八年级数学上册角平分线的性质2课件新人教版

合集下载

角的平分线的性质 教学课件(共27张PPT)初中数学人教版八年级上册

角的平分线的性质 教学课件(共27张PPT)初中数学人教版八年级上册
第三步:分析找出由已知推出要证的结论的途 径,写出证明过程.
如图,已知∠AOC = ∠BOC,点 P在OC上,PD⊥OA, PE⊥OB, 垂足分别为D,E.求证:PD =PE.
证明:∵ PD⊥OA,PE⊥OB,
A
由 18此0°”,的你思又路能∴在吗受△?到∠P什DPDO么O和启=△发∠P?EPEO你O中能=,发90现°.证明“三角形内D角和P 等于C
PD⊥OA,PE⊥OB,垂足分别是D、E
P
∴PD = PE
O
E
B
例题练习
如图,要在S区建一个贸易市场,使它到铁路和公路距离相等, 离公路 与铁路交叉处500米,这个集贸市场应建在何处(比例尺为1︰20000)?
O
S 实际问题
A
B
几何问题
在∠AOB 内是否存在点 P ,过点 P 作 OA、OB 的垂线并交 OA、 OB 于点 D、E,使得 DP = EP ?
例题练习
如图,要在S区建一个贸易市场,使它到铁路和公路距离相等, 离公路
与铁路交叉处500米,这个集贸市场应建在何处(比例尺为1︰20000)?
解:作∠AOB的角平分线OC, 截取OP=2.5cm ,P即为所求.
O
D
E
A
P
B
【猜想】角的内部到角的两边距离相等的点在角的平分线上.
已知:如图,PD⊥OA,PE⊥OB,垂足分别是 D、E,PD = PE.
12.3角的平分线的性质
第十二章——全等三角形
学习目标 01 会用尺规作一个角的平分线;
02 探索并证明角的平分线的性质,掌握角的 平分线的判定;
03 会用角的平分线的性质和判定解决相关问题.
回顾旧知
我们之前学习了三角形的角平分线,什么是三角形的角平分线?

人教版初中数学八年级上册精品教学课件 第12章 全等三角形 第2课时 角的平分线的性质(2)

人教版初中数学八年级上册精品教学课件 第12章 全等三角形 第2课时 角的平分线的性质(2)

互动课堂理解
证明在△DBE和△DCF中,
∠ = ∠ = 90°,
∠ = ∠,
= ,
所以△DBE≌△DCF(AAS).
所以DE=DF.因为DE⊥AB,DF⊥AC,
所以点D在∠BAC的平分线上.
快乐预习感知
1
2
3
4
1.关于三角形的角平分线的说法错误的是(
).
A.两内角平分线的交点一定在三角形内
第2课时 角的平分线的性质(2)
快乐预习感知
1.角的内部到角的两边的距离相等的点在 角的平分线
上.
2.三角形的三条角平分线 相交于一点 ,这点到三角形三边的
距离 相等
.
3.三角形中到三边的距离相等的点是( D ).
A.三条边上经过对应顶点的任意三条线段的交点
B.三条高的交点
C.三条中线的交点
D.三条角平分线的交点
B.两内角平分线的交点在第三个角的平分线上
C.两内角平分线的交点到三边的距离相等
D.两内角平分线的交点到三个顶点的距离相等
关闭
D
答案
快乐预习感知
1
2
3
4
2.如图,已知点P到AE,AD,BC的距离相等,则下列说法:①点P在
∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平
分线上;④点P是∠BAC,∠CBE,∠BCD的平分线的交点,其中正确的
证明:∵DE⊥AB,交 AB 的延长线于点 E,DF⊥AC 于点 F,
∴∠BED=∠CFD=90°,
= ,
在 Rt△BDE 和 Rt△CDF 中,
= ,
∴Rt△BDE≌Rt△CDF(HL).
∴DE=DF.

数学八年级上册课件15.4角平分线第2课时 角平分线的性质定理及逆定理

数学八年级上册课件15.4角平分线第2课时 角平分线的性质定理及逆定理

C
P
O
EB
∴ △ PDO ≌ △ PEO,(AAS)
∴ PD=PE。(全等三角形的对应边相等)
知识梳理
证明几何命题的一般步骤: 1、明确命题的已知和求证; 2、根据题意,画出图形,并用数学符号表示已知 和求证; 3、经过分析,找出由已知推出求证的途径,写出 证明过程。
你能用文字语言叙述一下发现的结论吗?
D
A
C P
E B
思考
我们知道,角的平分线上的点到角的两边的距离 相等。那么到角的两边的距离相等的点是否在角 的平分线上呢?请说说你的想法及证明。
利用三角形全等,可以得到角的内部到角的两边 的距离相等的点在角的平分线上。
练习
1、如图, ∵ AD平分∠BAC(已知)
∴ BD = CD ,
(在角的平分线上的点到这
直角三角形全等用
揭示概念
角平分线的概念:
一条射线 把一个角分成两个相等的角, 这条射线叫做这个角的平分线。
A
1
C
o
2
B
探究角平分线的性质
(1)实验:将∠AOB对折,再折出一个直角三角形(使
第一条折痕为斜边),然后展开,观察两次折叠形成 的三条折痕,你能得出什么结论?
(2)结论:角的平分线上的点到角的两边的距离相等.
角平分线的性质定理 及逆定理
。。。。。。。。。。。。
学习目标
• 1、掌握角平分线定理及逆定理。 • 2、能利用角平分线定理及其逆定理解决几何图形中的
问题。 • 重点:角平分线的性质定理及其逆定理。
旧知回顾
三角形 全等的条件:
(1)定义(重合)法;
(2)解题 中常用的4 种方法
(3)HL

人教版初中数学八年级上册第十二章角的平分线的性质(第2课时)

人教版初中数学八年级上册第十二章角的平分线的性质(第2课时)


OP平分∠AOB
PD=PE
已知 条件
PD⊥OA于D
PE⊥OB于E
PD⊥OA于D PE⊥OB于E
结论 PD=PE
OP平分∠AOB
巩固练习
12.3 角的平分线的性质/
到三角形三边距离相等的点是( C ) A.三边垂直平分线的交点 B.三条高所在直线的交点 C.三条角平分线的交点 D.三条中线的交点 如图,河南岸有一个工厂在公路西侧,工厂到公路的距 离与到河岸的距离相等,并且与B的距离为300 m,则工 厂的位置在哪里?
∠BOC=180°-70°=110°.
探究新知 方法点拨
12.3 角的平分线的性质/
由已知,O 到三角形三边的距离相等,得 O是三角形三条内角平分线的交点,再利用三
角形内角和定理即可求出∠BOC的度数.
探究新知
12.3 角的平分线的性质/ 角的平分线的性质 角的平分线的判定

图形

C P
C P

课堂检测
12.3 角的平分线的性质/
能力提升题
如图,已知∠CBD和∠BCE的平分线相交于点F,求证:点F在
∠DAE的平分线上.
E
证明:过点F作FG⊥AE于G,FH⊥AD于H,FM⊥BC于M. G
∵点F在∠BCE的平分线上,FG⊥AE, FM⊥BC.
C
∴FG=FM.
又∵点F在∠CBD的平分线上,
M
F
知识点 2 三角形的内角平分线
分别画出下列三角形三个内角的平分线,你发现了什么?
发现:三角形的三条角平分线相交于一点.
探究新知
12.3 角的平分线的性质/
分别过交点作三角形三边的垂线,用刻度尺量一量,每组

最新人教版八年级上册数学作业课件第十二章全等三角形第17课时角的平分线(2)——判定

最新人教版八年级上册数学作业课件第十二章全等三角形第17课时角的平分线(2)——判定

25°
且CD=CE,则∠DOC=______________.
3. 如图F17-3,在△ABC中,∠CAB=60°,∠CAB的平分线
AP与∠CBA的平分线BP相交于点P,连接CP. 求证:CP平分
∠ACB.
证明:如答图F17-1,过点P作PD⊥AB于点D,
作PE⊥BC于点E,作PF⊥AC于点F,则PD,PE,
于点G,EH⊥BC于点H.
∵BE平分∠ABD,∴EH=EF.
∵∠BAC=130°,∴∠FAE=50°.
∵∠BAD=80°,
∴∠Байду номын сангаасAD=∠BAC-∠BAD=130°-80°=50°.
∴∠FAE=∠CAD.∴EF=EG.∴EG=EH.
∴点E到DA,DC的距离相等.
C组
7. 如图F17-7,直线a,b,c表示三条公路,现要建一个货
PF分别是点P到AB,BC,CA的距离,
∵点P是△ABC角平分线的交点,
∴PD=PE=PF.
∴CP平分∠ACB.
4. 如图F17-4,在△ABC中,D是BC的中点,DE⊥AB,
DF⊥AC,垂足分别是点E,F,BE=CF. 求证:AD是△ABC的
角平分线.
证明:∵DE⊥AB,DF⊥AC,
∴△BDE和△DCF都是直角三角形.
物中转站,要求它到三条公路的距离相等,则可供选择的
地址有
A. 一处
B. 两处
C. 三处
D. 四处

D)


( D )
A.有且只有1个
B.有且只有2个
C.组成∠E的角平分线
D.组成∠E的角平分线所在的直线(点E除外)
6. 如图F17-6,在△ABD中,若∠BAD=80°,C为BD延长线

《三角形的高、中线与角平分线》人教版八年级数学上册教材课件PPT(3篇)

《三角形的高、中线与角平分线》人教版八年级数学上册教材课件PPT(3篇)
历史课 件:ww w.1ppt .com/k ejian/ lishi/
课本P8-9页习题11.1
3, 8, 9
11.1.2 三角形的高、中线与角平分线
知识回顾 问题探究 课堂小结 随堂检测
PPT模板: www.1p /moban / PPT背景: www.1p /beiji ng/ PPT下载: www.1p /xiaza i/ 资料下载 :www.1 ppt.co m/zili ao/ 试卷下载 :www.1 ppt.co m/shit i/ 手抄报:w ww.1pp / shouch aobao/ 语文课件 :www.1 ppt.co m/keji an/yuw en/ 英语课件 :www.1 ppt.co m/keji an/yin gyu/ 科学课件 :www.1 ppt.co m/keji an/kex ue/ 化学课件 :www.1 ppt.co m/keji an/hua xue/ 地理课件 :www.1 ppt.co m/keji an/dil i/
D C ∠ADB=∠ADC=90°.
三角形 的中线
三角形的 角平分线
三角形中,连结一个顶 点和它对边中点的线段
B
三角形一个内角的平分
线与它的对边相交,这
个角顶点与交点之间的
线段
B
A ∵ AD是△ABC的BC上的中线.
∴ BD=CD= ½ BC.
D
C
A
21
∵.AD是△ABC的∠BAC的平分线
∴ ∠1=∠2= ½ ∠BAC
(1)BE= CE=
1/2;BC
(2)∠BAD=____∠_C_A=D _____1_/2_∠;BAC
A
(3)∠AFB= ∠AF=C90°.

最新人教版初中数学八年级上册《13.1.2 线段的垂直平分线的性质(第2课时)》精品教学课件

最新人教版初中数学八年级上册《13.1.2 线段的垂直平分线的性质(第2课时)》精品教学课件

D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ




课堂检测
2.如图,已知线段AB的垂直平分线CP交AB于点P,且AP=2PC,现欲在
线段AB上求作两点D,E,使其满足AD=DC=CE=EB,对于以下甲、乙
两种作法:
甲:分别作∠ACP、∠BCP的平分线,分别
C
交AB于D、E,则D、E即为所求;
乙:分别作AC、BC的垂直平分线,分别交AB A
(保留作图痕迹,不要求写出作法);
(2)在(1)所作的图中,若AM=PN,BN=PM,求证:∠MAP
=∠NPB.
A
B
M
Nl
探究新知
解:(1)如图所示:
A
B
M PN l
(2)在△AMP和△BNP中,∵AM=PN,AP=PB,PM=BN, ∴△AMP≌△PNB(SSS),∴∠MAP=∠NPB.
巩固练习
分析:增设的公共汽车站要满足到两个小 区的路程一样长,应在线段AB的垂直平分 线上,又要在公路边上,所以找到AB垂直 A 平分线与公路的交点即可.
B 公共汽车站
探究新知
素养考点 1 利用线段的垂直平分线的性质作图
例1 如图,已知点A、点B以及直线l.
(1)用尺规作图的方法在直线l上求作一点P,使PA=PB.
课堂检测
能力提升题
如图,有A,B,C三个村庄,现准备要建一所希望小学, 要求学校到三个村庄的距离相等,请你确定学校的位置.
B
学校在连接任意两点的两
C
条线段的垂直平分线的交点处. A
课堂检测
拓广探索题
如图,在4×3的正方形网格中,阴影部分是由4个正方形组成 的一个图形,请你用两种方法分别在如图方格内填涂2个小正 方形,使这6个小正方形组成的图形是轴对称图形,并画出其 对称轴.

人教八年级数学上册《角的平分线的判定》(共18张)

人教八年级数学上册《角的平分线的判定》(共18张)
等于2 cm,则Q 在∠AOB 的平分线上.( ) √
A
M
Q
O
ห้องสมุดไป่ตู้
N
B
应用角平分线性质定理的逆定理
2.在问题1中,在S 区建一个集贸市场,使它到公路与 铁路的距离相等.
(1) 这个集贸市场 应建于何处?这样的集贸市场可建 多少个?
应用角平分线性质定理的逆定理
2.在问题1中,在S 区建一个集贸市场,使它到公路 与铁路的距离相等.
学习重点: 角平分线性质定理的逆定理.
引言
问题1 如图,要在S 区建一个集贸市场,使它到 公路,铁路的距离相等,并且距离公路与铁路的交叉处500m
,请你帮忙设计一下,这个集贸市场应建于何(在图上 标 出它的位置,比例尺为1:20 000)?
探索并证明角平分线的性质定理的逆定理
问题2 交换角的平分线的性质中的已知和结论, 你能得到什么结论,这个新结论正确吗?
(1) 这个集贸市场 应建于何处?这样的集贸市场可 建多少个?
(在图上标出它的位置,比例尺为1:20 000)
应用角平分线性质定理的逆定理
2.在问题1中,在S 区建一个集贸市场,使它到公路与铁 路的距离相等.
(3)如图,点P是△ABC的两条角平分线BM, CN 的交点, 点P 在∠BAC的平分线上吗?这说明三 角形的三条角平分线有什么关系?
角的内部到角的两边距离相等的点在角的平分线 上.
探索并证明角平分线的性质定理的逆定理
追问1 你能证明这个结论的正确性吗?
探索并证明角平分线的性质定理的逆定理
追问2 这个结论与角的平分线的性质在应用上有 什么不同?
这个结论可以判定角的平分线,而角的平分线的性 质可用来证明线段相等.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.3角平分线的性质 (2)
温故知新
1、快速用尺规作一个已知角的 平分线. 2、角平分线的性质: 角的平分线上的点到角的两边的距离相等 A
用符号语言表述:
D O 1 2 E B P C
∵ OC是∠AOB的平分线 PD⊥OA,PE⊥OB ∴ PD=PE
想一想
• 把刚才的性质反过来:到一个角的两边距离相 等的点是否一定在这个角的平分线上呢?
角的平分线上的点到角的两边的距离相等. ∵ QD⊥OA,QE⊥OB,点Q在∠AOB的平分线上 ∴ QD=QE
所以: 角平分线可以看做到角的两边 距离相等的所有点的集合
用一用
1、 如图,开发区一个工厂,在公路西侧, 到公路的距离与到河岸的距离相等,并且与河 上公路桥较近桥头的距离为500米。在图上标出 工厂的位置,并说明理由。
B
C
走进生活
1、如图,为了促进当地 旅游发展,某地要在三 条公路围成的一块平地 上修建一个度假村.要使 这个度假村到三条公路 的距离相等,应在何处修 建?
想一想
在确定度假村的位置时,一定要画 出三个角的平分线吗?你是怎样思考 的?你是如何证明的?
2、直线表示三条相互交叉的公路,现要建 一个货物中转站,要求它到三条公路的距 离相等,则可供选择的地址有:( ) A.一处 B. 两处 C.三处 D.四处

比例尺1:20000
B
C
· P

O
A
2、如图,已知△ABC的外角∠CBD和 ∠BCE的平分线相交于点F, 求证:点F在∠DAE的平分线上.
G M H
3、如图,在△ABC中,D是BC的中点, DE⊥AB,DF⊥AC,垂足分别是E,F,且BE= CF。 求证:AD是△ABC的角平分线。 A
E
F D
分析:由于没有限制在 何处选址,故要求的地 址共有四处。丰收乐园• 你今天的收获与大家共同分享吧!
到角的两边的距离相等的点 在角的平分线上。
用数学语言表示为: ∵ QD⊥OA,QE⊥OB,QD=QE. ∴点Q在∠AOB的平分线上.
角的平分线上的点到角的两边的距离相等. ∵ QD⊥OA,QE⊥OB,点Q在∠AOB的平分线上 ∴ QD=QE 角平分线可以看做到角的两边距离相等的 所有点的集合
已知:如图,QD⊥OA,QE⊥OB, 点D、E为垂足,QD=QE. 求证:点Q在∠AOB的平分线上.
证一证
已知:如图,QD⊥OA,QE⊥OB, 点D、E为垂足,QD=QE. 求证:点Q在∠AOB的平分线上.
说一说 角的内部到角的两边距离相 等的点在角的平分线上。
用符号语言表示为:
∵ QD⊥OA,QE⊥OB,QD=QE. ∴点Q在∠AOB的平分线上.
相关文档
最新文档