现代控制理论基础分解

合集下载

《现代控制理论基础》课件

《现代控制理论基础》课件

预测控制
预测控制是一种基于模型预测 未来系统行为的控制方法。
控制器
控制器是控制系统中的核心 组件,负责计算并施加控制 信号。
操作对象
控制系统的操作对象可以是 各种各样的设备或系统,了 解操作对象的特性是设计有 效控制策略的基础。
模型化
系统状态方程
通过建立系统状态方程,我们 可以描述控制系统的动态行为。
传递函数
传递函数是描述输入和输出之 间关系的数学表达式,常用于 分析系统的频率响应。
通过绘制根轨迹来分析系统的稳定性和性能。
2 Nyquist法
利用Nyquist图来评估系统的稳定性和抗干扰能力。
鲁棒性设计
扰动抑制
了解如何设计鲁棒控制器来抑制 系统中的扰动。
鲁棒控制
鲁棒控制是一种能够保持系统稳 定性和性能的控制策略。
H∞控制
H∞控制是一种能够优化系统鲁 棒性和性能的控制策略。
非线性控制
《现代控制理论基础》PPT课件
现代控制理论基础是一门关于控制系统的基本概念、模型化、控制器设计、 稳定性分析、鲁棒性设计、非线性控制和优化控制的课程。通过本课程的学 习,您将掌握现代控制理论的基础知识和思想,并能够运用所学知识解决实 际控制问题。
控制系统基本概念
控制过程
了解控制过程是理解控制系 统工作原理的重要一步。
1 反馈线性化
通过反馈线性化技术,我们可以设计控制器来稳定非线性系统。
2 滑模控制
滑模控制是一种鲁棒而有效的非线性控制方法。
3 非线性规划
非线性规划方法可以用来优化非线性系统的控制策略。
优化控制
最优化法
最优化法是一种通过优化目标 函数来设计最优控制策略的方 法。
非线性规划

《现代控制理论基础》PPT课件

《现代控制理论基础》PPT课件
1875 年 , 英 国 的 劳 斯 ( E.J.Routh,1831-1907 ) , 1995年,德国的赫尔维茨(A.Hurwitz,1859-1919),先 后分别提出根据代数方程系数判别系统稳定性的一般准 则。
11
20世纪20年代,电子技术得到了迅速发展,促进 了信息处理和自动控制及其理论的发展。
这 个 时 期 的 主 要 代 表 人 物 有 美 国 的 贝 尔 曼 ( R. Bellman)、原苏联的庞特里亚金和美籍匈牙利人卡尔曼 (R.E.Kalman)等人。
23
1965年,贝尔曼发表了“动态规划理论在控制过程中 的应用“一文,提出了寻求最优控制的动态规划法。
1958年,Kalman提出递推估计的自动化控制原理,奠 定了自校正控制器的基础。
5
二 控制理论的产生及其发展
6
自动控制思想及其实践可以说历史悠久。它是人类 在认识世界和改造世界的过程中产生的,并随着社会的 发展和科学水平的进步而不断发展。
人类发明具有“自动”功能的装置的历史可以追溯到 公元前14-11世纪的中国、埃及和巴比伦出现的铜壶滴 漏计时器。
公元前4世纪,希腊柏拉图(Platon,公元前47-公元 前347)首先使用了“控制论”一词。
27
例如,在20世纪70年代以来形成的大系统理论主要 是解决大型工程和社会经济中信号处理、可靠性控制等 综合最优的设计问题。
由于应用范围涉及越来越复杂的工程系统和社会、 经济、管理等非工程的人类活动系统,原有的理论方法 遇到了本质困难,大系统和社会发展逐渐转向“复杂系 统”的概念。
28
智能控制的发展始于20世纪60年代,它是一种能更好地 模仿人类智能的、非传统的控制方法。它突破了传统控制中 对象有明确的数学描述和控制目标是可以数量化的限制。它 所采用的理念方法主要是来自自动控制理论、人工智能、模 糊集和神经网络以及运筹学等学科分支。

现代控制理论基础第一章

现代控制理论基础第一章

Elements of Modern Control Theory主讲:董霞现代控制理论基础西安交通大学机械工程学院Email:xdong@办公地点:西二楼东207参考教材《现代控制工程》王军平董霞主编西安交通大学出版社教材《现代控制理论基础》(机械类)何钺编机械工业出版社《现代控制工程》(第三版)Katsuhiko Ogata著卢伯英、于海勋译电子工业出版社第一章绪论现代控制理论是在20世纪50年代末、60年代初形成的控制理论。

之所以称其为现代控制理论是与经典控制理论相比较而言的。

1.1 控制理论发展简史目前国内外学术界普遍认为控制理论经历了三个发展阶段:经典控制理论现代控制理论智能控制理论这种阶段性发展是由简单到复杂、由量变到质变的辩证发展过程。

并且,这三个阶段不是相互排斥,而是相互补充、相辅相成的,它们各有其应用领域,并还在不同程度地继续发展着。

控制理论中反馈的概念代表性人物:瓦特(J.Watt),于1788年发明了蒸汽机飞球调速器。

这是一个典型的自动调节系统,由此拉开了经典控制理论发展的序幕。

控制理论诞生前,人们对于反馈就有了认识。

经典控制理论的诞生1868年,英国物理学家J.C.Maxwell 发表《论调速器》论文,解决了蒸汽机调速系统中出现的剧烈振荡问题;1877年,英国科学家E.J. Routh 建立了劳斯稳定性判据;1895年,德国数学家A. Hurwitz 提出了胡尔维茨稳定性判据;1892年,俄国数学家A. M.Lyapunov 发表了专著《论运动稳定性的一般问题》;1922年,美国的N. Minorsky 研究出用于船舶驾驶的伺服机构并提出PID 控制方法;1932年,美籍瑞典人H. Nyquist 提出了频域内研究系统稳定性的频率判据;经典控制理论的诞生1940年,H. W.Bode引入了对数坐标,使频域稳定性判据更适合工程应用;1942年,H. Harris引入了传递函数概念;1948年,W.R. Evans提出了根轨迹方法;1948年,N. Wiener发表了著名的《控制论》,标志着经典控制理论的诞生。

第二章 现代控制理论基础

第二章  现代控制理论基础

微分方程组可以改写为
di (t ) R uC (t ) u (t ) = i (t ) + dt L L L
duC (t ) 1 = i (t ) dt C
并且写成矩阵形式: 并且写成矩阵形式:
di (t ) R dt L du (t ) = 1 C dt C 1 i (t ) 1 L + L u (t ) 0 uC (t ) 0
0 0 an 1 an 2
则式(2.4)可以写成
x = Ax + Bu
输出方程可写成
y = x1
写成矩阵方程形式为
x1 x y = [1 0 0] 2 = Cx xn
例2.1 设某控制系统的动态特性可用下述微分方程描述
y + 5 + 6 y + 12 y = u y
系统闭环传递函数为
Y ( s) 1 1 = = 3 U ( s ) s( s + 2)( s + 3) + 1 s + 5s 2 + 6s + 1
通过拉普拉斯逆变换,可求得系统运动微分方程为
(2.4)

x1 0 x 0 2 x = , A = xn 1 0 xn an 1 0 0 1 0 x1 0 x 0 0 2 , x = , B = 1 xn 1 0 xn 1 a1
输出方程为: 输出方程为:
x1 y = [1 0] x2
[例2] 机械平移系统. 如图为一加速度仪的原理结构图。它可以指示出其 例 壳体相对于惯性空间(如地球)的加速度。
设: xi 为壳体相对于惯性空间的位移; x0 为质量m相对于惯性空间的位移; y= xi - x0 为质量m相对于壳体的位移. 根据牛顿第二定律,系统的运动方程为: xi x0

现代控制理论基础-第2章-控制系统的状态空间描述精选全文完整版

现代控制理论基础-第2章-控制系统的状态空间描述精选全文完整版

(2-18)
解之,得向量-矩阵形式的状态方程
(2-19)
输出方程为
(2-20)
(5) 列写状态空间表达式
将式(2-19)和式(2-20)合起来即为状态空间表达式,若令
则可得状态空间表达式的一般式,即
(2-21)
例2.2 系统如图
取状态变量:
得:
系统输出方程为:
写成矩阵形式的状态空间表达式为:
1.非线性系统
用状态空间表达式描述非线性系统的动态特性,其状态方程是一组一阶非线性微分方程,输出方程是一组非线性代数方程,即
(2-7)
2. 线性系统的状态空间描述
若向量方程中 和 的所有组成元都是变量 和 的线性函数,则称相应的系统为线性系统。而线性系统的状态空间描述可表示为如下形式: (2-8) 式中,各个系数矩阵分别为 (2-9)
4.线性定常系统的状态空间描述
式中的各个系数矩阵为常数矩阵
当系统的输出与输入无直接关系(即 )时,称为惯性系统;相反,系统的输出与输入有直接关系(即 )时,称为非惯性系统。大多数控制系统为惯性系统,所以,它们的动态方程为
(2-11)
1.系统的基本概念 2. 动态系统的两类数学描述 3. 状态的基本概念
2.2 状态空间模型
2.2.1状态空间的基本概念
1.系统的基本概念
■系统:是由相互制约的各个部分有机结合,且具有一定功能的整体。 ■静态系统:对于任意时刻t,系统的输出惟一地取决于同一时刻的输入,这类系统称为静态系统。静态系统亦称为无记忆系统。静态系统的输入、输出关系为代数方程。 ■动态系统:对任意时刻,系统的输出不仅与t时刻的输入有关,而且与t时刻以前的累积有关(这种累积在t0(t0<t)时刻以初值体现出来),这类系统称为动态系统。由于t0时刻的初值含有过去运动的累积,故动态系统亦称为有记忆系统。动态系统的输入、输出关系为微分方程。

(完整版)现代控制理论

(完整版)现代控制理论

第一章线性离散系统第一节概述随着微电子技术,计算机技术和网络技术的发展,采样系统和数字控制系统得到广泛的应用。

通常把采样系统,数字控制系统统称为离散系统。

一、举例自动测温,控温系统图;加热气体图解:1. 当炉温h变化时,测温电阻R变化→R∆,电桥失去平衡状态,检流计指针发生偏转,其偏转角度为)e;(t2. 检流计是个高灵敏度的元件,为防磨损不允许有摩擦力。

当凸轮转动使指针),接触时间为τ秒;与电位器相接触(凸轮每转的时间为T3. 当炉温h 连续变化时,电位器的输出是一串宽度为τ的脉冲信号e *τ(t);4.e *τ(t)为常值。

加热气体控制阀门角度调速器电动机放大器h →→→→→→ϕ 二、相关定义说明(通过上例来说明) 1. 信号采样偏差)(t e 是连续信号,电位器的输出的e *τ(t)是脉冲信号。

连续信号转变为脉冲信号的过程,成为采样或采样过程。

实现采样的装置成为采样器。

To —采样周期,f s =--To1采样频率,W s =2πf s —采样角频率 2.信号复现因接触时间很小,τo T 〈〈τ,故可把采样器的输出信号)(t e *近似看成是一串强度等于矩形脉冲面积的理想脉冲,为了去除采样本身带来的高额分量,需要把离散信号)(t e *恢复到原信号)(t e 。

实现方法:是在采样器之后串联一个保持器,及信号复现滤波器。

作用:是把)(t e *脉冲信号变成阶梯信号e h (t)3.采样系统结构图r(t),e(t),c(t),y(t)为连续信号,)(t e *为离散信号)(s G h ,)(s G p ,)(s H 分别为保持器,被控对象和反馈环节的传递函数。

(t)r4.采样系统工作过程⇒由保持器5. 采样控制方式采样周期To ⎪⎩⎪⎨⎧=≠=⇒相位不同步采样常数常数6. 采样系统的研究方法(或称使用的数字工具)因运算过程中出现s 的超越函数,故不用拉式变换法,二采用z 变换方法,状态空间法。

现代控制理论基础知识

现代控制理论基础知识

2. 20世纪末,控制理论向着“大系统理论”、 “智能控制理论”和“复杂系统理论”的方向发 展:
大系统理论:用控制和信息的观点,研究各种大系统的结
构方案、总体设计中的分解方法和协调等 问题的技术基础理论。
复杂大系统控制
智能控制理论:研究与模拟人类智能活动及其控制与信
息传递过程的规律,研制具有某些拟人 智能 的工程控制与信息处理系统的理论。
奈奎斯特
奈奎斯特,美国物理学家,1889年出生在瑞典。1976年在德 克萨斯逝世。奈奎斯特对信息论做出了重大的贡献。奈奎斯特 1907年移民到美国并于1912年进入北达克塔大学学习。1917年 在耶鲁大学获得物理学博士学位。1917年~1934年在AT&T公司 工作,后转入贝尔电话实验室工作。
为贝尔电话实验室的工程师,在热噪声(Johnson-Nyquist noise)和反馈放大器稳 定性方面做出了很大的贡献他早期的理论性工作关于确定传输信息的需满足的带 宽要求,在《贝尔系统技术》期刊上发表了《影响电报速度传输速度的因素》文 章,为后来香农的信息论奠定了基础。 1927年,奈奎斯特确定了如果对某一带宽的有限时间连续信号(模拟信号) 进行抽样,且在抽样率达到一定数值时,根据这些抽样值可以在接收端准确地恢 复原信号。为不使原波形产生“半波损失”,采样率至少应为信号最高频率的两 倍,这就是著名的奈奎斯特采样定理。奈奎斯特1928年发表了《电报传输理论的 一定论题》。 1954年,他从贝尔实验室退休。
最优估计理论
自适应控制理论
系统辨识理论
智能控制理论
线性系统理论的内容
状态空间实现: 线性系统的数学模型问题 线性系统的内部特性:稳定性、可控性与可观测性 线性系统的设计方法:极点配置
最优控制理论的内容

现代控制理论(1-8讲第1-2章知识点)精品PPT课件

现代控制理论(1-8讲第1-2章知识点)精品PPT课件

dia dt
Ke
I fD Coபைடு நூலகம்st
n f Const
nDJ , f
其中:Kf 为发电机增益常数;Ke 为电动机反电势常数。
(3).电动机力矩平衡方程:J
d
dt
f
Kmia
(Km
-电动机转矩常数)
以上三式可改写为:
d
dt
f J
Km J
ia
dia dt
Ke Ra
La
La
ia
Kf La
if
试写出其状态空间表达式。
解:选择相变量为系统的状态变量,有


•• •
x1 y x2 y x1 x3 y x2



x1 x2

x2 x3

x3
a0 a3
x1
a1 a3
x2
a2 a3
x3
1 a3
u

0
x 0
a0
a3
1 0 a1 a3
0
0
1 x 0 u
a2
1
a3 a3
a1 y a0 y
bnu (n)
b u (n1) n 1
b0u
(1)
分为两种情况讨论。
一、输入信号不含有导数项:
此时系统的运动方程为:

y(n)
a y(n1) n1
a1 y a0 y b u
故选
x1 y

x2 y
..
xn1
y(n2)
xn y(n1)
对左边各式求导一次,即有
18
24
2-3 化系统的频域描述为状态空间描述
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
件,即电容 C 和电感 L ,所以应该有两个状态变量。
5
R
u
+ -
i C
L
图1 典型的 RLC 电路
uc
6
状态变量的选取,原则上是任意的,但是考虑到
i i 电流容经的它储 的能 电与 流其两直端接的相电关压,u故c 通有常关就,以电u感c 的和储能与作
为此系统的两个状态变量。
7
根据电路理论,很容易写出两个含有状态变量的 一阶微分方程组
y 1
0
x1 x2

y cT x
式中
cT 1 0
(4)
12
六.状态空间表达式 状态方程和输出方程总合起来,构成对一个系
统完整的动态描述,称为系统的状态空间表达式。 例如在上例中,式(2)、(4)合称为一个状
态空间表达式。
13
在经典控制理论中,用指定某个输出量的高阶
微分方程来描述系统的动态过程,这就可以进一步 得出系统的传递函数描述。
例如,在上例中,在以 uc 作为输出时,从式(1)
i 中消去变量 ,得到二阶微分方程为
uc
R L
uc
1 LC
uc
1 LC
u
(5)
14
其推导过程如下:
t 将式(1)的第一个方程两边对时间
求导数,得
uc
1 C
i
故有
i Cuc
15
另外由式(1)的第一个方程可得
i Cuc
将以上两式代入到式(1)的第二个方程得
(s2
R L
s
1 LC
)uc
(
s)
1 LC
u(s)
稍作整理即得式(6)。
18
如果要将高阶微分方程或传递函数变换为状态方 程,即分解为多个一阶微分方程,那么此时的状态方 程可以有无穷多种形式,这是由于状态变量的选择可 以有无穷多种的缘故。这种状态变量的非唯一性,归 根到底是由于系统结构的不确定性造成的。
21
从理论上来说,并不要求状态变量在物理上一 定是可以测量的量,但是在工程实践中,仍然以选 取那些容易测量的量作为状态变量为宜,因为在最 优控制中,往往要求将状态变量作为反馈量。
下面介绍一般情况。设有一个单输入单输出定
常系统,其状态变量为 x1, x2 ,, xn ,
则状态方程的一般形式为:
22
x1 a11x1 a12 x2 a1n xn b1u x2 a21x1 a22 x2 a2n xn b2u
xn an1x1 an2 x2 ann xn bnu
输出方程则有如下形式:
23
y c1x1 c2x2 cn xn
用矩阵形式表示,状态空间表达式则为
x Ax bu y cxΒιβλιοθήκη x1 式中x
x2
表示
n 维状态向量,
xn
(9)
24
a11 a12 a1n
A
a21
考虑上例的情况,按照式(5)或(6),如果另 外选择状态变量,
19
即选择
x1 uc
x2 uc

x1 uc x2
x2
uc
1 LC
uc
R L
uc
1 LC
u
1 LC
x1
R L
x2
1 LC
u
(7)
20

0 1 0
x
1 LC
R L
x
1 u LC
(8)
这就是该系统的另一个状态方程,比较式(2)与(8) 可知,显然它们是不同的。
其中
x
x1 x2
0
A
1
1
C R
L L
0
b
1
L
10
五.输出方程
在系统指定输出的情况下,该输出与状态变量 间的函数关系式,称为系统的输出方程。
在上例中,如果系统指定 x1 uc 作为输出,
y 则(输出一般用 表示)有
y uc

y x1
(3)
11
这个输出方程可以用矩阵形式表示为
a22
a2
n
表示
n
n
的系统矩阵,
an1
an2
ann
b1
b
b2
表示n 1的输入矩阵。
bn
25
r 对于一个复杂系统,具有 个输入,m 个输出,
此时状态方程变为
x1 a11x1 a12 x2 a1n xn b11u1 b12u2 b1rur x2 a21x1 a22 x2 a2n xn b21u1 b22u2 b2rur
Cuc
1 L
uc
RC L
uc
1u L
稍作整理即得式(5)。
16
根据式(5)可以写出其相应的传递函数为
1
uc (s)
LC
u(s) s2 R s 1
L LC
(6)
其相应的推导过程如下:
对式(5)两边取Laplace变换得
17
s2uc (s)
R L
suc (s)
1 LC
uc (s)
1 LC
u(s)
线性系统的状态空间分析法
目录
线性系统的状态空间描述 线性系统的运动分析——状态转移矩阵 线性系统的能控性、能观性及对偶原理 线性系统的能控规范型和能观规范型 线性系统的实现 线性离散系统的分析
1
线性系统的状态空间描述
1 线性系统的状态空间描述
一.状态变量
1.状态变量——足以完全表征系统运动状态的最小个
xn an1x1 an2 x2 ann xn bn1u1 bn2u2 bnrur
并把这些状态变量看作是向量 x的(t分) 量,则 就 称 x(为t) 状态向量,记作
x(t) x1(t) x2(t) xn(t)T
3
三.状态空间 以状态变量 x1(t) ,x2(t) ,…,xn (t) 为坐标轴所构
成的 n 维空间,称为状态空间。
t 在特定时刻 ,状态向量x(t) 在状态空间中是
一点。已知初始时刻 t0 的状态向量 x(t0 ) ,就得到
状态空间中的一个初始点。随着时间的推移,x(t) 将 在状态空间中描绘出一条轨迹,称为状态轨线。
4
四.状态方程
由系统的状态变量所构成的一阶常微分方程组称 为系统的状态方程。
举例说明状态方程的列写过程。
图1是一个R L C网络,此系统有两个独立的储能元
C duc i dt
L
di dt
Ri
uc
u
亦即
uc
1 C
i
i
1 L
uc
R L
i
1 L
u
(1)
8
式(1)就是图示系统的状态方程,

x1 uc x2 i
并写成矩阵形式, 则状态方程变为
x1 x2
0
1
L
1
C R
L
x1 x2
0
1
L
u
(2)
9

x Ax bu
数的一组变量;
n n 2.一个用阶 微分方程描述的系统,就有 个独立
变量;
3.系统状态变量就是 n 阶系统的 n 个独立变量; n n 4. 阶微分方程式要有唯一确定的解,必须知道 个
独立的初始条件;
n 5. 个独立的初始条件就是一组状态变量在初始时刻
t0 时的值。
2
二.状态向量
如果 n 个状态变量用x1(t) ,x2(t) ,…,xn (t) 表示,
相关文档
最新文档