数字信号处理实验三
数字信号处理上机实验 作业结果与说明 实验三、四、五

上机频谱分析过程及结果图 上机实验三:IIR 低通数字滤波器的设计姓名:赵晓磊 学号:赵晓磊 班级:02311301 科目:数字信号处理B一、实验目的1、熟悉冲激响应不变法、双线性变换法设计IIR 数字滤波器的方法。
2、观察对实际正弦组合信号的滤波作用。
二、实验内容及要求1、分别编制采用冲激响应不变法、双线性变换法设计巴特沃思、切贝雪夫I 型,切贝雪夫II 型低通IIR 数字滤波器的程序。
要求的指标如下:通带内幅度特性在低于πω3.0=的频率衰减在1dB 内,阻带在πω6.0=到π之间的频率上衰减至少为20dB 。
抽样频率为2KHz ,求出滤波器的单位取样响应,幅频和相频响应,绘出它们的图,并比较滤波性能。
(1)巴特沃斯,双线性变换法Ideal And Designed Lowpass Filter Magnitude Responsefrequency in Hz|H [e x p (j w )]|frequency in pi units|H [ex p (j w )]|Designed Lowpass Filter Phase Response in radians frequency in pi unitsa r g (H [e x p (j w )](2)巴特沃斯,冲激响应不变法(3)切贝雪夫I 型,双线性变换法(4)切贝雪夫Ⅱ型,双线性变换法综合以上实验结果,可以看出,使用不同的模拟滤波器数字化方法时,滤波器的性能可能产生如下差异:使用冲击响应不变法时,使得数字滤波器的冲激响应完全模仿模拟滤波器的冲激响应,也就是时域逼急良好,而且模拟频率和数字频率之间呈线性关系;但频率响应有混叠效应。
frequency in Hz|H [e x p (j w )]|Designed Lowpass Filter Magnitude Response in dBfrequency in pi units|H [e x p (j w )]|frequency in pi unitsa r g (H [e x p (j w )]Ideal And Designed Lowpass Filter Magnitude Responsefrequency in Hz|H [e x p (j w )]|frequency in pi units|H [e xp (j w )]|frequency in pi unitsa r g (H [e x p (j w )]Ideal And Designed Lowpass Filter Magnitude Responsefrequency in Hz|H [e x p (j w )]|frequency in pi units|H [ex p (j w )]|Designed Lowpass Filter Phase Response in radiansfrequency in pi unitsa r g (H [e x p (j w )]使用双线性变换法时,克服了多值映射的关系,避免了频率响应的混叠现象;在零频率附近,频率关系接近于线性关系,高频处有较大的非线性失真。
数字信号处理实验报告 3

数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。
二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。
2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNNzWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N K j k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。
实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。
由此讨论原时域信号不失真地由频域抽样恢复的条件。
实验三:由X32(k)恢复X(z)和X(e jw)。
四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M时,x16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。
北邮-DSP数字信号处理 实验-实验报告

北京邮电大学电子工程学院电子实验中心<数字信号处理实验>实验报告班级: xxx学院: xxx实验室: xxx 审阅教师:姓名(班内序号): xxx 学号: xxx 实验时间: xxx评定成绩:目录一、常规实验 (3)实验一常用指令实验 (3)1.试验现象 (3)2.程序代码 (3)3.工作原理 (3)实验二数据储存实验 (4)1.试验现象 (4)2.程序代码 (4)3.工作原理 (4)实验三I/O实验 (5)1.试验现象 (5)2.程序代码 (5)3.工作原理 (5)实验四定时器实验 (5)1.试验现象 (5)2.程序代码 (6)3.工作原理 (9)实验五INT2中断实验 (9)1.试验现象 (9)2.程序代码 (9)3.工作原理 (13)实验六A/D转换实验 (13)1.试验现象 (13)2.程序代码 (14)3.工作原理 (18)实验七D/A转换实验 (19)1.试验现象 (19)2.程序代码 (19)3.工作原理 (37)二、算法实验 (38)实验一快速傅里叶变换(FFT)算法实验 (38)1.试验现象 (38)2.程序代码 (38)3.工作原理 (42)实验二有限冲击响应滤波器(FIR)算法实验 (42)1.试验现象 (42)2.程序代码 (42)3.工作原理 (49)实验三无限冲击响应滤波器(IIR)算法实验 (49)1.试验现象 (49)2.程序代码 (49)3.工作原理 (56)作业设计高通滤波器 (56)1.设计思路 (56)2.程序代码 (57)3.试验现象 (64)一、常规实验实验一常用指令实验1.试验现象可以观察到实验箱CPLD右上方的D3按一定频率闪烁。
2.程序代码.mmregs.global _main_main:stm #3000h,spssbx xf ;将XF置1,D3熄灭call delay ;调用延时子程序,延时rsbx xf ;将XF置0,D3点亮call delay ;调用延时子程序,b _main ;程序跳转到"_MAIN"nopnop;延时子程序delay:stm 270fh,ar3 ;将0x270f(9999)存入ar3loop1:stm 0f9h,ar4 ;将0x0f9(249)存入ar4loop2:banz loop2,*ar4- ;*ar4自减1,不为0时跳到loop2的位置banz loop1,*ar3- ;*ar3自减1,不为0时跳到loop1的位置ret ;可选择延迟的返回nopnop.end3.工作原理主程序循环执行:D3熄灭→延时→D3点亮→延时。
数字信号处理Matlab实验三-IIR数字滤波器的设计

XX XX 大学XXXX 学院实验名称 IIR 数字滤波器的设计实验目的:加深理解IIR 数字滤波器的时域特性和频域特性,掌握IIR 数字滤波器的设计原理与设计方法,以及I IR数字滤波器的应用。
实验内容:IIR 数字滤波器一般为线性移不变的因果离散系统,N 阶IIR 数字滤波器的系统函数可以表达为-1z 的有理多项式,即 -1-1-2-M =0012-1-2-N -112=1z +z +z ++z (z)==1+z +z ++z 1+zM j j M N Ni i b b b b b H a a a a ∑∑ 式中:系数i a 至少有一个非零。
对于因果II R数据滤波器,应满足M N ≤。
IIR 数字滤波器的设计主要通过成熟的模拟滤波器设计方法来实现。
首先在频域将数字滤波器设计指标转换为模拟滤波器设计指标,然后将任意的模拟滤波器为原型模拟低通滤波器指标,根据模拟滤波器的设计指标来设计出模拟低通滤波器(s)LP H ,然后又(s)LP H 经过相应的复频域转换得到H(s),最后又H(s )经过脉冲响应不变法或双线性变换法得到所需要的III R数字滤波器H (z)。
由此可见,IIR 数字滤波器设计的重要环节是模拟滤波器的设计。
设计模拟低通滤波器的主要方法有Butterwor t、Ch eby shev 、和椭圆等滤波器设计方法。
实验步骤1.Butterw ort 数字滤波器设计(1) Bu tt erwort 滤波器是通带阻带都单调衰减的滤波器。
调用b uttord 函数可以确定巴特沃斯滤波器的阶数,其格式为:[N,Omegac ]=bu tt ord(Omegap,Ome gas,Rp,As ,’s ’)。
其中,输入参数Rp,As 分别为通带最大衰减和阻带最小衰减,以d B为单位;Om eg ap,Omegas 分别为通带截止频率和阻带截止频率,‘s ’说明所设计的是模拟滤波器。
输出参数为滤波器的阶数,Omegac为3dB截止频率。
(完整版)数字信号处理实验三

3.41;3.42 由教材可知: ,即序列的偶部分的傅立叶变换是序列的傅立叶变换的实部。
5、实验步骤
1、进行本实验,首先必须熟悉matlab的运用,所以第一步是学会使用matlab。
2、学习相关基础知识,根据《数字信号处理》课程的学习理解实验内容和目的。
plot(w/pi,angle(h1));grid
xlabel('\omega/\pi');ylabel('以弧度为单位的相位');
title('原序列的相位谱')
subplot(2,2,4)
plot(w/pi,angle(h2));grid
xlabel('\omega/\pi');ylabel('以弧度为单位的相位');
grid;
title('相位谱arg[H(e^{j\omega})]');
xlabel('\omega/\pi');
ylabel('以弧度为单位的相位');
3.4
clf;
w=-4*pi:8*pi/511:4*pi;
num1=[1 3 5 7 9 11 13 15 17];
h=freqz(num,1,w);
Q3.32 通过加入合适的注释语句和程序语句,修改程序P3.8,对程序生成的图形中的两个轴加标记。时移量是多少?
Q3.33 运行修改后的程序并验证离散傅里叶变换的圆周时移性质。
Q3.36 运行程序P3.9并验证离散傅里叶变换的圆周卷积性质。
Q3.38 运行程序P3.10并验证线性卷积可通过圆周卷积得到。
数字信号处理实验3 FFT算法应用

图 6-2
>> xlabel('n');ylabel('x[n]');
图 6-1
理论分析如下:
由欧拉公式得: x[n] cos(2 7n) 1 cos(2 19n)
N
2N
1
(e
j 2 7n N
e
j 2 ( N 7n) N
1
e
j 2 19n N
1
e
j 2 ( N 19n)
N
)
2
2
2
j 2 kn
对 p[n] e N ,其 2N 点的 DFT 变换为:
2N 1
j 2mn 2N 1 j 2n(2km)
X (k) 。
(2) 已知某序列 x(n) 在单位圆上的 N=64 等分样点的 Z 变换为
X (zk
)
X
(k)
1 1 0.8e j2k / N
,k
0,1,2,...,63
。
_
_
用 N 点 IFFT 程序计算 x(n) IDFT[ X (k)],绘出和 x(n) 。
实验要求:利用 MATLAB 编程完成计算,绘出相应图形。并与理论计算相比较,说明实验结 果的原因。 (1) 用以下代码实现可得图 6-1 所示的 DFT 图。 >> N=64; >> n=0:2*N-1; >> x=cos(2*pi*7*n/N)+1/2*cos(2*pi*19*n/N); >> X=fft(x,128); >> k=n; >> stem(k,abs(X)) >> grid >> xlabel('k');ylabel('|X[k]|');
数字信号处理实验报告

数字信号处理实验报告实验一:混叠现象的时域与频域表现实验原理:当采样频率Fs不满足采样定理,会在0.5Fs附近引起频谱混叠,造成频谱分析误差。
实验过程:考虑频率分别为3Hz,7Hz,13Hz 的三个余弦信号,即:g1(t)=cos(6πt), g2(t)=cos(14πt), g3(t)=cos(26πt),当采样频率为10Hz 时,即采样间隔为0.1秒,则产生的序列分别为:g1[n]=cos(0.6πn), g2[n]=cos(1.4πn), g3[n]=cos(2.6πn)对g2[n],g3[n] 稍加变换可得:g2[n]=cos(1.4πn)=cos((2π-0.6π)n)= cos(0.6πn)g3[n]=cos(2.6πn)= cos((2π+0.6π)n)=cos(0.6πn)利用Matlab进行编程:n=1:300;t=(n-1)*1/300;g1=cos(6*pi*t);g2=cos(14*pi*t);g3=cos(26*pi*t);plot(t,g1,t,g2,t,g3);k=1:100;s=k*0.1;q1=cos(6*pi*s);q2=cos(14*pi*s);q3=cos(26*pi*s);hold on; plot(s(1:10),q1(1:10),'bd');figuresubplot(2,2,1);plot(k/10,abs(fft(q1)))subplot(2,2,2);plot(k/10,abs(fft(q2)))subplot(2,2,3);plot(k/10,abs(fft(q3)))通过Matlab软件的图像如图所示:如果将采样频率改为30Hz,则三信号采样后不会发生频率混叠,可运行以下的程序,观察序列的频谱。
程序编程改动如下:k=1:300;q=cos(6*pi*k/30);q1=cos(14*pi*k/30);q2=cos(26*pi*k/30);subplot(2,2,1);plot(k/10,abs(fft(q)))subplot(2,2,2);plot(k/10,abs(fft(q1)))subplot(2,2,3);plot(k/10,abs(fft(q2)))得图像:问题讨论:保证采样后的信号不发生混叠的条件是什么?若信号的最高频率为17Hz,采样频率为30Hz,问是否会发生频率混叠?混叠成频率为多少Hz的信号?编程验证你的想法。
实验三-华北电力大学-数字信号处理实验

文档实验报告实验名称____________ ____课程名称____________ ____院系部:专业班级:学生姓名:学号:同组人:实验台号:指导教师:成绩:实验日期:华北电力大学文档1.实验目的分析常用窗函数的时域和频域特性,灵活运用窗函数分析信号频谱和设计FIR数字滤波器。
2.实验原理在确定信号谱分析、随机信号功率谱估计以及FIR数字滤波器设计中,窗函数的选择起着重要的作用。
在信号的频谱分析中,截短无穷长的序列会造成频率泄漏,影响频谱分析的精度和质量。
合理选取窗函数的类型,可以改善泄漏现象。
在FIR数字滤波器设计中,截短无穷长的系统单位脉冲序列会造成FIR滤波器幅度特性的波动,且出现过渡带。
3.实验内容及步骤(1) 1. 分析并绘出常用窗函数的时域特性波形。
2. 利用fft函数分析常用窗函数的频域特性, 并从主瓣宽度和旁瓣相对幅度两个角度进行比较分析。
3. 研究凯塞窗(Kaiser)的参数选择对其时域和频域的影响。
N=20, 60, 110;固定beta=4,分别取 (1)N=60,分别取beta=1,5,11。
(2) 固定????π911πkkxk????cos5.cos?[]?0 4. 序列,分析其频谱。
????2020???? (1) 利用不同宽度N的矩形窗截短该序列, N 分别为20,40,160,观察不同长度N的窗对谱分析结果的影响;(2) 利用哈明窗重做 (1);(3) 利用凯塞窗重做 (1);(4) 比较和分析三种窗的结果;(5) 总结不同长度或类型的窗函数对谱分析结果的影响。
4.数据处理与总结1.分析并绘出常用窗函数的时域特性波形。
程序如下:clear;subplot(2,3,1);N=51;w=boxcar(N);stem(w)') 矩形窗title('subplot(2,3,2);w=hanning(N);stem(w)') title('Hanning窗subplot(2,3,3);w=hamming(N);stem(w)') title('Hamming窗subplot(2,3,4);w=blackman(N);stem(w)') title('blackman窗subplot(2,3,5);w=bartlett(N);stem(w)') 三角形窗title('subplot(2,3,6);w=kaiser(N);stem(w)') 窗title('kaiserfft函数分析常用窗函数的频域特性2,利用clear;N=51;w=boxcar(N);y=fft(w,200);subplot(3,3,1);'); 时域波形stem([0:N-1],w);title('subplot(3,3,2);y0= abs(fftshift(y));'); plot([-100:99],y0);title('矩形窗频域subplot(3,3,3);w=hanning(N);y=fft(w,200);y0= abs(fftshift(y));'); 窗频域plot([-100:99],y0);title('hanningsubplot(3,3,4); w=hamming(N);y=fft(w,200);文档y0= abs(fftshift(y));plot([-100:99],y0);titl'); e('哈明窗频域subplot(3,3,5);w=blackman(N);y=fft(w,200);y0= abs(fftshift(y));plot([-100:99],y0);titl'); 布莱克曼窗频域e('subplot(3,3,6);w=bartlett(N);y=fft(w,200);y0= abs(fftshift(y));plot([-100:99],y0);titl'); 三角形窗频域e('subplot(3,3,7);w=kaiser(N);y=fft(w,200);y0= abs(fftshift(y));');plot([-100:99],y0);title('kaiser窗频域的参数选择对其时域和频域的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三:离散LSI 系统的频域分析
一、实验内容
2、求以下各序列的z 变换:
12030() ()sin() ()sin()n
an
x n na x n n x n e
n ωω-===
程序清单如下: syms w0 n z a;
x1=n*a^n;X1=ztrans(x1) x2=sin(w0*n);X2=ztrans(x2)
x3= exp(-a*n)*sin(w0*n);X3=ztrans(x3) 程序运行结果如下: X1 =z/(a*(z/a - 1)^2)
X2 =(z*sin(w0))/(z^2 - 2*cos(w0)*z + 1)
X3 =(z*exp(a)*sin(w0))/(exp(2*a)*z^2 - 2*exp(a)*cos(w0)*z + 1) 3、求下列函数的逆z 变换 0
312342
1
1() () () ()()
1j z z z z X z X z X z X z z a
z a z e
z
ω---=
=
=
=
----
程序清单如下: syms w0 n z a;
X1=z/(z-a);x1=iztrans(X1) X2= z/(a-z)^2;x2=iztrans(X2) X3=z/ z-exp(j*w0);x3=iztrans(X3) X4=(1-z^-3)/(1-z^-1);x4=iztrans(X4) 程序运行结果如下: x1 =a^n x2 =n*a^n/a
课程名称 数字信号 实验成绩
指导教师
实 验 报 告
院系 信息工程学院 班级 学号 姓名 日期
x3 =charfcn[0](n)-iztrans(exp(i*w0),w0,n) x4 =charfcn[2](n)+charfcn[1](n)+charfcn[0](n)
4、求一下系统函数所描述的离散系统的零极点分布图,并判断系统的稳定性
(1)
(0.3)()(1)(1)
z z H z z j z j -=
+-++
z1=[0,0.3]';p1=[-1+j,-1-j]';k=1; [b1,a1]=zp2tf(z1,p1,k); subplot(1,2,1);zplane(z1,p1); title('极点在单位圆外); subplot(1,2,2);impz(b1,a1,20);
由图可见:当极点位于单位圆内,系统的单位序列响应随着频率的增大而收敛;当极点位于单位圆上,系统的单位序列响应为等幅振荡;当极点位于单位圆外,系统的单位序列响应随着频率的增大而发散。
由此可知系统为不稳定系统。
-1
-0.5
00.51
-2
-1.5-1-0.500.511.5
2Real Part
I m a g i n a r y P a r t
极点在单位圆外
n (samples)
A m p l i t u d e
Impulse Response
(2)
123
123
4 1.6 1.64 ()
10.40.350.4
z z z
H z
z z z
---
---
--+
=
++-
b=[4,-1.6,-1.6,4];
a=[1,0.4,0.35,-0.4];
rz=roots(b)
rp=roots(a)
subplot(2,1,1);zplane(b,a); title('系统的零极点分布图'); subplot(2,1,2);impz(b,a,20); title('系统的单位序列响应'); xlabel('n');ylabel('h(n)');
rz = -1.0000
0.7000 + 0.7141i
0.7000 - 0.7141i
rp = -0.4500 + 0.7730i
-0.4500 - 0.7730i
0.5000
-3
-2
-1
012
3
Real Part
I m a g i n a r y P a r t
系统的零极点分布图
2468
1012141618
n
h (n )
系统的单位序列响应
由零极点分布图可见,该系统的所有极点均在单位圆内,因此该系统是一个因果稳定系统。
5、已知某离散时间系统的系统函数为
2
4
6
2
4
6
0.1876320.2412420.2412420.187632()10.6020120.4956840.035924z
z
z
H z z
z z
-------+-=
+++
求该系统在0~П频率范围内的绝对幅频响应与相频响应、相对幅频响应与相频响应及群时延。
b=[0.187632,0,-0.241242,0,0.241242,0,-0.187632]; a=[1,0,0.602012,0,0.495684,0,0.035924]; n=(0:500)*pi/500; [h,w]=freqz(b,a,n);
db=20*log10(abs(h));
subplot(2,2,1);plot(w/pi,abs(h));grid;
axis([0,1,1.1*min(abs(h)),1.1*max(abs(h))]);
title('幅频特性(V)');
xlabel('\omega/\pi');ylabel('幅度(V)');
subplot(2,2,2);plot(w/pi,angle(h));grid;
axis([0,1,1.1*min(angle(h)),1.1*max(angle(h))]);
xlabel('\omega/\pi');ylabel('相位');
title('相频特性');
subplot(2,2,3);plot(w/pi,db);grid
axis([0,1,-100,5]);
title('幅频特性(dB)');
subplot(2,2,4);zplane(b,a);
title('零极点分布');
二、思考题答案
①系统函数零极点的位置与系统单位序列响应有何关系?
当极点位于单位圆内,系统的单位序列响应随着频率的增大而收敛;当极点位于单位圆上,系统的单位序列响应为等幅振荡;当极点位于单位圆外,系统的单位序列响应随着频率的增大而发散。
②离散系统的零极点对系统幅频响应有何影响?
①在原点(z=0)处的零点或极点至单位圆的距离始终保持不变,其值|e jω|=1,所以,对幅度响应不起作用;
②单位圆附近的零点对系统幅度响应的谷值位置及深度有明显影响;
③单位圆内且靠近单位圆附近的极点对系统幅度的峰值位置及大小有明显的影响。
三、实验总结
1.用ztrans函数求无限长序列的z变换。
2.当极点位于单位圆内,系统的单位序列响应随着频率的增大而收敛;当极点位于单位圆上,系统的单位序列响应为等幅振荡;当极点位于单位圆外,系统的单位序列响应随
着频率的增大而发散。
3.系统只有在极点处于单位圆内才是稳定的。
0.51
0.5
1
幅频特性(V )
ω/π
幅度(V )
0.51
-2
2
ω/π相位
相频特性
0.5
1
-100
-50
0幅频特性(dB )
-1
-0.500.51
Real Part
I m a g i n a r y P a r t
零极点分布。