与圆相离; 弦长公式:
或(代数特征)
(1)△>0 直线与圆相交,圆C 和直线l 组成的方程组有两解; (2)△=0 直线与圆相切, 圆C 和直线l 组成的方程组有一解; (3)△<0 直线与圆相离, 圆C 和直线l 组成的方程组无解。
(十一)圆与圆的位置关系
设圆C1:222b)-(y a)-(x r =+和圆C2:222n)-(y m )-(x r =+ (R,r >0)且设两圆
2
422F E D -+222d r l -=
圆心距为d ,则有: (1) d >R+r 两圆外离; (2) d=R+r 两圆外切;
(3) │R-r │<d <│R +r │两圆相交; (4) d= │R-r │ 两圆内切; (5) d <│R-r │ 两圆内含; (十二)圆的切线和圆系方程
1.过圆上一点的切线方程:圆222r y x =+,圆上一点为(00,y x ),则过此点的切线方程为0x x+ 0y y= 2r (课本命题).
圆222r y x =+,圆外一点为(00,y x ),则过此点的两条切线与圆相切,切点弦方程为200r y y x x =+。
2.圆系方程:
①设圆C1∶011122=++++F y E x D y x 和圆C2∶022222=++++F y E x D y x .若两圆相交,则过交点的圆系方程为11122F y E x D y x +++++λ(22222F y E x D y x ++++)=0(λ为参数,圆系中不包括圆C2,λ=-1为两圆的公共弦所在直线方程).
②设圆C ∶022=++++F Ey Dx y x 与直线l :Ax+By+C=0,若直线与圆相交,则过交点的圆系方程为F Ey Dx y x ++++22+λ(Ax+By+C)=0(λ为参数).。