工业微生物育种
第五章 工业微生物诱变育种

株时,应选择多种遗传类型的菌株作为出发菌株比较
稳妥,容易在较短时期内达到育种目的。
8. 菌种代谢特点
了解菌种代谢特点有助于选择有效的出发菌株。 有人曾研究过肌苷酸产生菌的代谢特性,发现肌苷 酸的生物合成过程与肌苷、肌苷酸及核苷酸、磷酸 化酶的活性有关,如果从产生肌苷酸野生型的枯草 杆菌中筛选到降解酶活性低而磷酸化酶活性强的作 为诱变出发菌株,一般都能得到良好的诱变效果。
6. 药品和原材料质量
药品规格和原材料来源不同,都会影响菌种的质量。
四、了解菌种有效产物中的 各种组分在代谢 合成过程中与培养条件的关系
由棘孢小单孢菌(Micromonospora echinopora) 产生的庆大霉素,其中C1是有效的组分; C2是无效
的。在发酵过程中加入适量的磷或蛋白胨以及加大 通 风量都有利于C1的合成;反之,C2的比例就上升。
菌悬液由出发菌株的孢子或菌体细胞与生理盐水或 缓冲液制备而成。对菌悬液的制备有如下的要求:
1、供试菌株的孢子或菌体要年轻、健壮。
细胞要新培养的,细胞生理活性方面既要同步, 又要处在最旺盛的对数期,这样突变率高,重现性也 好。 霉菌孢子浓度约为:106ml-1,放线菌孢子浓度约 为:106~107ml-1。菌悬液通常采用生理盐水制备。如 果用化学诱变剂处理时,应采用相应的缓冲液配制, 以防处理过程中pH变化而影响诱变效果。
1. 对一般出发菌株的要求
(1)从自然界样品中分离筛选出来的野生菌株,虽 然产量较低,但对诱变因素敏感,变异幅度大,
正突变率高;
(2)在生产中使用的,具有一定生产能力,并且在 生产过程经过自然选育的菌株; (3)采用具有有利性状的菌株,如生长速度快、营 养要求低以及产生孢子早而多的菌株;
第七章 工业微生物原生质体育种和原生质体融合

4)存在着两株以上亲株同时参与融合形成融
合子的可能性。
5)有可能采用产量性状较高的菌株作融合 亲株。 6)提高菌株产量的潜力较大。 7)有助于建立工业微生物转化体系。
四、细胞融合过程
显微镜下的原生质体融合
融合过程中细胞膜变化
类脂质分子发生扰动和重排 导致细胞桥的形成 细胞质、核相互融合
都需要带有可以识别的遗传标记,如营养缺陷型 或抗药性等
2、原生质体融合的方法
物理法、化学法及生物法 。
原理 增加细胞间的粘附、改变膜的通透性—— 随机结合、融合
(1)物理法——电融合诱导法
在直流电脉冲的诱导下,极化产生偶极子, 彼此靠近,定向排列成串球状。
在直流电脉冲的诱导下,原生质体膜两侧 产生电势,正负电荷相吸,细胞膜变薄, 触发膜的穿孔(质膜瞬间破裂)。 膜之间形成通道,细胞质等得以交换、融 合。
原理与过程
灭活后的病毒颗粒结合到原 生质体表面。两受体细胞开 始凝聚。 两细胞的膜紧密结合。病毒 被膜与受体细胞的浆膜融合 。病毒颗粒周围的膜脱离整 个膜,产生破口,在两细胞 间形成细胞质通道(37℃下 1-2min),通道继续扩大, 病毒颗粒流入细胞质内,细 胞质互相融合。 融合细胞变圆,融合结束。
特点
研究最早的促融剂。 毒性大而使应用受到限制。
(3)化学法
包括PEG诱导、高Ca2+和pH诱导PEG结合诱导等。 聚乙二醇(PEG)是一种多聚化合物,分子式为 H(OHCH2-CH2)nOH)。 PEG诱导:PEG与溶液中自由水结合,高度脱水后 引起原生质体凝聚、扭曲变形、细胞膜连接处发 生融合,形成很小的细胞桥,之后扩大,最终彻
工业微生物育种学重点整理

1)工业微生物:在发酵工艺中已经应用的或者具有潜在应用价值的微生物。
2)用于工业生产的微生物微生物菌种的特征:1.遗传稳定2.多产3.纯种4.生长旺盛5.产生产物时间短6.产物易分离7.抗性强8.能保持较长的良好经济性能9.菌株对诱变剂处理较敏感10.在规定的时间内,菌种必须产生预期数量的目的产物,并保持相对的稳定。
3)自然选育方法:诱变育种、杂交育种、代谢控制育种、基因工程育种。
4)基因突变:是指基因在结构上发生碱基对组成或排列顺序的改变。
特点:自发性、诱发性、独立性、稀有性、遗传性、可逆性、不对应性。
1.同义突变和无义突变2.错义突变3移码突变。
突变的表现型:形态突变型、生化突变型(营养缺陷型)、条件突变型(温度突变型)、抗性突变型、抗原突变型、产量突变型。
突变修复:光修复、切补修复、重组修复、SOS修复、DNA聚合酶的校正作用。
表现延迟:微生物通过自发突变或人工诱变而产生的新基因型,需要经过2个世代以上繁殖复制才能表现出来。
(波动实验)5)诱变剂:凡能诱发生物基因突变,并且突变频率远远超过自发突变率的物理因子或化学物质。
种类:物理诱变剂、化学诱变剂、生物诱变剂。
6)紫外线诱变:光谱范围40~390nm。
有效波长200~300nm。
最有效的波长253.7nm。
相对剂量15w 30cm 紫外线诱变机制:形成嘧啶二聚体。
紫外线诱变的步骤和方法:1.出发菌株的选择2.将菌种培养到最佳生理状态(对数期)约16~24小时。
霉菌和放线菌培养到大部分孢子刚刚萌发3.制备菌悬液4.紫外线照射:紫外灯先预热20分钟稳定光波取单细胞悬液5~6ml于于灭菌培养皿中放在离灯30cm处5.后培养6稀释涂皿。
7)化学诱变剂:是一类能对DNA起作用改变起结构并引起遗传变异的化学物质。
种类:碱基类似物、烷化剂、移码突变剂特点:作用专一性、具有毒性、90%以上是剧毒药品或者致癌物质。
8)碱基类似物:是一类和天然的嘧啶嘌呤等四种碱基分子结构相似的物质。
工业微生物基因育种

• 引言 • 工业微生物基因育种技术概述 • 工业微生物基因育种的应用 • 工业微生物基因育种的挑战与前景 • 结论
01
引言
主题简介
工业微生物基因育种是一门新兴的生物技术领域,旨在通过 基因工程技术对微生物进行遗传改良,以提高其生产能力和 性能,从而在工业生产中发挥重要作用。
01
03
工业微生物基因育种技术的发展,推动了生物制品、 生物能源、生物材料等领域的创新和应用,为人类社
会的可持续发展提供了有力支持。
04
工业微生物基因育种在提高微生物生产效率、降低生 产成本、减少环境污染等方面发挥了重要作用,为工 业生物技术的发展做出了重要贡献。
对未来研究的建议
深入研究工业微生物基因育种的机制 和原理,探索更高效的基因编辑技术 和方法,提高育种效率和成功率。
工业微生物基因育种涉及多个学科领域,包括分子生物学、 遗传学、生物化学和微生物学等,是现代生物技术的重要组 成部分。
研究背景和意义
随着生物技术的迅速发展,工业微生 物基因育种在许多领域中得到了广泛 应用,如生物能源、生物材料、生物 制药和化学品生产等。
此外,工业微生物基因育种还有助于 推动相关产业的发展,促进经济增长 和就业,对国家和社会的发展具有重 要意义。
改良微生物性能
提高耐受性
通过基因工程技术提高微生物对 高温、高盐、高酸、高碱等极端 环境的耐受性,使其能在恶劣条
件下生长。
增强抗性
通过基因工程技术增强微生物对抗 生素、重金属、氧化剂等有害物质 的抗性,提高其生存能力。
优化产物
通过基因工程技术优化微生物产生 的化合物,提高其纯度、产量和稳 定性。
开发新微生物品种
基因表达调控机制不明确
第七章工业微生物诱变育种

丝状菌孢子壁较厚,表面蜡质也会阻碍诱变剂渗入。 或需用洗衣粉、脂肪酶、表面活性剂等处理去除蜡质。
(三)环境条件的影响
1、诱变前预培养和诱变后培养
预培养:培养基中加入咖啡因、蛋白胨、酵母膏、
吖啶黄、b-重氮尿嘧啶、嘌呤等物质能提高突变率。
后培养:诱变后的菌悬液不直接分离于平板,而是
立即转移到营养丰富的培养基中培养数代。作用是 让突变体重新调节代谢平衡,避免突变体表型延迟 现象。
五、快速准确的检测方法
建立一个适应于大规模筛选的有效检测方法是减少 诱变选育工作量的关键。
分光光度法 液相色谱法 气相色谱法
化学滴定法 薄层层析法
六、最佳的菌种保藏方法
事先要建立一个最佳的培养基、培养条件和适 宜的保藏方法,否则将前功尽弃。
第二节 诱变育种的步骤与方法
诱变育种的优缺点 优点:方法简单、投资少、收获大; 缺点:缺乏定向性。
4、浓度梯度法
合成抗生素的水平与其耐自身产物能力相关。
5、应用复印技术快速筛选变株
产脂野生株、具有高脂含量的突变株。 方法:筛选培养基→ 复印→ 苏丹黑染色→洗去 多余染料→酒精脱色→干燥显色→选择深蓝色或紫 色的菌落。
6、琼脂块大通量筛选变株
适用对象:抗生素、酶类产物。 优点:效率提高15-20倍。 缺点:产物浓度高时易漏筛,培养条件与发酵条件
细菌:生长指数期,最好在诱变处理前进行摇瓶 振荡预培养,尽可能获得同步培养物。
某些不产孢子的真菌:菌丝体,最好采用年幼的 菌丝体进行诱变处理。获得的方法:菌丝尖端法、 处理单菌落周围尖端菌丝法和混合处理法。
菌丝尖端法
枯草杆菌黑色变种芽孢菌悬液:试验菌液用2%蛋 白胨配成3-4×105个/mL浓度共50ml。
工业微生物育种学PPT课件

代谢流量调控
通过调节代谢流量,改变代谢产物的合成途 径和合成量,从而获得具有新性状的工程菌。
组合育种与高通量筛选
组合育种
将不同的育种方法进行组合,综合利用各种 方法的优势,提高育种效率和成功率。
高通量筛选
利用高通量筛选技术,快速、高效地对大量 菌株进行筛选,寻找具有优良性状的菌株。
04
工业微生物育种实践与应 用
05
工业微生物育种面临的挑 战与未来发展
基因编辑技术的伦理与法规问题
伦理问题
基因编辑技术对人类基因的干预引发了关于人类尊严 、生命伦理等方面的争议。在工业微生物育种中,应 充分考虑伦理原则,尊重生命、维护人类尊严。
法规问题
随着基因编辑技术的不断发展,各国政府正在制定相关 法律法规,以规范技术的合理应用。在工业微生物育种 中,应遵守相关法规,确保技术的合法性和安全性。
提高产率与生产效率
总结词
通过育种手段优化微生物的代谢途径,提高目标产物 的合成效率。
详细描述
工业微生物育种学通过基因工程技术对微生物进行改 造,优化其代谢途径,提高目标产物的合成效率,从 而提高整个生产过程的产率与生产效率。
降低生产成本与资源利用
要点一
总结词
降低生产成本,提高资源利用率,实现可持续发展。
特点
工业微生物育种学具有高度的应用性和实践性,强调对微生物的遗传特性和代 谢机制的深入理解,通过定向改造和优化微生物,实现工业生产的可持续发展 和高效性。
重要性及应用领域
重要性
随着生物技术的迅猛发展,工业微生物育种学在提高工业生产效率、降低成本、减少环境污染等方面发挥着越来 越重要的作用。通过对微生物的遗传改良,可以突破传统育种方法的限制,实现高效、精准的工业生产。
工业微生物育种

1.工业微生物育种在发酵工业中的作用如何?其目的是什么?工业微生物育种建立在:(1)遗传和变异(微生物遗传学)的基础之上;(2)物理和化学诱变剂的发现和应用;(3)工业自动化(自动仪表装置和微机)。
工业微生物育种在发酵工业中占有重要地位,是决定该发酵产品能否具有工业化价值及发酵过程成败与否的关键。
2.工业微生物发展经历了哪几个阶段?1)自然选育阶段2)人工诱变选育阶段3)杂交育种阶段4)代谢控制育种阶段5)基因工程育种阶段3.工业微生物育种的核心指标有哪些?1)在遗传上必须是稳定的。
稳定性。
2)易于产生许多营养细胞、孢子或其它繁殖体。
3)必须是纯种,不应带有其他杂菌及噬菌体。
4)种子的生长必须旺盛、迅速。
5)产生所需要的产物时间短。
转化率。
6)比较容易分离提纯。
7)有自身保护机制,抵抗杂菌污染能力强。
8)能保持较长的良好经济性能。
产率。
9)菌株对诱变剂处理较敏感,从而可能选育出高产菌株。
10)在规定的时间内,菌株必须产生预期数量的目的产物,并保持相对地稳定。
4.革兰氏阳性和阴性菌的细胞壁结构有何差异?它们对溶菌酶和青霉素的敏感有何不同?5.缺壁细菌有哪些类型和异同?制备缺壁细菌主要有哪些途径?原生质体:G+菌经溶菌酶或青霉素处理;球状体:G-菌,残留部分细胞壁。
是研究遗传规律和进行原生质体育种的良好实验材料。
L型细菌:自发突变形成细胞壁缺陷菌株;6.原生质体制备时,为什么不同微生物要选择不同的酶?举例说明。
酶在原生质体制备中主要用来酶解细胞壁的,不同的微生物其细胞壁成分及含量可能不同,所以要用不同的酶。
酵母菌的细胞壁主要成分有葡聚糖、甘露聚糖蛋白质、几丁质。
霉菌的细胞壁:主要成分是纤维素、几丁质、葡聚糖等。
藻类的细胞壁:主要成分有纤维素构成结构骨架。
7.基因组、基因、密码子、简并、同义密码子的概念是什么?一、基因组1. 原核生物就是它的整个染色体,原核生物的基因组较小,DNA的含量低,如E.coli的DNA分子质量为2.4×109Da,相当于4.2×106bp,含有3000-4000个基因,SV40病毒仅5个基因。
工业微生物育种学

工业微生物育种学一、微生物资源多样性微生物资源多样性是工业微生物育种学的基础。
微生物世界中存在着广泛的物种多样性,这些物种具有各种各样的生理生化特性,能够产生丰富的代谢产物。
了解和利用这些多样性,是进行工业微生物育种的前提。
二、遗传物质基础遗传物质基础是工业微生物育种学的核心。
掌握微生物的基因组结构、基因表达调控等基本遗传信息,有助于我们理解微生物的生长、代谢等生命活动,以及如何对其进行改造和优化。
三、突变机制与诱变育种突变机制与诱变育种是工业微生物育种学的重要手段。
突变是指基因组中DNA序列的改变,而诱变育种则是利用诱变因素诱导微生物发生突变,再从中筛选有益突变株的方法。
了解突变机制有助于我们预测和控制突变的发生,提高育种效率。
四、基因工程育种基因工程育种是工业微生物育种学的核心技术。
通过基因工程技术,我们可以精确地对微生物进行遗传改造,实现定向进化,提高微生物的生产能力和性能。
基因工程育种具有精度高、见效快等特点,已成为工业微生物育种的主要手段。
五、菌种筛选与初筛技术菌种筛选与初筛技术是工业微生物育种学的重要环节。
通过筛选,我们可以从自然界或实验室中大量菌株中挑选出发酵性能优良、生产能力强的菌株。
初筛技术包括菌落形态观察、生理生化特性检测等方法,是菌种筛选的基础。
六、菌种改良与性能评价菌种改良与性能评价是工业微生物育种学的重要内容。
通过遗传操作和定向进化等技术手段对菌株进行改良,提高其生产能力和性能。
性能评价则是对改良后菌株进行全面的表征和评估,确保其满足工业生产的需求。
七、发酵过程优化发酵过程优化是工业微生物育种学的关键环节。
发酵过程涉及到菌株的生长、代谢等多个方面,是工业微生物育种的最终目标。
通过优化发酵条件、控制发酵过程等方法,可以提高微生物的发酵效率和产物产量。
八、工业微生物应用实例工业微生物应用实例展示了工业微生物育种学的实际价值。
通过具体的应用实例,我们可以了解工业微生物育种在生产实践中的重要性和作用,进一步推动工业微生物育种学的发展和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转谷氨酰胺酶生产菌株的诱变选育方案
学生:
摘要:通过诱变育种选育转谷氨酰胺酶工业生产菌株,使目的菌株产酶量高、酶活高、到达最大产酶量的时间短,生长周期、最适产酶温度等条件尽可能地符合工厂要求。
关键字:筛选;工业菌株;诱变育种
前言:
工业微生物育种是运用遗传学原理和技术对某种具有特定生产目的的菌株进行改造, 去除不良性质, 增加有益新性状, 以提高产品的产量和质量的一种育种方法。
工业微生物的育种技术已从常规的突变和筛选技术发展到基因诱变、基因重组和基因工程等, 育种技术的不断成熟, 大大提高了微生物的育种效果。
微生物发酵要想取得优良成绩, 有赖于优良菌种的利用。
从工业发酵的观点来看发酵菌种的优异生产性能等于经选育的、符合经济要求的优良遗传背景加上经人为精心设计的、优化的发酵环境。
菌种选育的最终目标, 就是通过人工干预, 使选出的优良菌种在优化环境中尽可能表现出优异性状。
菌种分离、筛选、改良是贯彻微生物发酵始终的工作。
一.菌种选育的具体目标
(1) 提高产量。
(2) 提高产物的纯度。
减少副产物; 提高有效组分;减少色素等杂质。
(3) 改变菌种性状。
改善发酵过程, 包括: 改变和扩大菌种所利用的原料结构; 改善菌种生长速度; 提高斜面孢子化程度; 改善菌丝体形状, 采用菌球菌丝体发酵;少用消泡剂或使菌种耐合成消泡剂; 改善对氧的摄取条件, 降低需氧量及能耗; 耐不良环境: 抗噬菌体的侵染,耐高温、耐酸碱、耐自身所积累的代谢产物; 改善细胞透性, 提高产物的分泌能力等。
(4) 菌种的遗传性状。
生产性状稳定。
(5) 改变生物合成途径。
以获得新产品。
二.获取优良菌种的有效途径
广义上说, 菌种改良可描述为采用任何科学技术手段( 物理、化学、生物学、工程学方法以及它们的各种组合)处理微生物菌种, 从中分离得到能显示所要求表型的变异菌种。
菌种改良的基本途径: 突变和选择; 基因重组( 遗传重组) 和基因工程( 遗传工程)
MTG 生产菌株的诱变育种
诱变的方式包括了各种物理射线、化学诱变剂以及生物方面的噬箘体等等。
用得最多的是前两种,也有将几种方式混合使用的。
国内的王璋教授还曾借助“神舟”4 号飞船搭载MTG 生产菌种在外太空进行诱变实验,取得不错的效果。
一.整体育种流程
近年来,国际上有关研究MTG 生产的报道很多。
其中有些菌种是研究得较为成熟的,其代谢流程、产酶机制、生产条件、优化条件等都有详细的报道。
而这些菌株都各有特色。
所以我拟定从两株菌出发,分别进行诱变实验,最后通过原生质体融合力求将两株菌的优势整合,获得优良的MTG 生产菌株。
再视情况进行下一步的诱变选育工作。
整体诱变育种流程为:
菌A →诱变→菌A’→原生质体融合→菌株C →诱变菌B →诱变→
菌B’ →目的菌株
二.出发菌株的选定
出发菌株的选定十分重要,首先我们需要了解目的菌株所应具备的特点:产酶量高、酶活高、到达最大产酶量的时间短,生长周期、最适产酶温度等条件尽可能地符合工厂要求。
挑选以下两株菌:
(1).茂原链轮丝菌,Streptomyces mobaraense WSH-Z2(CBS 20778)。
该菌是研究得较为成熟的MTG 生产菌株。
发酵温度、最佳pH 值、发酵机制以及优化好的培养基配方都有较详细的报道。
是一株综合性比较好的菌株。
(2).吸水链霉菌,Streptomyces hygroscopicus WSH03-13(CCTCC M203062),系江南大学陈坚教授筛选所得。
原始菌株在培养条件优化的情况下酶活即可达到146U/ml。
是所查到的产MTG 酶活最高的链霉菌株。
三.菌种的诱变选育
1 吸水链霉菌Streptomyces hygroscopicus 的诱变处理
由于吸水链霉菌株之前未经过诱变处理,初次宜采用致死率高的综合诱变方法,以对菌株的基因造成大的改变。
诱变处理工艺流程如下:紫外灯照射→日光
照射→NTG 诱变→30℃避光培养→37℃水浴摇床,简单的复筛测定→摇瓶培养,测酶活将该菌的单孢子悬浮液经紫外灯照射诱变后进行短时间的日光照射(光修复),然后再进行NTG 的诱变。
最后对诱变过的孢子进行避光培养。
统计死亡率、形态突变率等相关数据。
挑出经72~96h 培养后生长的菌落,继续传代培养2~3 代以纯化突变株,并初步确保菌种性能的稳定性。
将稳定的菌株作摇瓶培养后进行复筛测试,初步判断菌株的产酶情况,淘汰低产能的诱变株。
将筛得的菌株作酶活测定;从中选出酶活高的菌株,并统计正负突变率、形态变异率等相关数据。
随着诱变次数的增多,诱变剂的量也需降低;也可以先制成原生质体后诱变。
观察不同条件下的诱变效果。
最后将复筛所得的高产酶突变株进行20~30d/次的传代培养,连续5~8 代,并进行摇瓶发酵测定酶活。
测试突变株的遗传稳定性。
2 茂原链轮丝菌Streptoverticillium mobaraense 的诱变处理
诱变的程序基本同上,只是因为这株菌诱变的目的是使菌株更为适应工业生产的条件。
所以会针对各种条件设计出不同配方的选择培养基供诱变之后的筛选使用。
(1)培养基中加入MTG 酶活的阻遏物或其结构类似物。
筛选出抗阻遏物的突变株。
(2)保持在特定温度的条件下筛选培养。
选育出受温度影响较小(不因夏冬而大幅度影响生产),产酶量、酶活和生长速度都较高的诱变菌株。
(3)加入少量的青霉素或其它抗生素,选育出具抗药性的菌株,为后面的原生质体融合提供标记。
通过以上一系列的诱变筛选,将筛选出能在夏天较高的温度下仍能保持酶产量、酶活性的,具抗性标记的MTG 生产菌株。
其MTG 的生产将不受阻遏物的影响。
四.单灭活的原生质体融合
将上述两株菌的优良诱变株分别制成原生质体,其中茂原链轮丝菌的原生质体再进行5min 的60℃灭活处理。
然后将两者以107~108/ml 的浓度混合,加入适
量30~50%的分子量为1000~1500 的PEG 以及0.05mol/L CaCl2 和0.02mol/L MgCl2,在20~30℃下处理10min。
然后用高渗培养基稀释,离心除去PEG 后分离于高渗的加入青霉素的培养基上进行培养。
未经融合的吸水链霉菌的原生质体因青霉素的存在而无法生长;而未经融合的茂原链轮丝菌的原生质体已被灭活;只有融合了的原生质体才能再生。
五.挑选目的菌株
观察菌落特征,挑出再生的菌株进行摇瓶培养,通过一定的筛选流程挑选出兼具两亲株特性的优良菌株。
最后进行遗传稳定性测试。
如果这一步所得的菌株与两亲株之特性相差较远,则重复该步骤;若已与最终目的菌株相近,则将融合所得的菌株继续进行诱变实验。
以期得到更加优秀的菌株。
结果:
以上最终得到产酶量高、酶活高、到达最大产酶量的时间短,生长周期、最适产酶温度等条件尽可能地符合工厂要求的目的菌株。
参考文献:
[1]杜连祥. 工业微生物学实验技术[M] . 第一版, 第一次. 天津: 天津科学技术出版社, 1992: 279
[2]雷肇祖, 钱志良, 章健. 工业菌种选育述评[ J] . 工业微生物, 2004,34( 1) : 39-51
[3]彭仁旺, 管考梅, 黄秀梨. 微生物学通报, 1995, 22(4):197-199
[4]施巧情,吴松刚.工业微生物育种学第二版[M].福建:科学出版社 2006, 139 - 159
[5]诸葛健,王正祥.工业微生物实验技术手册[M].北京:中国轻工业出版社,1994.171-176。