数学分析习题
数学分析—极限练习题及详细答案

一、选择题1.若0()lim1sin x x xφ→=,则当x 0→时,函数(x)φ与( )是等价无穷小。
A.sin ||xB.ln(1)x -C.11.【答案】D 。
2.设f(x)在x=0处存在3阶导数,且0()lim 1tan sin x f x x x→=-则'''f (0)=( )A.5B.3C.1D.0 2.【答案】B.解析由洛必达法则可得30002()'()''()limlimlim1tan sin 2cos sin sin cos cos x x x f x f x f x x x x x xx x -→→→==-+-42200''()''()lim lim 16cos sin 2cos cos 21x x f x f x x x x x --→→===-++++可得'''f (0)3= 3.当x 0→时,与1x 133-+为同阶无穷小的是( ) A.3xB.34x C.32xD.x3.【答案】A.解析.12233312332000311(1)1133lim lim (1)3313x x x x x x x ---→→→-+⋅==+=选A 。
4.函数2sin f ()lim 1(2)nn xx x π→∞=+的间断点有( )个A.4B.3C.2D.14.【答案】C.解析.当0.5x >时,分母→∞时()0f x =,故20.5sin 12lim1(2(0.5))2n x π→--=-+⨯-, 20.5sin12lim1(20.5)2n x π→=+⨯,故,有两个跳跃间断点,选C 。
5.已知()bx xf x a e=-在(-∞,+∞)内连续,且lim ()0x f x →∞=,则常数a ,b 应满足的充要条件是( )A.a>0,b>0B.a ≤0,b>0C.a ≤0,b<0D.a>0,b<05.【答案】B 。
数学分析习题及答案(29)

习 题 场论初步1.设 a 3i 20 j 15k ,对以下数目场 f ( x, y, z) ,分别计算 grad f 和 div ( fa) :1(1) (2) (3)f (x, y, z) ( x 2 y 2 z 2 ) 2 ; f (x, y, z) x 2 y 2 z 2 ; f (x, y, z) ln( x 2 y 2 z 2 ) 。
解(1) grad f3( x 2y 2 z 2 ) 2 ( xi yjzk ) ,3div ( fa)(x 2 y 2 z 2 ) 2 (3x 20 y 15z) 。
(2) grad f 2( xi yj zk ) ,div ( fa) 2(3x 20 y 15z) 。
(3) grad f 2( x 2 y 2 z 2 ) 1 (xi yj zk ) ,div ( fa) 2(x 2 y 2 z 2 ) 1 (3x 20 y 15 z) 。
2.求向量场 a x 2 i y 2 j z 2 k 穿过球面 x 2 y 2 z 2 1 在第一卦限部分 的通量,此中球面在这一部分的定向为上侧。
解 设 : x 2 y 2 z 2 1 ( x 0, y 0, z 0) ,方向取上侧,则所求通量为x 2 dydz y 2 dzdx z 2 dxdy ,因为z 2dxdy(1 x2y 2 )dxdy2d13dr ,r48xy同理可得x 2 dydzy 2dzdx,8因此x 2 dydzy 2 dzdx z 2 dxdy 3。
83.设 r xi yj zk , r | r | ,求:(1)知足 div [ f (r )r ] 0 的函数 f (r ) ; (2)知足 div[grad f (r )] 0 的函数 f (r ) 。
解(1)经计算获得( f ( r ) x)f (r ) f (r ) x2,xr( f (r ) y)f (r )f ( r )y 2 ,yr( f (r ) z)f (r ) f ( r ) z2,zr 因此。
数学分析经典习题

数学分析经典习题1.设p(x)=2+4x+3x^2+5x^3+3x^4+4x^5+2x^6,对于满⾜0<k<5的k,定义I_k=\int_0^{+\infty}\frac{x^k}{p(x)}dx,对于怎样的k, I_k最⼩?Hint:进⾏倒代换再相加.2.(2018年中国数学奥林匹克希望联盟夏令营)已知n\in\mathbb{N},n\geq 2,设0<\theta<\pi,证明: \sin\frac{\theta}{2}\sum_{k=1}^n\frac{\sink\theta}{k}<1.3.(2011年最新⼤学⽣数学竞赛预测试题,西西)求极限\lim_{n\to\infty}\frac{1}{n^2}\int_0^{\pi/2}x\left(\frac{\sin nx}{\sin x}\right)^4dx.\lim_{n\to\infty}\frac{n!}{n^n}\left(\sum_{k=0}^n\frac{n^k}{k!}-\sum_{k=n+1}^\infty\frac{n^k}{k!}\right).\int_0^{\pi/2}\ln (\cos x)\ln (\sin x)\cdot \sin 2xdx.求⽆穷级数\sum_{k=1}^\infty\frac1{k^2}\cos\left(\frac{9}{k\pi+\sqrt{k^2\pi^2-9}}\right).⾥⾯还很多有意思的题!4.物理⾥⾯的:\frac{1}{xy}=\int_0^\infty\frac{da}{(ax+(1-a)y)^2},\quad \det A=\int_0^\infty\int_0^\infty e^{\theta A\eta}d\theta d\eta.5.计算第⼆型曲线积分I=\oint_C\frac{e^y}{x^2+y^2}[(x\sin x+y\cos x)dx+(y\sin x-x\cos x)dy],其中C:x^2+y^2=1,取逆时针⽅向.解:事实上,\begin{align*}I&=\oint_C\frac{e^y}{x^2+y^2}[(x\sin x+y\cos x)dx+(y\sin x-x\cos x)dy\\&=\int_0^{2\pi}e^{\cos t}\cos(\sint)dt=\int_0^{2\pi}e^{e^{it}}dt=\frac{1}{i}\oint_{|z|=1}\frac{e^z}{z}dz=2\pi\lim_{z\to 0}e^z=2\pi.\end{align*}6.(国际最佳问题征解)T210,P210.试证明下⾯等式成⽴:\int_0^{\infty}\frac{dx}{\Gamma (x)}=\int_0^1\left[1+\frac{e}{x}-\frac{e}{1!(x+1)}+\frac{e} {2!(x+1)}-\cdots\right]\frac{dx}{\Gamma (x)}.T211.证明:若0<x<1,则\prod_{n=1}^\infty\left(1-x^{2n-1}\right)=1/\left[1+\sum_{n=1}^\infty\frac{x^{n(n+1)/2}}{(1-x)(1-x^2)(1-x^3)\cdots (1-x^n)}\right].T213.求证丅式成⽴:e^x=\frac{(1-x^2)^{1/2}(1-x^3)^{1/3}(1-x^5)^{1/5}\cdots}{(1-x)(1-x^6)^{1/6}(1-x^{10})^{1/{10}}\cdots},\quad |x|<1等式右端的分式中,分⼦中的x的指数是含奇数个不重复素数因⼦的整数,⽽在分母中的x的指数是含偶数个不重复素数因⼦.证.考虑函数f(x)=-\sum_{n=1}^\infty\frac{\mu (n)\ln (1-x^n)}{n},\quad |x|<1其中\mu (n)是Mobius函数,那么f(x)=\sum_{n=1}^\infty\frac{\mu (n)}{n}\sum_{m=1}^{\infty}\frac{x^{mn}}{m}=\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\frac{\mu (n)}{nm}x^{nm},\quad |x|<1在这个展开式中, x^m的系数是\sum_{n|m}\frac{\mu (n)}{m}=\frac1m\sum_{n|m}\mu (n)=0,\quad m\neq 1因此f(x)=x,所以e^x=\sum_{n=1}^\infty(1-x^n)^{-\mu (n)/n},由此得证.数列a_0,a_1,\ldots,a_n满⾜a_0=\frac{1}{2},a_{k+1}=a_k+\frac{1}{n}a_k^2,k=0,1,\ldots,n-1,试证1-\frac{1}{n}<a_n<1.这是1980年芬兰等四国数学竞赛试题,是这次竞赛中得分率最低的⼀道题,竞赛委员会公布的解答也很繁琐,苏淳教授曾运⽤数学归纳法采⽤加强命题的技巧给出了较为简捷的证明.下⾯是种更直截了当的证明.来⾃朱华伟《奥数讲义-⾼⼀上》证.由已知得\frac{1}{a_{k-1}}-\frac{1}{a_k}=\frac{1}{n+a_{k-1}},从⽽a_n>a_{n-1}>\cdots>a_1>a_0=\frac12,所以\frac{1}{a_{k-1}}-\frac{1}{a_k} <\frac{1}{n},\quad k=1,2,\ldots,n累加得\frac{1}{a_0}-\frac{1}{a_n}<1,所以\frac{1}{a_n}>2-1=1,即a_n<1,从⽽有\frac{1}{a_{k-1}}-\frac{1}{a_k}>\frac{1}{n+1},\quad k=1,2,\ldots,n累加得\frac{1}{a_0}-\frac{1}{a_n}>\frac{n}{n+1},即\frac{1}{a_n}<2-\frac{n}{n+1}=\frac{n+2}{n+1},从⽽a_n>\frac{n+1}{n+2}>\frac{n-1}{n}=1-\frac{1}{n},故1-\frac{1}{n}<a_n<1.另外可参考:叶军《数学奥林匹克教程》P259.注意到\frac{\sin \pi x}{\pi x}=\prod_{n=1}^{\infty}\left(1-\frac{x^2}{n^2}\right),令x=i并由\sin (ix)=i\sinh x可知\prod_{n=1}^{\infty}\left(1+\frac{1}{n^2}\right)=\frac{e^\pi-e^{-\pi}}{2\pi}.设有正实数列\{a_n\}使得表达式\frac{a_k+a_n}{1+a_ka_n}的值仅依赖于脚标之和k+n,也就是当k+n=m+l时,必有\frac{a_k+a_n}{1+a_ka_n}=\frac{a_m+a_l}{1+a_ma_l},求证:数列\{a_n\}有界.证.为⽅便起见,记A_{k+n}=\frac{a_k+a_n}{1+a_ka_n},则A_n=A_{1+(n-1)}=\frac{a_1+a_{n-1}}{1+a_1a_{n-1}},\quad n>1考察函数f(x)=\frac{a_1+x}{1+a_1x},其中x>0.容易验证f(x)\geq \begin{cases} \frac{1}{a_1}, & \text{如果$a_1>1$}\\ 1, & \text{如果$a_1=1$}\\ a_1, & \text{如果$0<a_1<1$}\\ \end{cases}因此,对任意a_1值,都存在\alpha\in (0,1],使得f(x)\geq \alpha,从⽽对任何n,都有A_n\geq\alpha,其中\alpha可取a_1与1/a_1中较⼩者.这样便有A_{2n}=A_{n+n}=\frac{2a_n}{1+a_n^2}\geq\alpha,即\alpha a_n^2-2a_n+\alpha\leq 0,解得\frac{1-\sqrt{1-\alpha^2}}{\alpha}\leq a_n\leq \frac{1+\sqrt{1-\alpha^2}}{\alpha}.于是,只要取m=(1-\sqrt{1-\alpha^2})/\alpha,M=(1+\sqrt{1-\alpha^2})/\alpha,则对⼀切n,均有m\leq a_n\leq M,即数列\{a_n\}有界.注:满⾜题意的⾮常数数列是存在的,例如,令p>q\geq 1,则数列a_n=\frac{p^n-q}{p^n+q},\quad n=1,2,\ldots便具有上述性质.来源:朱华伟《奥数讲义-⾼⼀上》P84.证明⽅程f(x)=(2n+1)x^{2n}-2nx^{2n-1}+(2n-1)x^{2n-2}-\cdots+3x^2-2x+1=0⽆实根.证.令x=-c\leq 0,则f(-c)=(2n+1)c^{2n}+2nc^{2n-1}+(2n-1)c^{2n-2}+\cdots+3x^2+2c+1>0.因此原⽅程⽆负根,也⽆零根.下⾯证明原⽅程⽆正根.注意到(x+1)^2f(x)=(2n+1)x^{2n+2}+(2n+2)x^{2n+1}+1,其系数均⾮负,因此(x+1)^2f(x)⽆正根,即f(x)也⽆正根.综上所述, f(x)=0⽆实根.解⽅程\begin{cases} x_1+x_2+\cdots+x_n=n,\\ x_1^2+x_2^2+\cdots+x_n^2=n,\\ \vdots\\ x_1^n+x_2^n+\cdots+x_n^n=n.\\ \end{cases}解.作以x_1,x_2,\ldots,x_n为根的多项式\begin{align*}f(x)&=(x-x_1)(x-x_2)\cdots(x-x_n)\\&=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0,\end{align*}则f(x_k)=x_k^n+a_{n-1}x_k^{n-1}+\cdots+a_1x_k+a_0=0,\quad k=1,2,\ldots,n于是\begin{align*}\sum_{k=1}^{n}f(x_k)&=\sum_{k=1}^{n}\left(x_k^n+a_{n-1}x_k^{n-1}+\cdots+a_1x_k+a_0\right)\\&=\sum_{k=1}^{n}x_k^n+a_{n-1}\sum_{k=1}^{n}x_k^{n-1}+\cdots+a_1\sum_{k=1}^{n}x_k+\sum_{k=1}^{n}a_0=0,\end{align*}由⽅程组可知n+a_{n-1}n+\cdots+a_1n+a_0n=0,从⽽f(1)=1+a_{n-1}+\cdots+a_1+a_0=0.这说明x=1为f(x)的⼀个根.不妨设x_n=1,由原⽅程组得x_1^k+x_2^k+\cdots+x_{n-1}^k=n-1,\quad k=1,2,\ldots,n-1仿上⼜可得x_1,\ldots,x_{n-1}中有⼀个为1.继续下去,必有x_1=x_2=\cdots=x_n=1.已知\begin{align*}\begin{cases}\frac{x^2}{2^2-1^2}+\frac{y^2}{2^2-3^2}+\frac{z^2}{2^2-5^2}+\frac{w^2}{2^2-7^2}=1,\\\frac{x^2}{4^2-1^2}+\frac{y^2}{4^2-3^2}+\frac{z^2}{4^2-5^2}+\frac{w^2}{4^2-7^2}=1,\\\frac{x^2}{6^2-1^2}+\frac{y^2}{6^2-3^2}+\frac{z^2}{6^2-5^2}+\frac{w^2} {6^2-7^2}=1,\\\frac{x^2}{8^2-1^2}+\frac{y^2}{8^2-3^2}+\frac{z^2}{8^2-5^2}+\frac{w^2}{8^2-7^2}=1.\end{cases}\end{align*}求x^2+y^2+z^2+w^2的值.解.x,y,z,w能满⾜给定的⽅程组等价于t=4,16,36,64满⾜⽅程\frac{x^2}{t-1}+\frac{y^2}{t-9}+\frac{z^2}{t-25}+\frac{w^2}{t-49}=1.去分母,当t\neq 1,9,25,49时,关于t的⽅程等价于\begin{align*}(t-1)(t-9)(t-25)(t-49)-x^2(t-9)(t-25)(t-49)-y^2(t-1)(t-25)(t-49)\\-z^2(t-1)(t-9)(t-49)-w^2(t-1)(t-9)(t-25)=0.\end{align*}后⾯的⽅程是关于t的四次⽅程, t=4,16,36,64是这个⽅程的4个已知根,也就是它的全部根,故⽅程等价于(t-4)(t-16)(t-36)(t-64)=0.由于上⾯两个⽅程中t^4的系数都是1,故其余各次幂的系数也应相等.⽐较t^3的系数可得1+9+25+49+x^2+y^2+z^2+w^2=4+16+36+64.于是得到x^2+y^2+z^2+w^2=36.本题也可以利⽤进⾏求解.\begin{enumerate}\item 设p(x)为任⼀个⾸项系数为正数p_0的实系数多项式,且p(x)⽆实零点.证明:必有实系数多项式f(x)和g(x),使得p(x)=[f(x)]^2+[g(x)]^2.\item 证明:若Q(x)是⾸项系数为正的实系数多项式,且有实数a使得Q(a)<0,则Q(x)必有实零点.\end{enumerate}由共轭复数运算可知,若p(a+bi)=0,则p(a-bi)=0,因此p(x)的虚零点是成共轭对出现的.由于p(x)⽆实零点, p(x)必为偶数次多项式.令其次数为2n,且零点为x_i,\overline{x_i},i=1,2,\ldots,n,则p(x)=\left[\sqrt{p_0}\prod_{i=1}^{n}(x-x_i)\right]\left[\sqrt{p_0}\prod_{i=1}^{n}(x-\overline{x_i})\right].令q(x)=\sqrt{p_0}\prod_{i=1}^{n}(x-x_i),则p(x)=q(x)\overline{q(x)}.由于q(x)为复系数多项式,必有实系数多项式f(x)与g(x),使得q(x)=f(x)+ig(x),则\overline{q(x)}=f(x)-ig(x),于是p(x)=[f(x)+ig(x)][f(x)-ig(x)]=f^2(x)+g^2(x).(2)利⽤反证法.假设Q(x)⽆实零点,由于Q(x)为实系数多项式,且其⾸项系数为正.因此由(1)可知,必有实系数多项式f(x)和g(x),使得Q(x)=f^2(x)+g^2(x),由此可知Q(a)=f^2(a)+g^2(a)>0,与题意Q(a)<0⽭盾.来源:朱华伟《奥数讲义-⾼三下》P14.(Steiner定理)边长⼀定的n边形中,以存在外接圆者的⾯积最⼤.(等周定理)周长⼀定的n边形中,以正n边形的⾯积最⼤.定理.圆内接n边形中以正n边形的周长最⼤.叶军,P282.P354.P276\frac{a^r}{(a-b)(a-c)}+\frac{b^r}{(b-c)(b-a)}+\frac{c^r}{(c-a)(c-b)}=\begin{cases}0,&r=0,1\\1,&r=2\\a+b+c,&r=3\end{cases}叶军P68,余红兵、严镇军《构造法解题》(2011年⼭西⾼中数学联赛)三⾓形ABC三个内⾓的度数满⾜\frac{A}{B}=\frac{B}{C}=\frac13,求T=\cos A+\cos B+\cos C的值.证明\lim_{n\to\infty}\left(1+n+\frac{n^2}{2!}+\cdots+\frac{n^n}{n!}\right)e^{-n}=\frac{1}{2}.设\frac12<\alpha<\frac23,r=[n^\alpha],把e^n=\sum_{k=0}^{\infty}\frac{n^k}{k!}表⽰为\sum_{k=0}^{n-r}\frac{n^k}{k!}+\sum_{k=n-r+1}^{n}\frac{n^k}{k!}+\sum_{k=n+1}^{n+r}\frac{n^k}{k!}+\sum_{k=n+r+1}^{2n+1}\frac{n^k}{k!}+\sum_{k=2n+2}^{\infty}\frac{n^k}{k!}=S_1+S_2+S_3+S_4+S_5.由于\begin{align*}\frac{n^{n-k+1}}{(n-k+1)!}/\frac{n^{n+k}}{(n+k)!} &=\frac{n(n+k)(n+k-1)}{n^3}\cdot\left(1-\frac{1}{n^2}\right)\cdots\left(1-\frac{(k-2)^2}{n^2}\right)\\&\geq 1-\frac{1^2+\cdots+(k-2)^2}{n^2}=1+o(1),\quad 1\leq k\leq r\end{align*}且S_3=S_2+o(S_2),\quad n\to\infty利⽤Stirling公式进⼀步估计S_1,S_4,S_5,可以证得S_1=o(S_2),S_4=o(S_2),S_5=o(S_2),由此得到结论.来源:《546个早期俄罗斯⼤学⽣数学竞赛题》T73,P77.设X_i,1\leq i\leq n是相互独⽴的随机变量,且X_i\sim P(1) (泊松分布),则Y_n=X_1+X_2+\cdots+X_n\sim P(n),⽽EY_n=DY_n=n.由中⼼极限定理可知\frac{Y_n-n}{\sqrt{n}}\to N(0,1),所以\lim_{n\to\infty}a_n=\lim_{n\to\infty}P(Y_n\leq n)=\lim_{n\to\infty}P\left(\frac{Y_n-n}{\sqrt{n}}\leq 0\right)=\Phi (0)=\frac12.另外可参考:博⼠数学论坛《数学分析解答库》计算\lim_{n\to\infty}\sqrt{n}\int_{-\infty}^{+\infty}\frac{\cos x}{(1+x^2)^n}dx.来源:《546个早期俄罗斯⼤学⽣数学竞赛题》T541,P64.解.令\delta=n^{-2/5},那么\int_{-\infty}^{+\infty}\frac{\cos x}{(1+x^2)^n}dx=2\int_{\delta}^{+\infty}\frac{\cos x}{(1+x^2)^n}dx+\int_{-\delta}^{\delta}\frac{\cos x}{(1+x^2)^n}dx.先估计前者,由于\left|\int_{\delta}^{+\infty}\frac{\cos x}{(1+x^2)^n}dx\right|\leq \int_{\delta}^{\infty}\frac{dx}{(1+x^2)^n}.令x=\sqrt{(1+\delta^2)y-1},那么当n\geq 2时,有\begin{align*}\int_{\delta}^{\infty}\frac{dx}{(1+x^2)^n}&=\int_{1}^{\infty}\frac{(1+\delta^2)^{1-n}}{2\sqrt{(1+\delta^2)y-1}y^n}dy\\&\leq\frac{1}{2} (1+\delta^2)^{1-n}\int_{1}^{\infty}\frac{dy}{y^2\sqrt{y-1}}.\end{align*}⽽\lim_{n\to\infty}\sqrt{n}(1+n^{-4/5})^{1-n}=0,这表明\lim_{n\to\infty}\sqrt{n}\int_{-\infty}^{+\infty}\frac{\cos x}{(1+x^2)^n}dx=\lim_{n\to\infty}\sqrt{n}\int_{-\delta}^{\delta}\frac{\cos x}{(1+x^2)^n}dx.⼜\ln \cos x-n\ln (1+x^2)=-\left(n+\frac12\right)x^2+nO(x^4).因为在[-\delta,\delta]上,有x^4\leq\delta^4\leq x^{-8/5},此时有\ln \cos x-n\ln (1+x^2)=-\left(n+\frac12\right)x^2+O(n^{-3/5}).于是得到\lim_{n\to\infty}\sqrt{n}\int_{-\delta}^{\delta}\frac{\cos x}{(1+x^2)^n}dx=\lim_{n\to\infty}\sqrt{n}\int_{-\delta}^{\delta}e^{-(n+1/2)x^2}dx.令y=\sqrt{n+1/2}x,则\begin{align*}\lim_{n\to\infty}\sqrt{n}\int_{-\delta}^{\delta}e^{-(n+1/2)x^2}dx=\lim_{n\to\infty}\frac{\sqrt{n}}{\sqrt{n+\frac12}}\int_{-\delta\sqrt{n+1/2}}^{\delta\sqrt{n+1/2}}e^{-y^2}dy=\int_{-\infty}^{\infty}e^{-y^2}dy=\sqrt{\pi}.\end{align*}T545.设\varphi(z)=\sum_{n=1}^{5}\frac{1}{n^z}.证明:对于任何实数t有\varphi(1+it)\neq 0.⾸先研究函数\varphi_4(z)=\sum_{n=1}^{4}\frac{1}{n^z},并证明\varphi_4(1+it)\neq 0,\quad \forall t\in\mathbb{R}我们有\mathrm{Re}\varphi_4(1+it)=\sum_{n=1}^{4}\frac{\cos (t\ln n)}{n}\geq 1+\frac{\cos x}{2}-\frac13+\frac{\cos 2x}{4},这⾥x=t\ln 2.⽽\begin{align*}1-\frac13+\frac{\cos x}{2}+\frac{1}{4}(2\cos^2 x-1)&=\frac{5}{12}+\frac12(u+u^2)\\&\geq \frac{5}{12}+\min_{|u|\leq 1} (u+u^2)=\frac{7}{24}.\end{align*}也就是\mathrm{Re}\varphi_4(1+it)\geq 7/24,因此当t\in\mathbb{R}时,有\varphi_4(1+it)\neq 0,⽽\mathrm{Re}\varphi_5(1+it)\geq \mathrm{Re}\varphi_4(1+it)-\frac15\geq \frac{7}{24}-\frac15=\frac{11}{120}.因此,对于t\in\mathbb{R}有\varphi(1+it)\neq 0. Processing math: 0%。
数学分析第一章习题

并用定义验证之. 证明
1 2 n n S { , ,, , n N } ∵ , n 1 |单调 2 3 n1
n 1 增加且 lim n 1 1 ,∴ sup S 1, inf S 2 |. n n 1 x S , x n 1 1 1 1 1 . (1)2 |是下界: n 1 n1 n1 2 2
例3
证明下面数列发散:
n
(1) {( 1) } ; 证明
(2) { n
n
( 1)n1
}.
2 k 1
(1)设 an ( 1) ,易见
a2 k (1) 1 , a2 k 1 ( 1)
2k
( 1)n1
1 .
n
奇偶子列收敛于不同的极限,故 {( 1) } 发散. (2) 设 an n , 显然,a2 k 1 n
{( 1)n } 发散。 证明:数列nΒιβλιοθήκη 1 ( 1) 证明: 1
n 2k 1 . a ,
n 2k
若 a 0 , 0 1 0 , N N , n0 2 N 1 ,
an0 a ( 1)n0 a 1 a 1 a 1 0 , 有
2n0 a 2n0 a 0 ,
∴ 0 1 0 , N N , n0 N [ a ] 1 N , 有 2n0 a 2n0 a 2( N [ a ] 1) a 1 0 , 由定义,知数列 {2n} 发散. 证毕 法二、显然数列 {2n} 无界,而收敛数列必有界, ∴ 数列 {2n} 发散。
注:下确界能取到证明简单;上确界取不到。
例3 设有数集 S { x x (0,1) Q} 试用定义验证: inf S 0,sup S 1 . | 证明 (1) 0 是下界: x S , x 0 .
数学分析习题答案

习 题 1-11.计算下列极限(1)limx ax a a x x a→--,0;a >解:原式lim[]x a a ax a a a x a x a x a→--=---=()|()|x a x a x a a x ==''- =1ln a a a a a a --⋅=(ln 1)a a a -(2)sin sin limsin()x a x ax a →--;解:原式sin sin lim x a x ax a→-=-(sin )'cos x a x a ===(3)2lim 2), 0;n n a →∞>解:原式21()1/n n=20[()']x x a ==2ln a = (4)1lim [(1)1]pn n n→∞+-,0;p > 解:原式111(1)1lim ()|p p p x n n nx =→∞+-'===11p x px p -== (5)10100(1tan )(1sin )lim;sin x x x x→+-- 解:原式101000(1tan )1(1sin )1lim lim tan sin x x x x x x →→+---=--=99010(1)|10(1)|20t t t t ==+++=(6)1x →,,m n 为正整数;解:原式11nx x →=-1111()'()'mx nx x x ===n m=2.设()f x 在0x 处二阶可导,计算00020()2()()limh f x h f x f x h h →+-+-.解:原式000()()lim 2h f x h f x h h →''+--=00000()()()()lim 2h f x h f x f x f x h h→''''+-+--=000000()()()()limlim 22h h f x h f x f x h f x h h →→''''+---=+-00011()()()22f x f x f x ''''''=+=3.设0a >,()0f a >,()f a '存在,计算1ln ln ()lim[]()x a x a f x f a -→.解:1ln ln ()lim[]()x a x a f x f a -→ln ()ln ()ln ln lim f x f a x a x a e --→=ln ()ln ()limln ln x a f x f a x a e→--=ln ()ln ()lim ln ln x a f x f a x ax ax a e→----='()()f a a fa e=习 题 1-21.求下列极限(1)lim x →+∞;解:原式lim [(1)(1)]02x x x ξξ→+∞=+--= ,其中ξ在1x -与1x +之间(2)40cos(sin )cos lim sin x x x x→-;解:原式=40sin (sin )limx x x x ξ→--=30sin sin lim()()()x x x x x ξξξ→--⋅=16,其中ξ在x 与sin x 之间(3)lim x →+∞解:原式116611lim [(1)(1)]x x x x →+∞=+--56111lim (1)[(1)(1)]6x x x xξ-→+∞=⋅+⋅+-- 5611lim (1)33x ξ-→+∞=+= ,其中ξ在11x -与11x +之间(4) 211lim (arctanarctan );1n n n n →+∞-+ 解:原式22111lim ()11n n n n ξ→+∞=-++1=,其中其中ξ在11n +与1n 之间2.设()f x 在a 处可导,()0f a >,计算11()lim ()nn n n f a f a →∞⎡⎤+⎢⎥-⎣⎦.解:原式1111(ln ()ln ())lim (ln ()ln ())lim n n f a f a n f a f a n nn nn ee→∞+--+--→∞==11ln ()ln ()ln ()ln ()[lim lim ]11n n f a f a f a f a n n n ne→∞→∞+---+-=()()2()()()()f a f a f a f a f a f a ee'''+==习 题 1-31.求下列极限(1)0(1)1lim (1)1x x x λμ→+-+-,0;μ≠解:原式0limx x x λλμμ→==(2)x →解:02ln cos cos 2cos lim12x x x nxI x →-⋅⋅⋅=20ln cos ln cos 2ln cos 2lim x x x nx x →++⋅⋅⋅+=-20cos 1cos 21cos 12lim x x x nx x →-+-+⋅⋅⋅+-=-22220(2)()lim x x x nx x →++⋅⋅⋅+=21ni i ==∑ (3)011lim )1x x x e →--(; 解:原式01lim (1)x x x e xx e →--=-201lim x x e x x →--=01lim 2x x e x→-=01lim 22x x x →== (4)112lim [(1)]x xx x x x →+∞+-; 解:原式11ln(1)ln 2lim ()x x xxx x ee+→+∞=-21lim (ln(1)ln )x x x x x →+∞=+-1lim ln(1)x x x→+∞=+1lim 1x xx→+∞== 2. 求下列极限(1)2221cos ln cos limsin x x x x xe e x -→----;解:原式222201122lim 12x x x x x →+==-(2)0ln()2sin lim sin(2tan 2)sin(tan 2)tan x x x e xx x x→++--;解:原式0ln(11)2sin lim sin(2tan 2)sin(tan 2)tan x x x e x x x x →++-+=--012sin limsin(2tan 2)sin(tan 2)tan x x x e xx x x→+-+=-- 02lim442x x x xx x x→++==--习 题 1-41.求下列极限(1)21lim (1sin )n n n n→∞-; 解:原式2331111lim [1(())]3!n n n o n n n →∞=--+11lim((1))3!6n o →∞=+=(2)求33601lim sin x x e x x→--;解:原式3636336600()112lim lim 2x x x xx o x x e x x x →→++---=== (3)21lim[ln(1)]x x x x→∞-+; 解:原式222111lim[(())]2x x x o x x x →∞=--+12= (4)21lim (1)x xx e x-→+∞+; 解:原式211[ln(1)]2lim x x xx ee+--→∞==此题已换3.设()f x 在0x =处可导,(0)0f ≠,(0)0f '≠.若()(2)(0)af h bf h f +-在0h →时是比h 高阶的无穷小,试确定,a b 的值.解:因为()(0)(0)()f h f f h o h '=++,(2)(0)2(0)()f h f f h o h '=++所以00()(2)2(0)(1)(0)(2)(0)()0limlim h h af h bf h f a b f a b f o h h h→→'+-+-+++==从而10a b +-= 20a b += 解得:2,1a b ==-3.设()f x 在0x 处二阶可导,用泰勒公式求0002()2()()limh f x h f x f x h h →+-+-解:原式22220000100022''()''()()'()()2()()'()()2!2!limh f x f x f x f x h h o h f x f x f x h h o h h →+++-+-++=22201220''()()()lim h f x h o h o h h→++=0''()f x =4. 设()f x 在0x =处可导,且20sin ()lim() 2.x x f x x x →+=求(0),(0)f f '和01()lim x f x x→+.解 因为 2200sin ()sin ()2lim()lim x x x f x x xf x x x x→→+=+= []22()(0)(0)()limx x o x x f f x o x x →'++++=2220(1(0))(0)()lim x f x f x o x x →'+++=所以1(0)0,(0)2f f '+==,即(0)1,(0)2f f '=-=所以01()lim x f x x →+01(0)(0)()lim x f f x o x x →'+++=02()lim 2x x o x x→+==习 题 1-51. 计算下列极限(1)n n++解:原式limn→∞=2n ==(2)2212lim(1)nn n a a na a na +→∞+++⋅⋅⋅+> 解:原式21lim (1)nn n n na na n a ++→∞=--2lim (1)n n na n a →∞=--21a a=-2. 设lim n n a a →∞=,求 (1) 1222lim nn a a na n→∞+++; 解:原式22lim (1)n n na n n →∞=--lim 212n n na a n →∞==-(2) 12lim 111n nna a a →∞+++,0,1,2,,.ia i n ≠=解:由于1211111limlim n n n na a a n a a →∞→∞+++==, 所以12lim 111n nna a a a →∞=+++3.设2lim()0n n n x x -→∞-=,求lim n n x n →∞和1lim n n n x x n -→∞-.解:因为2lim()0n n n x x -→∞-=,所以222lim()0n n n x x -→∞-=且2121lim()0n n n x x +-→∞-=从而有stolz 定理2222limlim 022n n n n n x x xn -→∞→∞-==,且212121limlim 0212n n n n n x x xn ++-→∞→∞-==+ 所以lim 0n n x n →∞=,111lim lim lim 01n n n n n n n x x x x n n n n n --→∞→∞→∞--=-=- 4.设110x q<<,其中01q <≤,并且1(1)n n n x x qx +=-,证明:1lim n n nx q→∞=.证明:因110x q<<,所以211211(1)111(1)()24qx qx x x qx q q q+-=-≤=<,所以210x q <<,用数学归纳法易证,10n x q <<。
数学分析练习题

数学分析练习题函数函数概念1. 证明下列不等式: (1) x y x y - ≥ - ; (2) 1212n n x x x x x x ++ ≤ +++ ;(3) 1212(||||||n n x x x x x x x x |+++| ≥ ||- + ++). 2.求证 ||||||1||1||1||a b a b a b a b + ≤ + ++ + +.3.求证||max(,)22a b a b a b + -=+ ; ||min(,)22a b a b a b + -=- . 4.已知三角形的两条边分别为a 和b ,它们之间的夹角为θ ,试求此三角形的面()s θ ,并求其定义域.5.在半径为r 的球内嵌入一内接圆柱,试将圆柱的体积表为其高的函数,并求此函数的定义域.6.某公共汽车路线全长为 20km ,票价规定如下:乘坐 5km 以下(包括5km )者收费 1 元;超过 5km 但在15km 以下(包括 15km )者收费 2 元;其余收费 2 元 5 角. 试将票价表为路程的函数,并作出函数的图形.7.一脉冲发生器产生一个三角波. 若记它随时间t 的变化规律为()f t ,且三个角分别有对应关系(0)0f = ,(10)20f = ,(20)0f = ,求()20f t t (0≤≤) ,并作出函数的图形.8.判别下列函数的奇偶性: (1) 42()12x f x x = + - ;(2) ()sin f x x x = + ;(3) 22()x f x x e - = ;(4) ()lg(f x x = .9.判别下列函数是否是周期函数,若是,试求其周期:(1) 2()cos f x x = ; (2) ()cos sin 23x xf x = +2 ;(3) ()cos f x x π= 4;(4) ()f x . 10.证明 2()1x f x x=+在 (,) -∞ +∞ 有界. 11.用肯定语气叙述函数无界,并证明21()f x x =在(0,1)无界. 12.试证两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,一个奇函数和一个偶函数的乘积是奇函数.13.设()f x 为定义在(,) -∞ +∞ 内的任何函数,证明()f x 可分解成奇函数和偶函数之和.14.用肯定语气叙述:在(,) -∞ +∞ 上 (1) ()f x 不是奇函数;(2) ()f x 不是单调上升函数; (3) ()f x 无零点; (4) ()f x 无上界.复合函数与反函数1. 设()1x f x x 1-=+,求证 (())f f x x = . 2. 求下列函数的反函数及其定义域: (1) 112y x x x= (+) , 1 < < +∞ ;(2) 12x x y e e x - = ( - ) , -∞ < < +∞ ;(3) 2,1,,4,2,4.xx x y x x x -∞ < < ⎧⎪= 1≤ ≤⎨⎪ < <+∞⎩3.设()f x ,()g x 为实轴上单调函数,求证(())f g x 也是实轴上的单调函数.4.设2,0,1,0,()(),0.,0.x x x x f x g x x x x x ≤ - - ≤ ⎧⎧ = = ⎨⎨ > - > ⎩⎩求复合函数(())f g x ,()g f x ( ). 5.设()f x ,求n f ff x () () 次.6.设 ()|1|||f x x x + - 1 - =,试求n f ff x () () 次.7.设 1()f x x =1-,求(())f f x ,((()))f f f x ,1()()f f x .初等函数1.对下列函数分别讨论函数的定义域和值域,奇偶性,周期性,有界性,并作出函数的图形:(1) ||y x = ; (2) []y x x = - ;(3) tan ||y x = ;(4) y (5) 2sin y x = ;(6) sin cos y x x = | | + | |.2.若已知函数()y f x = 的图形,作函数1()y f x = ,2()y f x = - ,3()y f x = --的图形,并说明123y y y , , 的图形与y 的图形的关系.3.若已知函数(),()f x g x 的图形,试作函数[()()()()y f x g x f x g x 1=+ ±- ] 2的图形,并说明y 的图形与()f x 、()g x 图形的关系.4. 作出下列函数的图形: (1) sin y x x = ; (2) 1sin y x =. 5.符号函数0,0,0,1,0,x y sgn x x x 1 , > ⎧⎪= = = ⎨⎪- < ⎩试分别作出sgn x ,sgn )x (2 ,sgn(2)x - 的图形.6.作出下列函数的图形: (1) cos y sgn x = ;(2) ]22x y x ⎡⎤= [ - ⎢⎥ ⎣⎦.数列的极限1. 用定义证明下列数列的极限为零: (1) 21lim 1n n n →∞+ +;(2) sin lim n n n →∞;(3) lim n n π→∞;(4) 2(1)lim nn n n →∞ + - - 1;(5) lim n →∞;(6) 10lim !nn n →∞;(7) lim 1n n na a →∞ ( > ) ; (8) !lim n n n n →∞; (9) 2123lim n nn →∞ + + + +;(10) 1lim 1n n a a n -→∞(+ ) , >. 2.用定义证明: (1) 223lim 21n n n n →∞+3= 2- ;(2) lim n →∞ 1 ;(3) lim n n x →∞ = 1 ,其中 1,1,n n n nx n n n-⎧ ⎪⎪ = ⎨+ ⎪ ⎪⎩为偶数,为奇数;(4) lim n n x →∞ = 3 ,其中 31,1(1,2,)22n n k n x n k k n n k ⎧⎪ 3 = ⎪3 + ⎪== 3 + = ⎨⎪⎪ = 3 + ⎪⎩,,. 3.用定义证明:(1) 若lim n n a a →∞= ,则对任一正整数k ,有lim n k n a a +→∞= ;(2) 若lim n n a a →∞= ,则lim |n n a a →∞|| = | .反之是否成立?(3) 若lim n n a a →∞= ,且a b > ,则存在N ,当n N > 时,有n a b > ;(4) 若lim n n a a →∞= ,且0n a >,则n .4.极限的定义改成下面形式是否可以?(其中“ ∃ ”是逻辑符号,表示“存在”.) (1) ε ∀ > 0 ,0N ∃ > ,当n N ≥ 时,有n x a ε |-|<; (2) ε ∀ > 0 ,0N ∃ > ,当n N > 时,有n x a ε ≤ |-|;(2) ε ∀ > 0 ,0N ∃ > ,当n N > 时,有n x a M ε < |-|(M 为常数). 5.若 {}n n x y 收敛,能否断定{}n x 、{}n y 也收敛? 6.设 (1,)n n x a y n ≤ ≤ = 2, ,且lim ()0n n n y x →∞- = ,求证:lim n n x a →∞= ,lim n n y a →∞= .7.利用极限的四则运算法则求极限: (1) 3232321lim 32n n n n n n →∞ + - + 2 - +;(2) 11(2)3lim (2)3n nn n n ++→∞- +- + ; (3) 112lim 1144nn n→∞1 + + +2 1+ + + ; (4) lim )n n →∞+ 10 .8.求下列极限: (1) 111lim ()12(1)n n n →∞ + + + 2 3 + ;(2) 222111lim ()(1)(2)nn n n →∞+ + + + ; (3) 2lim n n →∞++;(4) 21321lim ()222nn n →∞- + + +; (5) lim (1cos n n →∞;(6) lim n →∞ ;(7) lim nn 2→∞2 ) ;(8) lim [(1)]n n n n n →∞+ - ,01a < < ;(9) lim 2n n n→∞132-124;(10) 11lim n n →∞35 (2-);(11) lim n →∞; (12) n .9.证明:若{}n a ,{}n b 中一个是收敛数列,另一个是发散数列,则{}n n a b ± 是发散数列;又问{}n n a b 和(0)n n n a b b ⎧⎫ ≠ ⎨⎬⎩⎭是否也是发散数列?为什么? 10.设(1)n n x = - ,证明{}n x 发散. 11.若12,,,m a a a 为m 个正数,证明:12lim max(,,,)m n a a a →∞.12.设lim n n a a →∞= ,证明:(1) []lim n n n aa n→∞ = ;(2) 若0,0n a a > > ,则1n.13.利用单调有界原理,证明lim n n x →∞存在,并求出它:(1) 122,x xn = 3, ; (2) 1,2,n x x n = 3, ;(3) nn c x n = (c>0)!; (4) 101,1,1,1n n n xx x n x -- = 1= + = 2, + . 14.若11,0(),x a y b a b = > 0 = > <11,2n nn n x y x y ++ + =证明:lim lim n n n n x y →∞→∞= .15.证明:若0n a > ,且1lim 1nn n a l a →∞+ = > ,lim n n a →∞ = 0.16.设lim n n a a →∞= ,证明:(1) 12lim nn a a a a n→∞ + + +=;(又问,它的逆命题成立否?) (2) 若0n a > ,则n a . 17.应用上题的结果证明下列各题:(1) 113lim n n n→∞11+ ++ +2 = 0 ; (2) 1(0)n a > ;(3)1n ;(4) 0n ;(5) lim n n n →∞+ += 1 ;(6) 若1lim ()n nn nba b b +→∞ = >0,则n a .18.用定义证明下列数列为无穷大量: (1) { ;(2) {}n!; (3) {}ln n ; (4) 113n11+ ++ + 2.19.利用1lim 1nn e n →∞⎛⎫+ = ⎪⎝⎭,求下列极限:(1) 1lim 1nn n →∞⎛⎫- ⎪⎝⎭;(2) 1lim 11n n n →∞⎛⎫ + ⎪+⎝⎭; (3) 1lim 12n n n →∞⎛⎫ + ⎪⎝⎭;(4) 21lim 1nn n →∞⎛⎫ + ⎪⎝⎭.函数的极限1.用极限定义证明下列极限: (1) 2131lim 29x x x →- - = - ;(2) 2331lim 69x x x → -= - ; (3)12x → ; (4) 1(2)(1)lim 03x x x x →--= - ;(5) 23x → ;(6) 21(1)1lim 21x x x x →-= - ; (7) 23lim 9x xx →= ∞ - ; (8) 1lim 12x x x →∞-= + ; (9) 2lim 1x x xx →∞ + = ∞ + ;(10) 225lim 11x x x →∞ - = - .2.用极限的四则运算法则求下列极限: (1) 2201lim 21x x x x → - - - ;(2) 2211lim 21x x x x → - - - ;(3) 3230(1)(13)lim 2x x x x x → - + - + ;(4) 1x → ;(5) 3x → ; (6) 22356lim x x x x x → - + - 8 + 15;(7) 11lim 1n m x x x → - - (,n m 为正整数);(8) 4x → .3.设()0f x > ,证明:若0lim ()x x f x A → = ,则0lim x x → n ≥ 2.4.证明:若0lim ()x x f x A → = ,则0lim |()|||x x f x A → = ,但反之不真.5.求下列函数字所示点的左右极限:(1) 21,()1,2,1,x f x x x x ⎧ 0 , > ⎪= 1 , = ⎨⎪ + < ⎩ 在=1x ;(2) 21sin ,(),x x f x xx x ⎧, > 0⎪ = ⎨⎪ 1+ , < 0⎩在=0x ; (3) 2||1(),1x f x x x = + 在=0x ;(4) 11()[],f x x x = - 在1=x n,n 是正整数;(5) 2,()0,,0,x x f x x x x ⎧ 2 , > 0⎪= 0 , = ⎨⎪ 1+ < ⎩ 在=x 0 .6.求下列极限: (1) 221lim 21x x x x →∞ - - - ;(2) lim x →+∞;(3) lim x x →+∞) ;(4) lim x x →-∞) ;(5) 223lim x x xx→∞ + ;(6) 2sin lim 4x x xx →+∞- ; (7) cos lim x x xx→-∞-;(8) lim x →+∞.7.用变量替换求下列极限: (1) 01lim []x x x+→ ;(2) 0lim ln (0)ax x x a +→ > ; (3) ln lim 0ax xa x →+∞( > ) ;(4) 1lim xx x →+∞.8.设()f x 在(,)a +∞ 上单调上升,lim n n x →∞= +∞,若lim ()n n f x A →∞= ,求证:lim ()x f x A →+∞=(A 可以为无穷).9.设()f x 在集合X 上定义,则()f x 在X 上无界的充要条件是:存在,n x X ∈ 1,2,n = ,使lim ()|n f x →∞| = +∞ .10.利用重要极限求极限: (1) 0sin 2lim x xx→;(2) 220sin lim (sin )x x x → ;(3) 0tan 3lim sin 5x xx→; (4) 32sin sin lim x x xx → - 2;(5) 20cos 5cos 3lim x x xx → -;(6) 3tan sin lim x x xx → - ; (7) 0arctan lim x xx→ ;(8) 0x → ;(9) 0x → ;(10) 0cos(arccos )lim x n x n x→( )为奇数;(11) 4tan 1lim 4x x x ππ→--; (12) sin lim ,sin x mxm n nxπ→(为整数); (13) 2cos lim 2x x x ππ→-;(14) 1lim sin x x x→+∞ ;(15) lim x →+∞;(16) lim sin (x n π→+∞( )为整数;(17) lim xx x -→∞2⎛⎫ 1 ⎪ ⎝⎭-;(18) 10lim (1)xx nx n → + ( )为整数;(19) cot 0lim (1tan )x x x → + ;(20) 101lim ()1x x x x→+ -;(21) 2132lim ()31x x x x -→+∞+ -; (22) tan 2lim (sin )x x x π→; (23) 2221lim 1x x x x →∞⎛⎫- ⎪ - ⎝⎭;(24) lim 1nx n x n →+∞+⎛⎫⎪-⎝⎭.11.证明01limcos x x→不存在 .12.证明0lim ()x x D x → 不存在,其中1,(),.x D x x ⎧ = ⎨ 0 ⎩为有理数,为无理数13.求极限lim cos cos cos 242n n x x x→+∞ . 14.用定义证明:(1) 若lim ()x af x → = +∞ ,lim ()x ag x A → = ,则lim ()()]x af xg x → [+ = +∞ ;(2) 若lim ()x af x → = +∞ ,lim ()x ag x A → = ( >0) ,则lim ()()]x af xg x → [ = +∞ .15.若lim ()x f x A →+∞= ,lim ()x g x B →+∞= ,证明:lim ()()]x f x g x AB →+∞[ = .16.证明lim ()x f x A →+∞= 的充要条件是:对任何数列()n x n → +∞ →∞ ,有(()n f x A n ) → →∞ .17.证明0lim ()x x f x +→ = +∞ 的充要条件是:对任何数列0()n x x n → →∞ ,有 (()n f x A n ) → →∞ .18.设函数()f x 在(0,) +∞ 上满足方程(2)()f x f x = ,且lim ()x f x A →+∞= ,证明:(),(0,)f x A x ≡ ∈ +∞ .无穷小量与无穷大量的比较1. 当0x → 时,以x 为标准求下列无穷小量的阶: (1) sin sin x x 2 - 2 ; (2) 1(1)1x x- - +;(5) ln (1)x + ;1; (8) 1x e - .2.当x →±∞ 时,以x 为标准求下列无穷大量的阶: (1) 26x x + ;(2) 2454x x x + 6 - ;; (5) 32123x x x ++ - ;(6) 21arctan x x.3.当0x → 时,下列等式成立吗? (1) 2()()o x o x = ; (2) 2()()O x x = ο ; (3) 23()()x o x o x = ; (4) 2()()o x o x x= ;(5) 2()()()o x o x o x= ; (6) 2()()o x O x = . 4.试证下列各题:(1) 32sin ()(0)x O x x + →;(2) 32322()()x x O x x + = →∞; (3) 0(())(())(())o g x o g x o g x x x ± = (→); (4) ()()()00m n n o x o x o x x m n + = (→) , > > ; (5) ()()()00m n m n o x o x o x x m n + = (→) , > > . 5.证明下列各式:(1) tan (0)x x x → ; (2) arcsin (0)x x x → ; (3) arctan (0)x x x → ; (4) 21cos (0)x x x 1- → 2; (5) (0)x e x x - 1 → ;(6) (1)(0),a x x x α+- 1 → α ≠ 0其中. 6.运用等价无穷小量求极限:(1) 2arctan lim cos x x x x→∞1- ; (2) 0x →;(3) 2ln(1)lim sin x x x x → +;(4) 201lim sin x x e x x→ - .7.设0()()()f x g x x x → ,证明:()()(())f x g x o f x - = 或()()(())f x g x o g x - = .8.设x a → 时,1()f x 与2()f x 维等价无穷小,1()g x 与2()g x 是等价无穷大,且22lim ()()x af xg x → 存在,求证1122lim ()()lim ()()x ax af xg x f x g x →→ = .函数的连续性1. 用定义证明下列函数在定义域内连续:(1) y (2) 1y x =; (3) ||y x = ;(4) 1sin y x= .2.指出下列函数的间断点并说明其类型: (1) 1()f x x x = +; (2) 2()(1)xf x x =+;(3) 21()cos f x x= ;(4) ()[][]f x x x = + -;(5) sin ()||xf x x =; (6) ()sgn |f x x = |; (7) ()sgn(cos )f x x = ; (8) ()ln f x x1=; (9) ,||1,()1,|1x x f x x ≤ ⎧ = ⎨ |>⎩;(10) cos ,||1,()21,|1x x f x x x π⎧≤ ⎪ = ⎨⎪ | -| |>⎩;(11) sin ,,()0,x x f x x π ⎧ = ⎨⎩为有理数为无理数;(12) ,,(),x x f x x x ⎧ = ⎨- ⎩为有理数为无理数.3.当0x = 时下列函数无定义,试定义(0)f 的值,使()f x 在0x = 连续:(1) ()f x ;(2) tan 2()xf x x=; (3) 1()sin sin f x x x= ;(4) ()xf x x 1 = (1+).4.设()f x 是连续函数,证明对任何0c > ,函数,(),()(),(),,()c f x c g x f x f x c c f x c - < -⎧⎪= || ≤ ⎨⎪ > ⎩是连续的.5.若()f x 在0x 点连续,那么()f x | | 和2()f x 是否也在0x 点连续?反之如何? 6.若函数()f x 字0x = 点连续,而()g x 在0x = 点不连续,问此二函数的和、积在0x 点是否连续?又若()f x 和()g x 在0x 点都不连续,问此二函数的和、积在0x 点是否必不连续?7.证明若连续函数在有理点的函数值为0,则此函数恒为0.8.若()f x 在[,]a b 连续,恒正,按定义证明1()f x 在,a b [ ] 连续.9.若()f x 和()g x 都在[,]a b 连续,试证明max(()())f x g x , 和min(()())f x g x , 都在[,]a b 连续.10.证明:设()f x 为区间(,)a b 上单调函数,若0,x a b ∈ ( ) 为()f x 的间断点,则必是()f x 的第一类间断点.11.若()f x 在[,]a b ,12n a x x x b < < < < < ,则在12[,]x x 中必有ξ ,使得 12()[()()()]n f f x f x f x nξ1= + ++ .12.研究复合函数f g 和g f 的连续性. 设(1) 2()sgn ,()1f x x g x x = = +; (2) 2()sgn ,()1)f x x g x x x = = (-.13.证明:若()f x 在[,]a b 连续,且不存在,]x a b ∈ [ ,使()f x = 0 ,则()f x 在[,]a b 恒正或恒负.14.设()f x 为[,]a b 上的递增函数,值域为[(),()]f a f b ,证明()f x 在[,]a b 上连续. 15.设()f x 在[,)a +∞ 上连续,且0()(0)f x x x ≤ ≤ ≥ ,若10a ≥ ,1()(1,2,)n n a f a n + = = .求证:(1) lim n n a →∞存在;(2) 设lim n n a l →∞= ,则()f l l = ;(3) 如果将条件改为0()(0)f x x x ≤ < > ,则0l = . 16.求下列极限:(1) 11lim 2x x x →+⎛ ⎪+⎝⎭;(2) 1lim arctan cos x x x→+∞ ( ) ;(3) 21lim (cos )x x x → ;(4) 20cos 5lim 1ln(1)x x e x x x → + + + -.17.证明方程30(0)x px q p + + = > 有且只有一个实根.实数的完备性1.求数列的上、下确界: (1) 11;n x n=-(2) [2(2)];nn x n =+-(3) 2211,1(1,2,3,);k k x k x k k += =+ =(4) 1[1(1)];n n n x n+=+-(5) n x =(6) 12cos .13n n n x n π-=+ 2.设()f x 在D 上定义,求证: (1) sup{()}inf ();x Dx Df x f x ∈∈-=-(2) inf{()}sup ().x Dx Df x f x ∈∈-=-3.设sup E β=,且E β∉,试证自E 中可选取数列{}n x 且n x 互不相同,使lim n x x β→∞=;又若E β∈,则情形如何?4.试证收敛数列必有上确界和下确界,趋于+∞的数列必有下确界,趋于-∞的数列必有上确界.5.试分别举出满足下列条件的数列: (1)有上确界无下确界的数列;(2)含有上确界但不含有下确界的数列; (3)既含有上确界又含有下确界的数列;(4)既不含有上确界又不含有下确界的数列,其中上、下确界都有限.实数完备性基本定理1.利用有限覆盖定理9.2证明紧致性定理9.4. 2.利用紧致性定理证明单调有界数列必有极限. 3.用区间套定理证明单调有界数列必有极限.4.试分析区间套定理的条件:若将闭区间列改为开区间列,结果怎样?若将条件1122[,][,]a b a b ⊃⊃去掉或将条件0n n b a -→去掉,结果怎样?试举例说明.5.若{}n x 无界,且非无穷大量,则必存在两个子列,k k n m x x a →∞→ (a 为有限数). 6.有界数列{}n x 若不收敛,则必存在两个子列,)k k n m x a x b b →→ (α≠.7.求证:数列{}n a 有界的充要条件是,{}n a 的任何子数列{}k n a 都有收敛的子数列.8.设()f x 在[,]a b 上定义,且在每一点处函数的极限存在,求证:()f x 在[,]a b 上有界.9.设()f x 在[,]a b 无界,求证:存在[,]c a b ∈,对任给0δ>,函数()f x 在(,)[,]c c a b δδ-+⋂上无界.10.设()f x 是(,)a b 上的凸函数,且有上界,求证:lim (),lim ()x ax bf x f x +-→→ 存在. 11.设()f x 在[,]a b 上只有第一类间断点,定义()|(0)(0)|.x f x f x ω=+--求证:任意0,()x εωε> ≥的点x 只有有限多个.12.设()f x 在[0,)+∞上连续且有界,对任意(,)a ∈-∞+∞,()f x a =在[0,)+∞上只有有限个根或无根,求证:lim ()x f x →+∞存在.实数完备性续1,设()f x 在(,)a b 连续,求证:()f x 在(,)a b 一致连续的充要条件是lim ()x a f x +→与lim ()x bf x -→都存在, 2.求证数列1n x n=+++当n →∞时的极限不存在. 3.利用柯西收敛定理讨论下列数列的收敛性: (1) 012(||1,||);n n n k x a a q a q a q q a M =++++<≤(2) 2sin1sin 2sin 1;222n n nx =++++ (3) 11111(1).23n n x n+=-+++- 4.证明0lim ()x x f x →存在的充要条件是:对任意给定0ε>,存在0δ>,当000|'|,0|''|x x x x δδ<-< <-<时,恒有|(')('')|.f x f x ε-<5.证明()f x 在0x 点连续的充要条件是:任给0ε>,存在0δ>,当000|'|,0|''|x x x x δδ<-< <-<时,恒有|(')('')|.f x f x ε-<6.证明下列极限不存在: (1) 12cos ;13n n n x n π-=+(2) n x =(3) sin(n x = (4) cos ;n x n = (5) tan .n x n =7.设()f x 在(,)a +∞上可导,|'()|f x 单调下降,且lim ()x f x →+∞存在,求证lim '()0x xf x →+∞=.8.设()f x 在(,)-∞+∞可导,且|'()|1f x k ≤<,任给0x ,令1()(0,1,2,),n n x f x n += =求证,(1) lim n x x →∞存在;(2) 上述极限为()x f x =的根,且是唯一的. 9.设()f x 在[,]a b 满足条件:(1) |()()|||,,[,],1;f x f y k x y x y a b k -≤- ∀∈ 0<< (2) ()f x 的值域包含在[,]a b 内. 则对任意0[,]x a b ∈,令1()(0,1,2,)n n x f x n +==,有(1) lim n x x →∞存在;(2)方程()x f x =的解在[,]a b 上是唯一的,这个解就是上述极限值.闭区间上连续函数的性质1.设()f x 在[,]a b 上连续,并且最大值点0x 是唯一的,又设0[,]x a b ∈,使0lim ()()n x f x f x →∞=,求证0lim n x x x →∞=2.设()f x 在[,]a b 上连续,可微,又设 (1) min ()max ();a x ba x bf x p f x ≤≤≤≤<<(2) 如果()f x p =,则有'()0f x ≠, 求证:()f x p =的根只有有限多个.3.设()f x 在[,]a b 连续,()0f a <,()0f b >,求证:存在(,)a b ξ∈,使()0f ξ=,且()0()f x x b ξ><≤.4.设()f x 是[,]a b 上的连续函数,其最大值和最小值分别为M 和()m m M <,求证:必存在区间[,]αβ,满足条件:(1)(),()f M f m αβ= =或(),()f m f M αβ= =;(2) ()m f x M <<,当(,)x αβ∈.5.()f x 在[0,2]a 连续,且(0)(2)f f a =,求证:存在[0,]x a ∈,使()()f x f x a =+. 6.设()f x 在[,]a b 上连续,且取值为整数,求证:()f x ≡常数. 7.设()f x 在(,)a b 上一致连续,,a b ≠±∞,证明()f x 在(,)a b 上有界; 8.若函数()f x 在(,)a b 上满足利普希茨(Lipschitz)条件,即存在常数K ,使得|(')('')||'''|,',''(,).f x f x K x x x x a b -≤- ∈证明:()f x 在(,)a b 上一致连续.9.试用一致连续的定义证明:若函数()f x 在[,]a c 和[,]c b 上都一致连续,则()f x 在[,]a b 上也一致连续.10.设()f x 在(,)-∞+∞上连续,且lim ()x f x →-∞与lim ()x f x →+∞存在.证明;()f x 在(,)-∞+∞上一致连续.11.若()f x 在区间X (有穷或无穷)中具有有界的导数,即|'()|,f x M x X ≤ ∈,则()f x 在X 中一致连续.12.求证:()f x x =在(0,)+∞上一致连续.13.设()f x 在(,)a +∞上可导,且lim '()x f x →+∞=+∞,求证:()f x 在(,)a +∞上不一致连续.14.求证:()ln f x x x =在(0,)+∞上不一致连续.微分中值定理及应用微分中值定理1.证明:(1)方程330x x c -+=(c 是常数)在区间[0,1]内不可能有两个不同的实根;(2)方程nx 0px q ++=(n 为正整数,,p q 为实数)当n 为偶数时至多有两个实根;当n 为奇数时至多有三个实根。
数学分析课外习题

数 分 课 外 习 题1. 设00>>a x ,0,23121>⎪⎪⎭⎫ ⎝⎛+=+n x a x x n n n ,证明数列{}n x 收敛并求其极限 . 2. 求.2cos 2cos 2cos2cos lim 32nn x x x x∞→并由此证明Vieta 公式: 2121212121212121212++⋅+⋅=π3. 用N -ε语言证明,若实数列}{n x 满足()0lim 2=--∞→n n n x x ,则.0lim1=--∞→nx x n n n4. 证明:.613lim 11lim 12132∑∑=∞→=∞→==⎪⎪⎭⎫ ⎝⎛-+n i n ni n n i n i 并求.)0(,1lim 12>⎪⎪⎭⎫ ⎝⎛-∑=∞→a a n i n i n5. 设⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=+∞→nn x n n n n x f 1111lim )(1,写出)(x f 的表达式及定义域 . 6. 设1,1>>b a ,函数:f R →R 在0=x 附近有界,且对任意实数x ,)()(x bf ax f =,证明:)(x f 在零点连续 .7. 设)(,)(x g x f 为周期函数,且0))()((lim =-+∞→x g x f x ,证明:g f ≡ .8. 设)(,)(t b t a 为]1,0[上连续函数,1)(0<≤≤λt a ,求证:方程 ))()((max 10t xa t b x t +=≤≤的解为 )(1)(max10t a t b x t -=≤≤ .9. 设函数)(x f 在),0[+∞连续,有界,求证:0>∀λ,存在数列+∞→n x ,使.0))()((lim =-+∞→n n n x f x f λ10. 请问是否存在R 上的连续函数,使它的任一函数值都被恰好取到两次或都被恰好取到三次? 11. 求证:在R 上不存在可导函数)(x f 满足.33)(22+-=x x x f 12. 设()N ∈+=+n xy n ,122,求.)1()(n y13.Riemann 函数:R R →R 的定义是:⎪⎪⎩⎪⎪⎨⎧∉>==.,00,1;0,1)(Q x q qx x R 且q p ,为互素整数;求极限 )(lim 0x R x x →,其中∈0x R .14. 证明Riemann 函数)(x R 处处不可导 .15. 构造可导函数)(x f ,使)(x f 在有理数点的函数值为有理数,而导数值为无理数 . 16.证明:当)1,(-∞∈x 时,.4arctan 11arctanπ+=-+x x x 17. 求和:∑=nk kx k 1sin ,∑=nk kx k 1.cos18.设N ∈n m ,,证明:∑=⎩⎨⎧=--≤=-nk nmk n k n m n n m k C 0.,!)1(;1,0)1( 19. 已知:函数)(x f 在区间]1,0[上连续,在)1,0(可导,且0)1()0(==f f ,1)21(=f ,求证:∈∀λR ,)1,0(∈∃ξ,使1])([)('=--ξξλξf f . 20.对于R 上函数)(x f ,记)(lim )(x f f x +∞→=+∞,.)(lim )(x f f x -∞→=-∞ 设)(,)(x g x f 在R 上可导,∈∀x R ,0)('≠x g ,且)(+∞f ,)(-∞f ,)(+∞g ,)(-∞g 存在, 证明:.)(')(')()()()(..,),(ξξξg f g g f f t s =-∞-+∞-∞-+∞+∞-∞∈∃21.设)(,)(x g x f 可导,且对一切x 都有0)(')(')()(≠x g x f x g x f ,那么在)(x f 的任何两个零点之间,至少有)(x g 的一个零点 . 22.设:f R →R 有二阶连续导数,且∈∀x R ,1|)('|≤x f ,此外.4)0(')0(22=+f f 证明:∈∃0x R ,使.0)('')(00=+x f x f23.设→],[:b a f R 在],[b a 可导且.)(')('b f a f = 证明:.)()()('..,),(aa f f f t sb a --=∈∃ξξξξ24. 函数)(x f 在],[b a 上二次可导且.0)(')('==b f a f 证明:.)()()(4)(''..,),(2a fb f a b f t s b a --≥∈∃ξξ25. 设函数)(x f 在),[+∞a 可导,当a x ≥时有.|)(||)('|x f x f ≤ 求证:.0)(≡x f 26.设函数)(x f 在),0[+∞可导,且21)(0x xx f +≤≤, 证明:().11)('..,0222ξξξξ+-=>∃f t s27. 设函数)(x f 在]1,0[连续,在)1,0(可导,.1)0()1(=-f f 求证:对于1,,2,1,0-=n k ,存在)1,0(∈k ξ,使.)1()!1(!!)('1k n k k k k k n k n f -----=ξξξ28.设I 为开区间,函数)(x f 在I 上为凸函数的一个充要条件为:.,)()()(..,,I x c f c x a x f t s a I c ∈∀+-≥∃∈∀29.求极限:(1);11lim ⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⋅∞→e x x x x (2);arccos 2lim /10xx x ⎪⎭⎫⎝⎛→π(3).arctan 2lim xx x ⎪⎭⎫⎝⎛+∞→π30.设.1,sin ,0sin 101≥=>=+n x x x x n n 证明:.13lim=∞→n n x n31.设.1,1ln 1,011≥⎪⎭⎫ ⎝⎛+=+>=+n n y n y c y n n 求极限:.lim n n y ∞→32. 画出xe x y -=2的图形 .33. 设⎰+=xdt t t x f 11ln )(,对于0>x ,求)1()(xf x f + . 34.设函数)(x f 连续可导,1)1(=f ,且当1≥x 时有)(1)('22x f x x f +=, 证明:)(lim x f x +∞→存在,且.41)(lim π+≤+∞→x f x35. 设函数)(x f 在]1,0[上二阶连续可导,.1)1(',0)0(')1()0(====f f f f证明:()4)(''12≤⎰dx x f ,并指出等号成立的条件 . 36.设)0()(≥=x x y φ是严格单调增加的连续函数,)(,0)0(y x ψφ==是它的反函数, 证明:⎰⎰≥>+∞≥≥+ba b a abdy y dx x 0)0)(,0()()(φψφ,等号成立当且仅当)(a b φ=。
《数学分析》期末复习用 各章习题+参考答案

f f f (x) = x + 2 ; 2x + 3
f f f f (x) = 2x + 3 。 3x + 5
9. f (x) = f (x) + f (−x) + f (x) − f (−x) , f (x) + f (−x) 是偶函数, f (x) − f (−x) 是奇
2
2
2
2
函数.
⎧− 4x + 3
2⋅4⋅6⋅
⋅ (2n) 。 (提示:应用不等式 2k > (2k − 1)(2k + 1) )。
9. 求下列数列的极限:
⑴
lim
n→∞
3n2 + 4n − 1 n2 +1 ;
⑵
n3 + 2n2 − 3n + 1
lim
n→∞
2n3 − n + 3 ;
2
⑶
3n + n3
lim
n→∞
3n+1
+ (n + 1)3
k∈Z ⎝
2
2⎠
(4) y = x −1 ,定义域: (− ∞,−1) ∪ [1,+∞),值域: [0,1)∪ (1,+∞).
x +1
5.(1)定义域: ∪ (2kπ ,(2k +1)π ),值域: (− ∞,0]; k∈Z
(2)定义域:
∪
k∈Z
⎢⎣⎡2kπ
−
π 2
,2kπ
+
π 2
⎤ ⎥⎦
,值域: [0,1];
1
(3)定义域:
[−
4,1] ,值域:
⎢⎣⎡0,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学分析Ⅱ》期中考试题
一、选择题(每小题3分,共30分)
1、曲线2x 2 +3y 2 + z 2 =9, z 2 =3x 2 + y 2 在点 ( 1, -1, 2 )的法平面方程是( 1 )
A 、8x+10y+7z-12=0;
B 、8x+10y+7z+12=0;
C 、8x -10y+7z-12=0;
D 、8x+10y+7z+12=0 2、L 为单位圆周,则
L
y ds =⎰
( 4 )
A 、1
B 、2
C 、3
D 、4 3、L 为从( 1, 1, 1 )到( 2, 3, 4 )的直线段,则
L
zdx xdz +⎰
= ( 3 )
A 、3
B 、5
C 、7
D 、9 4、
()1
3x y x y dxdy +≤+⎰⎰
=( 2 )
A 、2
B 、4
C 、6
D 、8 5、
02
11(,)y dy f x y dx --⎰
⎰
,改变积分顺序得( 1 ) A 、2
110
(,)x dx f x y dy -⎰⎰ B 、2
111(,)x dx f x y dy --⎰⎰
C 、
2
11
(,)x dx f x y dy +⎰
⎰
D 、2
11
1
(,)x dx f x y dy +-⎰⎰
6、V=[-2, 5]⨯[-3, 3]⨯[0,1],则
2()V
xy z dv +⎰⎰⎰
=( 3 )
A 、1
B 、7
C 、14
D 、21
7、密度为1的均匀单位圆盘对于它的直径的转动惯量为( 4 ) A 、π B 、 π/2 C 、π/3 D 、π/4
8、曲面S 为上半单位球面z =外侧,则
S
yzdxdz ⎰⎰
=( 2 )
A 、π/2
B 、 π/4
C 、π/6
D 、π/8
9、函数2
3
u x y xz =++的梯度场在(1,1,1)的旋度为( 2 ) A 、(1,1,1) B 、(0,0,0) C 、(1,0,1) D 、(0,1,1) 10、下面反常积分收敛的有( 3 )个。
0cos x e xdx
-∞
⎰
,10
⎰
,3cos ln x dx x +∞⎰,20⎰,1+∞⎰ A 、2 B 、3 C 、4 D 、5
二、填空题(28分,每空4分)
1、区域Ω由1z =与2
2
z x y =+围成的有界闭区域,则
(,,)f x y z dv Ω
⎰⎰⎰
在直角坐标下的三
次积分为
柱坐标下三次积分
球坐标下三次积分
2、曲线L :x=cost, y= sint , z=t ,从A(1,0,2π)到原点,则第二型曲线积分L
Pdx Qdy Rdz
++⎰
化为第一型曲线积分得
3、L 为中心在原点的椭圆,则332()()y y L
yx e dx xy xe y dy +++-⎰
=
4、2
2
:z x y ∑=+,取下侧,则(,,)(,,)(,,)P x y z dydz Q x y z dzdx R x y z dxdy ∑
++⎰⎰
化为第
一型曲面积分为
5、极坐标下的二次积分
/2
2cos /4
(,)d f r dr πθπ
θθ⎰⎰
交换积分顺序得
三(7分)、证明方程组22201
u v x y u v xy ⎧+--=⎨-+=⎩在(2,1,1,2)点附近能决定隐函数(,)(,)x u v y u v ϕψ=⎧⎨=⎩,
并求他们的偏导。
四(10分)、讨论反常积分
ln(1)
k
x dx x +∞+⎰
的敛散性
五(10分)、有界闭区域D 由光滑曲线L 围成,函数(,)u x y 、2
(,)()v x y C D ∈,n 为L 外法向,证明:(1)D
D
L
u
v udxdy u vdxdy v
ds n
∂∆=-∇∇+∂⎰⎰
⎰⎰⎰; (2)[()D
L
v u u v v udxdy u
v ds n n
∂∂∆-∆=-∂∂⎰⎰
⎰
六(10分)、计算22221/2()()
axdydz z a dxdy
x y z ∑++++⎰⎰∑为下半球面z =a 为正常数。
七(10分)、f 连续,证明:
()()()A D
A
f x y dxdy f t A t dt --=-⎰⎰
⎰
,其中,
:/2,/2D x A y A ≤≤。