高一数学集合测试(带答案)
高一数学集合练习题及答案(人教版)-百度文库

高一数学集合练习题及答案(人教版)-百度文库一、单选题1.已知集合{}2log 4A x x =<,{}22B x x =-<<,则()R A B ⋂=( ) A .(]2,0- B .[)0,2 C .()0,2D .[)2,0-2.已知集合{}1,2A =,{}2,3,4B =,则A B =( ) A .{}2B .{}3C .{}1,3D .{}1,23.已知集合{}1,2,4,6A =,{}2,3,4,5B =,则A B 中元素的个数为( ) A .1B .2C .3D .44.设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是( )A .3B .6C .7D .85.已知{}33U x x =-≤<,{}23A x x =-≤<,则图中阴影表示的集合是( )A .{}32x x -≤≤-B .][33,)-∞-⋃+∞(, C .{}0x x ≤D .{}32x x -≤<-6.已知集合{}1,0,1,2A =-,{}0,1,3B =,则A B =( ) A .{}1,0,1-B .{}0,1,2C .{}0,1D .{}1,27.已知集合{20}M x x =-<,{}1N x y x ==+,则M N =( )A .{1}x x >-B .{12}x x -≤<C .{}12x x -<<D .R8.设集合P ,Q 均为全集U 的非空子集,且U ()P Q P =∩,则U ()P Q =∩( ) A .PB .QC .∅D .U9.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B ( ) A .{}0,1,2,3 B .{}0,1,2 C .{}1,2,3D .{}1,210.已知集合{}1A x x =≤,B ={}02x x <<,则A B =( ) A .(]0,1 B .[)1,2C .()0,1D .()0,211.如图,已知集合A={-8,1},B={-8,-5,0,1,3},则Venn 图中阴影部分表示的集合为( )A .{-5,0,3}B .{-5,1,3}C .{0,3}D .{1,3}12.()Z M 表示集合M 中整数元素的个数,设{}1|8A x x =-<<,{}|527B x x =-<<,则()Z A B =( )A .5B .4C .3D .213.已知集合{|2}x A y y ==,集合{}3B x x =≥,则RA B =( )A .(),3-∞B .()0,3C .[]1,3D .[)1,314.已知不等式231x x m ->+的解集为M ,若1M ∈,则实数m 的取值范围为( )A .(),3-∞-B .(),1-∞-C .()3,-+∞D .()3,1--15.已知全集{}0,1,2,3,4,5U A B ==,(){}1,2,4UA B =,B =( )A .{}0B .{}3,5C .{}0,3,5D .{}1,2,4二、填空题16.集合()(){}2140,A x x x ax x R =-++=∈中所有元素之和为3,则实数=a ________.17.设()1,2,3i a i =均为实数,若集合{}123,,a a a 的所有非空真子集的元素之和为12,则123a a a ++=__________18.建党百年之际,影片《1921》《长津湖》《革命者》都已陆续上映,截止2021年10月底,《长津湖》票房收人已超56亿元,某市文化调查机构,在至少观看了这三部影片中的其中一部影片的市民中随机抽取了100人进行调查,得知其中观看了《1921》的有51人,观看了《长津湖》的有60人,观看了《革命者》的有50人,数据如图,则图中=a ___________;b =___________;c =___________.19.已知集合{}37A x x =≤<,{}C x x a =>,若A C ⊆,求实数a 的取值范围_______.20.集合A 满足{}1,3 **15,,A x y x N y N x ⎧⎫⊆=∈∈⎨⎬⎩⎭,则集合A 的个数有________个.21.设全集{1U =,2,3,4,5,6,7,8},集合{1S =,3,5},集合{3T =,6},则ST =__.22.满足{}1,2A ⊆的集合A 的个数是______________23.已知集合{}N 4sin ,02A x x θθπ=∈<≤≤,若集合A 中至少有3个元素,则实数θ取值范围为________24.若集合{}{}230,0,1,2,3A xx x B =-==∣,则满足A M B ⊆⊆的集合M 的个数是___________.25.对于数集M 、N ,定义{},,M N x x a b a M b N +==+∈∈,,,aM N x x a M b N b ⎧⎫÷==∈∈⎨⎬⎩⎭,若集合{}1,2P =,则集合()P P P +÷中所有元素之和为___________.三、解答题26.设2n ≥且N n ∈,集合{1,2,3,4,,2}U n =,若对U 的任意k 元子集k V ,都存在,,k a b c V ∈,满足:a b c <<,a b c +>,且a b c ++为偶数,则称k V 为理想集,并将k 的最小值记为K .(1)当2n =时,是否存在理想集?若存在,求出相应的K ;若不存在,请说明理由; (2)当3n =时,是否存在理想集?若存在,直接写出对应的k V 以及满足条件的,,a b c ;若不存在,请说明理由; (3)证明:当4n =时,6K =.27.设全集U =R ,集合{}{}24,3782A x x B x x x =≤<=->- (1)求(),U A B A B ⋃⋂;(2)若集合{}20C x x a =+>,且C C =B ∪,求a 的取值范围.28.对非空数集X ,Y ,定义X 与Y 的和集{},X Y x y x X y Y +=+∈∈.对任意有限集A ,记A 为集合A 中元素的个数.(1)若集合{}0,5,10X =,{}2,1,0,1,2Y =--,写出集合X X +与X Y +; (2)若集合{}12,,,n X x x x =满足12n x x x <<<,3n ≥,且2X X X +<,求证:数列1x ,2x ,,n x 是等差数列;(3)设集合{}12,,,n X x x x =满足12n x x x <<<,3n ≥,且()1,2,,i x i n ∈=Z ,集合{}B k Z m k m =∈-≤≤(2m ≥,N m ∈),求证:存在集合A 满足11n x x A B-≤+且X A B ⊆+.29.设全集U =R ,集合{}15A x x =≤<,非空集合{}212B x x a =≤≤+,其中a R ∈. (1)若“x A ∈”是“x B ∈”的必要条件,求a 的取值范围; (2)若命题“x B ∃∈,x A ∈R ”是真命题,求a 的取值范围.30.记E 为平面上所有点组成的集合并且A E ∈,B E ∈,说明下列集合的几何意义: (1){}5P E PA ∈<; (2){}P E PA PB ∈=.【参考答案】一、单选题 1.A 【解析】 【分析】求解对数不等式得到集合A ,进而结合补集和交集的概念即可求出结果. 【详解】因为{}016A x x =<<,所以(){}R 20A B x x ⋂=-<≤, 故选:A. 2.A 【解析】【分析】根据集合的交集运算,即可求得答案. 【详解】集合{}1,2A =,{}2,3,4B =, 则{2}A B =, 故选:A 3.B 【解析】 【分析】根据交集的定义,即可求解. 【详解】因为集合{}1,2,4,6A =,{}2,3,4,5B =,所以{}2,4A B =,故A B 中元素的个数为2. 故选:B 4.D 【解析】 【分析】解不等式求得A ,然后求得A ⋂Z ,进而求得正确答案. 【详解】222x x ≤⇒≤,所以A ⎡=⎣,所以{}1,0,1A ⋂=-Z , 所以A ⋂Z 子集的个数是328=. 故选:D 5.D 【解析】 【分析】根据韦恩图,写出相应集合即可 【详解】由图可知,阴影表示的集合为集合A 相对于全集U 的补集,即阴影表示的集合是UA ,所以{}32UA x x =-≤<-;故选:D 6.C 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1,0,1,2A =-,{}0,1,3B =,所以{}0,1A B =; 故选:C【解析】 【分析】化简集合,M N ,即得解. 【详解】解:由题得(,2),[1,)M N =-∞=-+∞, 所以[1,2)M N =-.故选:B 8.B 【解析】 【分析】 依题意可得UP Q ⊆,即可得到UQ P ⊆,从而即可判断;【详解】解:因为U ()P Q P =∩,所以UP Q ⊆,所以UQ P ⊆,所以U ()P Q Q =∩;故选:B 9.D 【解析】 【分析】先化简集合A ,继而求出A B . 【详解】解:(){}{}30=03A x x x x x =-<<<,{}0,1,2,3B =,则A B ={}1,2. 故选:D. 10.A 【解析】 【分析】根据集合的交集概念即可计算. 【详解】∵{}1A x x =≤,B ={}02x x <<,∴A B =(]0,1. 故选:A ﹒ 11.A 【解析】 【分析】由已知,结合给出的Venn 图可判断阴影部分为∁BA , 根据给到的集合A 和集合B ,可直接进行求解. 【详解】因为集合A={-8,1},B={-8,-5,0,1,3}, Venn 图中阴影部分表示的集合为∁BA={-5,0,3}. 故选:A.【解析】 【分析】先求得A B ,再根据()Z M 的定义求解. 【详解】解:因为{}1|8A x x =-<<,{}57|527|22⎧⎫=-<<=-<<⎨⎬⎩⎭B x x x x , 所以7|12⎧⎫=-<<⎨⎬⎩⎭A B x x ,所以()4=Z A B , 故选:B 13.D 【解析】 【分析】根据指数函数的性质,求得集合{|1}A x x =≥,再结合集合的运算法则,即可求解. 【详解】由题意,可得集合{|2}{|1}xA y y y y ===≥,即集合{|1}A x x =≥,又由集合{}3B x x =≥,可得{}R 3B x x =<, 所以{}R 13[1,3)A B x x ⋂=≤<=. 故选:D. 14.D 【解析】 【分析】利用1M ∈可构造关于m 的不等式,解不等式可得结果. 【详解】1M ∈,21311m-∴>+,即301m m +<+,解得:3<1m -<-, 即实数m 的取值范围为()3,1--. 故选:D. 15.C 【解析】 【分析】根据条件可得1,2,4∈UB ,则1,2,4B ∉,结合条件即可得答案.【详解】 因为(){}1,2,4UAB =,所以1,2,4∈UB ,则1,2,4B ∉,又{}0,1,2,3,4,5U A B ==,所以0,3,5B ∈,即{}0,3,5B =. 故选:C二、填空题16.2-【解析】 【分析】由()()2140x x ax -++=得1231x x x a ++=-,即可求解参数.【详解】由()()2140x x ax -++=得10x -=或240x ax ++=所以11x =或23x x a +=-依题意得12313x x x a ++=-=,得2a =- 故答案为:2-.17.4【解析】 【分析】列举出集合{}123,,a a a 的所有非空真子集,根据题意可求得123a a a ++的值. 【详解】集合{}123,,a a a 的所有非空真子集为:{}1a 、{}2a 、{}3a 、{}12,a a 、{}13,a a 、{}23,a a , 由题意可得()123312a a a ++=,解得1234a a a ++=. 故答案为:4. 18. 9 8 10 【解析】 【分析】根据韦恩图,结合看每部电影的人数可构造方程组求得结果. 【详解】由题意得:286513566026650a b a c b c +++=⎧⎪+++=⎨⎪+++=⎩,解得:9810a b c =⎧⎪=⎨⎪=⎩.故答案为:9;8;10.19.(),3-∞【解析】 【分析】根据集合的包含关系画出数轴即可计算. 【详解】 ∵A C ⊆, ∴A 和C 如图:∴a <3.故答案为:(),3-∞. 20.3 【解析】 【分析】根据题意求出所有的集合A ,即可解出. 【详解】因为{}1,3 **15,,A x y x N y N x ⎧⎫⊆=∈∈⎨⎬⎩⎭,即{}1,3 {}1,3,5,15A ⊆,所以{}13,5A =,,{}1,3,15A =,{}1,3,5,15A =,即集合A 的个数有3个. 故答案为:3.21.{}2,4,7,8【解析】 【分析】由已知得可以求得S 和T ,再由交集运算即可解决. 【详解】∵全集{1U =,2,3,4,5,6,7,8},集合{1S =,3,5},集合{3T =,6}, ∴{}=2,4,6,7,8S ,{}=1,2,4,5,7,8T , ∴{}2,4,7,8S T =. 故答案为:{}2,4,7,8. 22.4 【解析】 【分析】利用集合的子集个数公式求解即可. 【详解】 ∵{}1,2A ⊆,∴集合A 是集合{}1,2的子集, ∴集合A 的个数为22=4, 故答案为:4. 23.5,66ππ⎛⎫⎪⎝⎭【解析】 【分析】分析可知元素0、1、2必属于集合A ,可得出1sin 2θ>,由[]0,2θπ∈可求得θ的取值范围. 【详解】要使集合A 中至少有3个元素,则元素0、1、2必属于集合A ,所以只需4sin 2θ>,即1sin 2θ>, 又[]0,2θπ∈,解得5,66ππθ⎛⎫∈ ⎪⎝⎭. 故答案为:5,66ππ⎛⎫ ⎪⎝⎭. 24.4 【解析】 【分析】求出集合A ,由A M B ⊆⊆即可求出集合M 的个数. 【详解】因为集合{}{}2300,3A xx x =-==∣,{}0,1,2,3B =, 因为A M B ⊆⊆,故M 有元素0,3,且可能有元素1或2, 所以{}0,3M =或{}0,1,3M =或{}0,2,3M =或{}0,1,2,3M = 故满足A M B ⊆⊆的集合M 的个数为4, 故答案为:4. 25.232##11.5 【解析】 【分析】根据定义分别求出()P P P +÷中对应的集合的元素即可得到结论. 【详解】{1P =,2}, {|P P x x a b ∴+==+,aP ,}{2b P ∈=,3,4},(){|2P P P x x ∴+÷==,3,4,1,3}2,∴元素之和为323234122++++=, 故答案为:232. 三、解答题26.(1)不存在,理由见解析;(2)存在,6{1,2,3,4,5,6}V =,3,4,5或3,5,6; (3)证明见解析. 【解析】 【分析】(1)根据理想集的定义,分3元子集、4元子集分别说明判断作答.(2)根据理想集的定义,结合(1)中信息,说明判断5元子集,6元子集作答. (3)根据理想集的定义,结合(1)(2)中信息,判断U 的所有6元子集都符合理想集的定义作答.(1)依题意,k V 要为理想集,3k ≥,当2n =时,{1,2,3,4}U =,显然{2,3,4}U ⊆,有234,234<<+>,而234++不是偶数,即存在3元子集不符合理想集定义,而{1,2,3,4}U ⊆,在{1,2,3,4}中任取3个数,有4种结果,1,2,3;1,2,4;1,3,4;2,3,4,它们都不符合理想集定义,所以,当2n =时,不存在理想集.(2)当3n =时,{1,2,3,4,5,6}U =,由(1)知,存在3元子集{2,3,4}、4元子集{1,2,3,4}均不符合理想集定义,5元子集{1,2,3,4,6},在此集合中任取3个数,满足较小的两数和大于另一个数的只有2,3,4与3,4,6两种,但这3数和不为偶数,即存在5元子集{1,2,3,4,6}不符合理想集定义,而U 的6元子集是{1,2,3,4,5,6},345,345,345<<+>++是偶数,356,356,356<<+>++是偶数,即U 的6元子集{1,2,3,4,5,6}符合理想集定义,{1,2,3,4,5,6}是理想集,所以,当3n =时,存在理想子集6{1,2,3,4,5,6}V =,满足条件的,,a b c 可分别为3,4,5或3,5,6.(3)当4n =时,{1,2,3,4,5,6,7,8}U =,由(1),(2)知,存在U 的3元子集、4元子集、5元子集不满足理想集定义,k V 要为理想集,6k ≥,显然{1,2,3,4,5,6}符合理想集的定义,满足条件的,,a b c 分别为3,4,5或3,5,6,U 的6元子集中含有3,5,6的共有25C 10=个,这10个集合都符合理想集的定义,U 的6元子集中含有3,5不含6的有5个,其中含有4的有4个,这4个集合都符合理想集的定义,不含4的为{1,2,3,5,7,8},显然有578,578,578<<+>++为偶数,即U 的6元子集中含有3,5不含6的5个都符合理想集的定义,U 的6元子集中含有36,不含5的有5个,它们是{1,2,3,4,6,7},{1,2,3,4,6,8},{1,2,3,6,7,8},{1,3,4,6,7,8},{2,3,4,6,7,8},它们对应的,,a b c 可依次为:3,6,7;4,6,8;3,6,7;3,6,7;3,6,7,即U 的6元子集中含有36,不含5的5个都符合理想集的定义, U 的6元子集中含有5,6不含3的有5个,它们是{1,2,4,5,6,7},{1,2,4,5,6,8},{1,2,5,6,7,8},{1,4,5,6,7,8},{2,4,5,6,7,8},它们对应的,,a b c 可依次为:5,6,7;4,6,8;5,6,7;5,6,7;5,6,7,即U 的6元子集中含有5,6不含3的5个都符合理想集的定义,U 的6元子集中含有3,5,6之一的有3个,它们是{1,2,3,4,7,8},{1,2,4,5,7,8},{1,2,4,6,7,8},对应的,,a b c 可依次为:3,7,8;5,7,8;4,6,8,即U 的6元子集中含有3,5,6之一的3个都符合理想集的定义,因此,U 的所有68C 28=个6元子集都符合理想集的定义,6V 是理想集,U 的7元子集有78C 8=个,其中含有3,5,6的有5个,这5个集合都符合理想集的定义,不全含3,5,6的有3个,它们是{1,2,3,4,5,7,8},{1,2,3,4,6,7,8},{1,2,4,5,6,7,8},对应的,,a b c 可依次为:3,7,8;3,7,8;4,6,8,即U 的所有8个7元子集都符合理想集的定义,7V 是理想集,U 的8元子集是{1,2,3,4,5,6,7,8},对应的,,a b c 可以为:3,7,8,因此,8V 是理想集, 因此,U 的6元子集,7元子集,8元子集都是理想集,6K =,所以当4n =时,6K =.【点睛】关键点睛:涉及集合新定义问题,关键是正确理解给出的定义,然后合理利用定义,结合相关的其它知识,分类讨论,进行推理判断解决.27.(1){|2}A B x x ⋃=≥,(){}|4U A B x x ⋂=≥(2)6a ≥-【解析】【分析】(1)根据交集,并集和补集的定义即可得出答案;(2)根据C C =B ∪,可得B C ⊆,从而可得出答案.(1) 解:{}|24,A x x =≤<{}{}37823B x x x x x =->-=>, ∴{|2U A x x =<或4}x ≥,{|2}A B x x ∴⋃=≥,(){}|4;U A B x x ⋂=≥(2) 解:{}202a C x x a x x ⎧⎫=+>=>-⎨⎬⎩⎭, B C C =,B C ∴⊆, 所以32a -≤,解得6a ≥-. 28.(1){}0,5,10,15,20X X +=,{}2,1,0,1,2,3,4,5,6,7,8,9,10,11,12X Y +=--;(2)详见解析;(3)详见解析.【解析】【分析】(1)利用和集的定义即得;(2)由题可得21X X n +=-,进而可得X X +中的所有元素为111213123,,,,,,,,n n n n n x x x x x x x x x x x x x x +++++++,结合条件可得112210n n n n x x x x x x ----=-==->,即证;(3)设{}i a ()()1121,N*i a x m i m i =++-+∈,令集合{}121,,,q A a a a +=,{}Z B k m k m =∈-≤≤,进而可得11n x x A B -≤+,{}{}1123Z ,,,,n n A B t x t x x x x x +⊇∈≤≤⊇,即得.(1) ∵集合{}0,5,10X =,{}2,1,0,1,2Y =--,∴{}0,5,10,15,20X X +=,{}2,1,0,1,2,3,4,5,6,7,8,9,10,11,12X Y +=--;(2)∵111213123n n n n n x x x x x x x x x x x x x x +<+<+<<+<+<+<<+, ∴集合X X +中至少包含21n -个元素, 所以21X X n +≥-,又X n =, 由题可知2X X n +<,又X X +为整数, ∴21X X n +≤-, ∴21X X n +=-,∴X X +中的所有元素为111213123,,,,,,,,n n n n n x x x x x x x x x x x x x x +++++++, 又1121222123,,,,,,,,n n n n n x x x x x x x x x x x x x x -+++++++是X X +中的21n -个元素,且1121222123n n n n n x x x x x x x x x x x x x x -+<+<+<<+<+<+<<+, ∴()1212,3,,j j x x x x j n -+=+=,即()1212,3,,j j x x x x j n --=-=, ∴112210n n n n x x x x x x ----=-==->, ∴数列1x ,2x ,,n x 是等差数列;(3) ∵集合{}Z B k m k m =∈-≤≤, ∴21B m =+,设()121n x x m q r -=++,其中,N,02q r r m ∈≤≤,设{}i a 是首项为1x m +,公差为21m +的等差数列,即()()1121,N*i a x m i m i =++-+∈, 令集合{}121,,,q A a a a +=, 则111111121n n n x x r x x r x x A q m B B-----=+=+=+≤++, ∴(){}1111,1,2,,212A B x x x x m q m +=+++++, 即(){}11Z 212A B t x t x m q m +=∈≤≤+++,∵()()1121212n x x m q r x m q m =+++≤+++, ∴{}{}1123Z ,,,,n n A B t x t x x x x x +⊇∈≤≤⊇,所以X A B ⊆+,故存在集合A 满足11n x x A B-≤+且X A B ⊆+. 【点睛】数学中的新定义题目解题策略:(1)仔细阅读,理解新定义的内涵;(2)根据新定义,对对应知识进行再迁移.29.(1)1,22⎡⎫⎪⎢⎣⎭ (2)[)2,+∞【解析】【分析】(1)由题意得出B A ⊆,从而列出不等式组,求a 的范围即可, (2)由题意R BA ≠∅,列出不等式,求a 的范围即可.(1)解:若“x A ∈”是“x B ∈”的必要条件,则B A ⊆,又集合B 为非空集合, 故有122125a a +⎧⎨+<⎩,解得122a <, 所以a 的取值范围1,22⎡⎫⎪⎢⎣⎭, (2) 解:因为{}15A x x =≤<,所以{|1R A x x =<或5}x ,因为命题“x B ∃∈,x A ∈R ”是真命题,所以R B A ≠∅,即125a +,解得2a .所以a 的取值范围[)2,+∞.30.(1)以A 为圆心,5为半径的圆内部分(2)线段AB 的垂直平分线【解析】【分析】(1)由圆的定义可得;(2)由线段垂直平分线的定义可得.(1)表示到A 点距离小于5的点组成的集合,即以A 为圆心,5为半径的圆内部分;(2)P 到,A B 距离相等,即线段AB 的垂直平分线.。
高一数学集合试题答案及解析

高一数学集合试题答案及解析1.集合S={x|x≤10,且x∈N*},A S,B S,且A∩B={4,5},(B)∩A={1,2,3},(A)∩(B)={6,7,8},求集合A和B.【答案】A={1,2,3,4,5},B={4,5,9,10}.【解析】如下图所示.因为A∩B={4,5},所以将4,5写在A∩B中.因为(B)∩A={1,2,3},所以将1,2,3写在A中.因为(B)∩(A)={6,7,8},所以将6,7,8写在S中A,B外.因为(B)∩A与(B)∩(A)中均无9,10,所以9,10在B中.故A={1,2,3,4,5},B={4,5,9,10}.【考点】本题主要考查集合的交集,集合的补集。
点评:涉及实数构成集合问题,常常借助于韦恩图。
2.已知集合A={ |-≤x≤},则必有 ()A.-1∈A B.0∈A C.∈A D.1∈A【答案】D【解析】∵,-≤x≤,∴x=1,2,即A={1,2},∴1∈A.故选D.【考点】元素与集合的关系点评:本题先根据x是正整数和-≤x≤确定集合A,再判断各元素是否属于集合。
3.已知函数f(x)的定义域是(0,1),那么f(2x)的定义域是()A.(0,1)B.(,1)C.(-∞,0)D.(0,+∞)【答案】C【解析】因为函数f(x)的定义域是(0,1),所以,即,,故选C。
【考点】本题主要考查函数的概念,指数函数的图象和性质。
点评:简单题,解答指数不等式,通常要化为同底数指数,利用指数函数的单调性,转化为代数不等式。
4.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B= ()A.{x|x≥-1}B.{x|x≤2}C.{x|0<x≤2}D.{x|-1≤x≤2}【答案】A【解析】集合A、B用数轴表示如图,A∪B={x|x≥-1}.故选A.【考点】本题主要考查集合的并集。
点评:简单题,借助于数轴求集合的并集。
5.满足{0}∪B={0,2}的集合B的个数是 ()A.1B.2C.3D.4【答案】B【解析】依题意知,B中至少含有元素2,故B可能为{2},{0,2},共两个.【考点】本题主要考查集合的子集,集合的并集。
高一数学集合试题答案及解析

高一数学集合试题答案及解析1.已知全集为U,A∩B =B,且,则下列各式中一定错误的是()A.(A)=B.(A) =C.(A)(B)=D.A(B)【答案】D【解析】因为全集为U,A∩B =B,且,所以,必有,利用韦恩图知选D.【考点】本题主要考查空集、交集、并集、补集的概念。
点评:注意运用韦恩图,数形结合,易于理解。
B={x|x+4<-x},则集合B=()2.已知A∩B=B,且A={x|},若AA.{x|-2≤x<3}B.{x|-2<x<3}C.{x|-2<x≤3}D.{x|-2≤x≤3}【答案】AB={x|x<-2},结合数轴可知选A。
【解析】已知条件即A B,且A={x|x<3},CA【考点】本题主要考查交集、补集的概念、集合的表示方法。
点评:此题考查了交集、补集的概念,简单不等式的解法,主要结合数轴解题。
3.设集合A=,B=,当时,求.【答案】【解析】由已知必有,∴,或,当时集合B中的元素,且,与集合中元素的互异性矛盾,当时集合B适合题意,∴时得到.【考点】本题主要考查交集、并集的概念、集合中元素的性质。
点评:此题考查了集合的交、并运算,探究求得a,利用集合中元素的互异性,确定取舍。
细心解方程。
P=()4.设全集U=R,P={},则UA.{B.{}C.D.【答案】C【解析】集合P=,由数轴分析易得.选C。
【考点】本题主要考查补集的概念。
点评:注意数形结合。
是解答此类问题的常用方法。
5.下面四个命题:(1)集合N中的最小元素是1:(2)方程的解集含有3个元素;(3)(4)满足的实数的全体形成集合。
其中正确命题的个数是______________【答案】2.【解析】集合N中的最小元素是0,不是1,(1)不正确;方程的解为,所以(2)正确;空集中不含任何元素,所以(3)不正确;即,所以(4)正确,故正确命题的个数是2.【考点】本题主要考查集合的基本概念及集合的表示方法。
高一数学集合练习题附答案

高一数学集合练习题附答案一、单选题1.设全集{}1,2,3,4U =,{}1,3A =,{}4B =,则()U A B =( ) A .{}2,4B .{}4C .∅D .{}1,3,42.已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =( )A .2B .1C .0D .-13.已知全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/则集合A 有( ) A .1个B .2个C .3个D .4个4.已知复数a 、b 满足0ab ≠,集合{}{}22,,a b a b =,则a b +的值为( )A .2B .1C .0D .-15.设集合{}22M x Z x =∈-<,则集合M 的真子集个数为( ) A .16B .15C .8D .76.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤< B .{}|15x x ≤< C .{}|15x x -≤<D .{}|13x x ≤≤7.设集合{}10M x x =-<,{}12,N y y x x M ==-∈,则M N =( )A .∅B .(,1)-∞-C .(,1)-∞D .(1,1)-8.已知集合{}27120A x x x =-+≤,{}20B x x m =+>,若A B ⊆,则m 的取值范围为( ) A .()6,-+∞B .[)6,-+∞C .(),6-∞-D .(],6∞--9.若集合2{|60}A x x x =--+>,5{|1}3B x x =≤--,则A B 等于( ) A .()3,3-B .[2,3)-C .(2,2)-D .[2,2)-10.设全集U =R ,集合{1,0,1,2,3}M =-,{R |1}N x x =∈>,则下面Venn 图中阴影部分表示的集合是( )A .(,1)-∞B .(,1]-∞C .{1,0}-D .{1,0,1}-11.已知集合{}20A x R x a =∈+>,且2A ∉,则实数a 的取值范围是( )A .{}4a a ≤B .{}4a a ≥C .{}4a a ≤-D .{}4a a ≥-12.已知全集{}U 1,0,1,3,6=-,{}0,6A =,则UA =( )A .{}1,3-B .{}1,1,3-C .{}0,1,3D .{}0,3,613.若集合{}{}22,3,|560,A B x x x ==-+=则A B =( )A .{2,3}B .∅C .2D .2,314.已知集合{}12,12x A y y x -==≤≤,|lg 2Bx y x,则下列结论正确的是( )A .AB ⊆B .[]0,2A B =C .(],2A B ⋃=-∞D .()R B A =⋃R15.已知集合{}220|A x x x =-<,{}|55B x x =-<<,则( )A .AB =∅ B .A B R =C .B A ⊆D .A B ⊆二、填空题16.若{}}{1020x ax x x +=⊆-=,则=a __________. 17.设集合{1,2,}A a =,{2,3}B =.若B A ⊆,则=a _______.18.设集合{}13A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是_________. 19.已知函数()()()2sin 0,0g x x ωϕωϕπ=+><<的部分图象如图所示,将函数()g x 的图象向右平移6π个单位长度,得到函数()f x 的图象,若集合()3512A x y f x f π⎧⎫⎪⎪⎛⎫==-⎨⎬⎪⎝⎭⎪⎪⎩⎭,集合{}0,1,2B =,则A B =______.20.已知集合121{|2}8x A x -=>,{|20}B x x a =-<.若A B A =,则实数a 的取值范围是________. 21.已知函数()94sin3264x x f x π-⋅+=,()21g x ax =-(0a >).若[]130,log 2x ∀∈,[]21,2x ∃∈,()()12f x g x =,则a 的取值范围是___________.22.若{}231,13a a ∈--,则=a ______.23.判断下列命题的真假:(1)集合{}1,2,3是集合{}1,2,3的真子集;( ) (2){}1是集合{}1,2,3的元素;( )(3)2是集合{}1,2,3的子集;( ) (4)满足{}{}00,1,2,3A的集合A 的个数是322-个.( )24.若全集{}0,1,2,3,4U =,{}012M =,,,{}2,3N =,则M N ⋂=______. 25.用符号“∈”或“∉”填空: (1)34______N ;(2)4-______Z ; (3)13______Q ;(4)2π-______R .三、解答题26.已知集合2{|23}A x a x a =≤≤+,{|14}B x x =-≤≤,全集U =R . (1)当1a =时,求U ()A B ;(2)当A =∅时,求实数a 的取值范围;(3)若“x A ∈”是“x B ∈”的充分条件,求实数a 的取值范围.27.已知:20,:40p x q ax ->->其中R a ∈.(1)若p 是q 的充分不必要条件,求实数a 的取值范围; (2)若p 是q 的必要不充分条件,求实数a 的取值范围.28.已知集合P ={x |a +1≤x ≤2a +1},Q ={x |-2≤x ≤5}. (1)若a =3,求()U P Q ⋂;(2)若“x ∈P ”是“x ∈Q ”充分不必要条件,求实数a 的取值范围.29.已知p :|m -1|>a (a >0),q :方程22152x y m m +=--表示双曲线.(1)若q 是真命题,求m 的取值范围;(2)若p 是q 的充分不必要条件,求a 的取值范围30.已知集合{}|13A x x =<<,集合{}|21B x m x m =<<-. (1)当1m =-时,求A B ;(2)若B A ⊆,求实数m 的取值范围;【参考答案】一、单选题 1.A 【解析】 【分析】根据补集的概念求出UA ,再根据并集运算即可求出结果.【详解】 由题意可知{}2,4UA =,又{}4B =,所以(){}2,4U A B =.故选:A. 2.B 【解析】 【分析】对于集合N ,元素x 对应的是一元二次方程的解,根据判别式得出必有两个不相等的实数根,又根据韦达定理以及N M ⊆,可确定出其中的元素,进而求解. 【详解】对于集合N ,因为280a ∆=+>, 所以N 中有两个元素,且乘积为-2, 又因为N M ⊆,所以{}2,1N =-, 所以211a -=-+=-.即a =1. 故选:B. 3.C 【解析】 【分析】根据题意,列举出符合题意的集合.【详解】因为全集{}{}1,2,3,,2,3U A U B =⊆=,若A B ⋂≠∅,且A B ⊆/, 所以{}1,2,3A =或{}1,2A =或{}1,3A =. 故选:C 4.D 【解析】 【分析】 由集合的性质可知a b ,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩,且0ab ≠,进而求解即可. 【详解】由题意,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩, 因为0ab ≠,解得1212a b ⎧=-⎪⎪⎨⎪=-⎪⎩或1212b a ⎧=-⎪⎪⎨⎪=-⎪⎩, 所以1a b +=-, 故选:D. 5.D 【解析】 【分析】求出集合M 中的元素,再由子集的定义求解. 【详解】由题意{|04}{1,2,3}M x Z x =∈<<=, 因此其真子集个数为3217-=. 故选:D . 6.D 【解析】 【分析】求解分式不等式的解集,再由补集的定义求解出A R,再由交集的定义去求解得答案.【详解】1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R . 故选:D 7.D 【解析】 【分析】解一元一次不等式求集合M ,求一次函数值域求集合N ,再应用集合的交运算求M N ⋂. 【详解】由题设,{|1}M x x =<,{|1}N y y =>-, 所以(1,1)M N =-.故选:D 8.A 【解析】 【分析】先解出集合,A B ,再结合A B ⊆得到关于m 的不等式,求解即可. 【详解】因为{}34,,2m A xx B x A B ⎧⎫==>-⊆⎨⎬⎩⎭∣,所以32m -<,解得6m >-. 故选:A. 9.D 【解析】 【分析】解不等式化简集合A ,B ,再利用交集的定义直接求解作答. 【详解】不等式260x x --+>化为:260x x +-<,解得:32x -<<,则(3,2)A =-, 不等式513x ≤--,即203x x +≤-,整理得:(2)(3)030x x x +-≤⎧⎨-≠⎩,解得23x -≤<,则[2,3)B =-, 所以[2,2)A B ⋂=-. 故选:D 10.D 【解析】 【分析】根据Venn 图,明确阴影部分表示的集合的含义,即可求得答案. 【详解】由题意,可知Venn 图中阴影部分表示的集合是(){1,0,1}U M N =- ,故选:D 11.C 【解析】 【分析】结合元素与集合的关系得到220a +≤,解不等式即可求出结果. 【详解】由题意可得220a +≤,解得4a ≤-, 故选:C 12.B【解析】 【分析】根据集合补集的概念及运算,即可求解. 【详解】由题意,全集{}U 1,0,1,3,6=-,且{}0,6A =, 根据集合补集的概念及运算,可得{}U1,1,3A =-.故选:B. 13.A 【解析】 【分析】依据交集定义去求A B 即可. 【详解】{}{}2|560=2,3B x x x =-+=则{}{}{}2,32,32,3A B ⋂=⋂=, 故选:A . 14.C 【解析】 【分析】求函数的值域求得集合A ,求函数的定义域求得集合B ,由此对选项进行分析,从而确定正确答案. 【详解】112,011,122x x x -≤≤≤-≤≤≤,所以[]1,2A =,20,2x x -><,所以(),2B =-∞. ∵2A ∈,2B ∈/,故A 错,B 错; ∵R2A ∈/,2B ∈/,∴()R 2A B ∈/,D 错.(],2A B ⋃=-∞,C 正确.故选:C 15.D 【解析】 【分析】先求出集合{}|02A x x =<<,再按照集合间的基本关系和运算判断即可. 【详解】{}|02A x x =<<,{}|02A B x x ⋂=<<,A 错误;{|A x x B =<,B 错误;A B ⊆,C 错误,D 正确.故选:D.二、填空题16.0或12-##12-或0【解析】 【分析】由题,先求出}{20x x -=所代表集合,再分别讨论{}10x ax +=作为子集的可能情况即可. 【详解】由}{20x x -=得集合为{}2,故{}10x ax +=为空集或{}2,当{}10x ax +=为{}2时,可得12a =-;当{}10x ax +=为空集时,可得0a =, 故答案为:0或12-17.3【解析】 【分析】由题意可知集合B 是集合A 的子集,进而求出答案. 【详解】由B A ⊆知集合B 是集合A 的子集, 所以33A a ∈⇒=, 故答案为:3.18.[)3,+∞【解析】 【分析】根据A B ⊆列出不等式即可求解. 【详解】因为{}13A x x =<<,{}B x x a =<,A B ⊆,故只需3a ≥即可满足题意. 故答案为:[)3,+∞.19.{}0【解析】 【分析】根据图像求出g (x )的解析式,再求出f (x )解析式,求出A 集合,根据集合交集运算法则计算即可. 【详解】由图可知()g x 周期52=1212T πππ⎛⎫=⨯+⎪⎝⎭,∴22T πω==.由212πg ⎛⎫-= ⎪⎝⎭得22122k ππϕπ⎛⎫⨯-+=+ ⎪⎝⎭,∴223k πϕπ=+,k ∈Z ,∵0ϕπ<<,∴k 取0,23ϕπ=, ∴()22sin 23g x x π⎛⎫=+⎪⎝⎭, ∴()22sin 22sin 2633f x x x πππ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ∴35352sin 22sin 611212363f ππππππ⎛⎫⎛⎫⎛⎫=⨯+=-+=⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∴()35150sin 22221232636f x f x k x k πππππππ⎛⎫⎛⎫-≥⇔+≥⇔+≤+≤+⎪ ⎪⎝⎭⎝⎭,k ∈Z , ∴,124A x k x k k ππππ⎧⎫=-≤≤+∈⎨⎬⎩⎭Z ,∴{}0A B ⋂=.故答案为:{}0﹒20.[4,)+∞【解析】 【分析】结合指数不等式化简集合A ,由A B A A B ⋂=⇒⊆,建立不等式即可求解a 的取值范围. 【详解】1212312228x x --->⇒>,即123x ->-,解得2x <,故{}|2A x x =<,|2a B x x ⎧⎫=<⎨⎬⎩⎭,由A B A A B ⋂=⇒⊆,即22a≤,4a ≥. 故答案为:[4,)+∞ 21.35,88⎡⎤⎢⎥⎣⎦【解析】 【分析】由题意,()f x 的值域为()g x 的值域子集,先求得两个函数的值域,再利用包含关系求得a 的取值范围. 【详解】 因为()()294sin32311644x x xf x π-⋅+-+==, 又当[]30,log 2x ∈时,0311x ≤-≤,()f x 的值域为11,42⎡⎤⎢⎥⎣⎦.因为0a >,所以()g x 在[]1,2上单调递增,其值域为[]21,41a a --. 依题意得[]11,21,4142a a ⎡⎤⊆--⎢⎥⎣⎦,则12141412a a ⎧-≤⎪⎪⎨⎪-≥⎪⎩,解得3588a ≤≤.故答案为:35,88⎡⎤⎢⎥⎣⎦22.4-【解析】 【分析】结合元素与集合的关系,利用集合的互异性分类讨论即可求解. 【详解】若13a -=,则4a =,此时,2113a a -=-,不合题意,舍去; 若2133a -=,则4a =-或4a =,因为4a =不合题意,舍去. 故4a =-. 故答案为:4-. 23. 假 假 假 真 【解析】 【分析】(1)利用真子集的定义即可判断. (2)由集合与集合的关系即可判断真假. (3)由元素与集合的关系即可判断真假.(4)由真子集的定义即可找到满足条件集合A 的个数. 【详解】(1)因为{}1,2,3的真子集有{}{}{}{}{}{},1,2,3,1,2,1,3,2,3∅,所以{}1,2,3不是{}1,2,3真子集,命题为假命题.(2){}1是集合,因此不是{}1,2,3的元素,命题为假命题. (3)因为2是元素,因此不是{}1,2,3的子集,命题为假命题. (4)若{}0A ,所以集合A 中至少含有两个元素且其中一个必须为0,又因为{}0,1,2,3A,所以集合A 可以从1,2,3中再选取一个元素、或者两个元素,所以满足条件的集合A 把∅和{}0,1,2,3去掉,所以满足条件集合A 的个数为322-个,命题为真命题.故答案为:假;假;假;真24.{}3【解析】 【分析】由交集、补集的定义计算. 【详解】由题意{4,3}M =,所以M N ⋂={3}. 故答案为:{3}. 25. ∉, ∈, ∈ ∈ 【解析】 【分析】(1)利用元素与集合的关系判断.(2)利用元素与集合的关系判断.(3)利用元素与集合的关系判断.(4)利用元素与集合的关系判断.【详解】 解:34∉N ; 4-∈Z ;13∈Q ; 2π-∈R .故答案为:∉,∈,∈,∈三、解答题26.(1)[)1,1-;(2)()(),13,∞∞--⋃+; (3)()1,3,2∞∞⎛⎤-⋃+ ⎥⎝⎦. 【解析】【分析】(1)根据集合的补运算和交运算,求解即可;(2)根据题意,求解关于a 的一元二次不等式,即可求得范围;(3)根据集合之间的关系,列出不等关系,求解即可.(1)当1a =时,{|15}A x x =≤≤,{|14}B x x =-≤≤,故U ()A B {|1x x =<或{}5}|14{|11}x x x x x >⋂-≤≤=-≤<. 即U ()A B [)1,1=-.(2)若A =∅,则223a a >+,即()()310a a -+>,解得1a <-或3a >,故实数a 的取值范围为:()(),13,∞∞--⋃+.(3)若“x A ∈”是“x B ∈”的充分条件,则A B ⊆,①A =∅时,1a <-或3a >满足题意; ②A ≠∅,则13234a a -≤≤⎧⎨+≤⎩,得1-12a ≤≤ 综上所述,实数a 的取值范围为()1,3,2∞∞⎛⎤-⋃+ ⎥⎝⎦. 27.(1)(2,)+∞(2)[0,2)【解析】【分析】(1)由题意可得A ⫋B ,所以0,42,a a>⎧⎪⎨<⎪⎩从而可求出实数a 的取值范围, (2)由题意可得B ⫋A ,然后分a =0,a >0和a <0三种情况求解即可(1)设命题p :A ={x |x -2>0},即p :A ={x |x >2},命题q :B ={x |ax -4>0},因为p 是q 的充分不必要条件,所以A ⫋B ,. 即0,42,a a>⎧⎪⎨<⎪⎩解得a >2 所以实数a 的取值范围为(2,)+∞(2)由(1)得p :A ={x |x >2},q :B ={x |ax -4>0},因为p 是q 的必要不充分条件,所以B ⫋A ,①当a =0时,B =∅,满足题意;②当a >0时,由B ⫋A ,得4a .>2,即0<a <2;.③当a <0时,显然不满足题意.综合①②③得,实数a 的取值范围为[0,2)28.(1)4{|}2x x -≤<(2)2a ≤【解析】【分析】(1)将a =3代入求出集合P ,Q ,再由补集及交集的意义即可计算得解. (2)由给定条件可得P Q ,再根据集合包含关系列式计算作答.(1)因a =3,则P ={x |4≤x ≤7},则有{|4U P x x =<或7}x >,又Q ={x |-2≤x ≤5}, 所以{|24)}(U P Q x x ⋂=-≤<.(2)“x ∈P ”是“x ∈Q ”充分不必要条件,于是得P Q ,当a +1>2a +1,即a <0时,P =∅,又Q ≠∅,即∅ Q ,满足P Q ,则a <0,当P ≠∅时,则有12112215a a a a +≤+⎧⎪+≥-⎨⎪+<⎩或12112215a a a a +≤+⎧⎪+>-⎨⎪+≤⎩,解得02a ≤<或02a ≤≤,即02a ≤≤,综上得:2a ≤,所以实数a 的取值范围是2a ≤.29.(1)(-∞,2)(5⋃,)∞+;(2)[4,)∞+.【解析】【分析】(1)解不等式(5)(2)0m m --<即得解;(2)由题意可得:1p m a >+或1m a <-+,解不等式组12150a a a -+⎧⎪+⎨⎪>⎩即得解. (1)解:由题意可得(5)(2)0m m --<,解得2m <或5m >.故m 的取值范围为(-∞,2)(5⋃,)∞+.(2)解:由题意可得:1p m a >+或1m a <-+.因为p 是q 的充分不必要条件,所以(-∞,1)(1a a -++⋃,)(+∞-∞,2)(5⋃,)∞+.所以12150a a a -+⎧⎪+⎨⎪>⎩,解得4a . 故a 的取值范围为[4,)∞+.30.(1){}23x x -<< (2)1,3⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)先分别求出,A B ,然后根据集合的并集的概念求解出A B 的结果;(2)根据B A ⊆,进而先讨论B =∅的情况,再讨论B ≠∅的情况,进而得答案;(1)解:当1m =-时,{}22B x x =-<<, ∴{}23A B x x ⋃=-<<;(2)解:因为B A ⊆,所以,当B =∅时, 21m m ,解得13m ≥,满足B A ⊆; 当B ≠∅时,若满足B A ⊆,则212113m m m m <-⎧⎪≥⎨⎪-≤⎩,该不等式无解;综上,若B A ⊆,实数m 的取值范围是1,3⎡⎫+∞⎪⎢⎣⎭。
高一数学集合练习题及答案

高一数学集合练习题及答案一、单选题1.已知集合{}1,4,M x x =,{}21,N x =,若N M ⊆,则实数x 组成的集合为( )A .{}0B .{}2,2-C .2,0,2D .2,0,1,22.已知集合{}2|280{|1]M x x x N y y =--<=≥-,,则M N ⋂=( )A .[-1,4)B .[-1,2)C .(-2,-1)D .∅3.已知集合{}22A x x =-≥,集合{2,3,4,5}B =,那么集合A B =( ) A .[2,5] B .(3,5] C .{4,5}D .{2,3,4,5}4.已知集合{}23250A x x x =--<,{}B x x a =>,若A B B ⋃=,则实数a 的取值范围为( ) A .5,3⎛⎤-∞ ⎥⎝⎦B .5,3⎛⎫-∞ ⎪⎝⎭C .(],1-∞-D .(),1-∞-5.记集合{}22M x x x =><-或,{}2|30N x x x =-≤,则MN =( )A .{|23}x x <≤B .或{}02}x x x ><-或C .{|02}x x ≤<D .{}|23x x -<≤6.已知集合*{|15,N }A x x x =-<<∈,{|03}B x x =≤≤,则A B =( ) A .[0,3]B .[1,5)-C .{1,2,3,4}D .{}1,2,37.已知集合{}{(3)0},0,1,2,3A x x x B =-<=,则A B =( ) A .{1,2}B .{0,1,2}C .{1,2,3}D .{0,1,2,3}8.设集合{}A x y x ==,(){}2,B x y y x ==,则AB =( )A .{}0B .(){}1,1C .{}0,1D .∅9.已知集合{}27120A x x x =-+≤,{}20B x x m =+>,若A B ⊆,则m 的取值范围为( ) A .()6,-+∞B .[)6,-+∞C .(),6-∞-D .(],6∞--10.已知集合{|A x y ==,{}2|24x B x -=<,则A B =( )A .3,22⎛⎫ ⎪⎝⎭B .3,22⎡⎫⎪⎢⎣⎭C .3,42⎛⎫ ⎪⎝⎭D .3,42⎡⎫⎪⎢⎣⎭11.已知集合{}1,2,3,4,5U =,{}1,2A =,{}2,3,4B =,则集合()UA B =( )A .{}1B .{}2C .{}1,2,5D .{}1,2,3,412.已知集合(){},M x y y x ==,(){}22,|1N x y xy =+=,M N A ⋂=,则A 中元素个数为( )个. A .1B .2C .3D .413.如图,U 是全集,,,M N P 是U 的三个子集,则阴影部分所表示的集合是( )A .()()U U M N P ⋂⋂B .()U M P ⋂C .()UM N P ⋂⋂ D .()UM N P ⋃⋃14.若集合{}3221x A x -=>,{}2,B y y x x A ==-∈,则A B =( ) A .24,33⎛⎤⎥⎝⎦B .4,3⎛⎫+∞ ⎪⎝⎭C .24,33⎛⎫ ⎪⎝⎭D .2,3⎛⎫+∞ ⎪⎝⎭15.设集合{}260A x x x =--≤,{}20B x x a =+≤,且{}21A B x x ⋂=-≤≤,则=a ( ) A .4-B .2-C .2D .4二、填空题16.集合()(){}2140,A x x x ax x R =-++=∈中所有元素之和为3,则实数=a ________.17.已知全集为{19,}I xx x N =≤≤∈∣,{3,6,9}A =,{2,4,6,8}B =,则A B =_______. 18.已知集合2{2,}x 与{4,}x 相等,则实数x =__________.19.已知{}3A x a x a =≤≤+,{}15b x x =-<<,A B =∅,则实数a 的取值范围是______20.若全集S ={2, 3, 4},集合A ={4, 3},则S A =____;若全集S ={三角形},集合B ={锐角三角形},则S B =______;若全集S ={1, 2, 4, 8}, A =∅,则S A =_______;若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},UA ={4},则a =_______;已知U 是全集,集合A ={0,2, 4},UA ={-1, 1},UB ={-1, 0, 2},则B =_____.21.用适当的符号填空:(1){}0______()2,3-; (2){},,a c b ______{},,a b c ; (3)R______(],3-∞-; (4){}1,2,4______{}8x x 是的约数. 22.已知(1,2)A =-,(1,3)B =,则A B =________23.(1)已知集合{}2230A x x x =--=,{}20B x ax =-=,且B A ⊆,则实数a 的值为______.(2)若不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围为______.24.设集合1,1,1,22A ⎧⎫=--⎨⎬⎩⎭,{}2220B x x m x m =-+=,若{}1A B ⋂=,则实数m =______.25.若集合A ={x ∈R|ax 2+ax +1=0}中只有一个元素,则a =________.三、解答题26.已知集合{}240|3A x x x =-++≥,{}231|00B x x x =-->(1)求RB ,()R A ⋂B(2)若集合{}21|C x m x m =<<+,且∃x C x A ∈∈,为假命题.求m 的取值范围.27.已知全集U =R ,{}|42A x x =-≤<,{}|13B x x =-<≤,P ={x |x ≤0或52x ≥},求 (1)()U B P ⋃ (2)()()U A B P ⋂⋂28.已知集合{}13A x x =<≤,{}3e e B y y =≤≤,{}21C x m x m =<<-.(1)求A B .(2)若A C ⋂=∅,求m 的取值范围.29.已知集合{}3A x x =<,{}2560B x x x =-+>.(1)求A B ,()RAB ;(2)若{}1C x m x m =<<+,且B C ≠∅,求实数m 的取值范围.30.下列各组的3个集合中,哪2个集合之间具有包含关系?(1)S ={-2, -1, 1, 2}, A ={-1, 1}, B ={-2, 2}; (2)S =R, A ={x |x ≤0}, B ={x |x >0};(3)S ={x |x 为整数},A ={x |x 为奇数},B ={x |x 为偶数}【参考答案】一、单选题 1.C 【解析】 【分析】若N M ⊆,所以2x x =或24x =,解出x 的值,将x 的值代入集合,检验集合的元素满足互异性. 【详解】因为N M ⊆,所以2x x =,解得0x =,1x =或24x =,解得2x =±, 当0x =时,{}1,4,0M =,{}1,0N =,N M ⊆,满足题意. 当1x =时,{}1,4,1M =,不满足集合的互异性. 当2x =时,{}1,4,2M =,1,4N ,若N M ⊆,满足题意. 当2x =-时,{}1,4,2M =-,1,4N ,若N M ⊆,满足题意.故选:C. 2.A 【解析】 【分析】解一元二次不等式求集合M ,再根据集合的交运算求M N ⋂. 【详解】由题设,{|24}M x x =-<<,而{|1}N y y ≥-, 所以{|14}M N x x ⋂=-≤<. 故选:A 3.C 【解析】 【分析】解出不等式22x -≥,然后根据集合的交集运算可得答案. 【详解】因为{}{}224A x x x x =-≥=≥,{2,3,4,5}B =, 所以{4,5}A B =, 故选:C 4.C 【解析】 【分析】先求出A 集合,再根据集合的包含关系求出a 的值即可 【详解】依题意{}{}253250(35)(1)013A x x x x x x x x ⎧⎫=--<=-+<=-<<⎨⎬⎩⎭,而A B B ⋃=,故A B ⊆,得1a ≤-故选:C 5.A 【解析】 【分析】先求出集合N ,再由交集的定义即可得出答案. 【详解】{}{}2|30|03N x x x x x =-≤=≤≤,所以MN ={|23}x x <≤.故选:A 6.D 【解析】 【分析】根据集合的交集的概念可求出结果. 【详解】 {1,2,3,4}A =, {1,2,3}A B ⋂=.故选:D 7.A 【解析】 【分析】解不等式得A ,由交集的概念运算 【详解】由(3)0x x -<得03x <<,即(0,3)A =,故{1,2}A B =. 故选:A 8.D 【解析】 【分析】通过集合中点集与数集的概念,再运用集合的交集运算即可得解.由题设可得A 为数集,B 为点集,故A B ⋂=∅. 故选:D 9.A 【解析】 【分析】先解出集合,A B ,再结合A B ⊆得到关于m 的不等式,求解即可. 【详解】因为{}34,,2m A xx B x A B ⎧⎫==>-⊆⎨⎬⎩⎭∣,所以32m -<,解得6m >-. 故选:A. 10.D 【解析】 【分析】分别解出A ,B 集合的范围,求出交集即可. 【详解】{{}3|=|230=,2⎡⎫==-≥+∞⎪⎢⎣⎭A x y x x ,{}{}()2|24|22,4-=<=-<=-∞x B x x x ,所以,432⎡⎫⋂=⎪⎢⎣⎭A B ,故选D . 11.A 【解析】 【分析】 求出UB ,计算求解即可.【详解】根据题意得,{}1,5U B =,所以(){}1UA B =.故选:A. 12.B 【解析】 【分析】联立方程,解方程组,考察方程组的解的组数,即为集合A 的元素个数; 【详解】联立方程得221y x x y =⎧⎨+=⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩x y ⎧=⎪⎪⎨⎪=⎪⎩所以集合M 与N 的交集A 中的元素个数为2个;13.A 【解析】 【分析】根据文氏图的意义,阴影部分为集合,M N 在全集上的补集的公共部分和集合P 的交集,进行求解即可. 【详解】根据题意,阴影部分为集合,M N 分别在全集上的补集的公共部分和集合P 的交集, 即阴影部分为()()U U M N P ⋂⋂. 故选:A 14.C 【解析】 【分析】根据指数函数和一次函数的性质,分别求得集合,A B ,结合集合交集的概念与运算,即可求解. 【详解】由不等式3221x ->,可得320x ->,解得23x >,所以2{|}3A x x =>, 又由{}42,{|}3B y y x x A y y ==-∈=<,所以2424{|}(,)3333A B x x =<<=. 故答案为:C 15.B 【解析】 【分析】先求出集合,A B ,再根据交集的结果求出a 即可. 【详解】由已知可得{}23A x x =-≤≤,2a B x x ⎧⎫=≤-⎨⎬⎩⎭又∵{}21A B x x ⋂=-≤≤,∴12a-=, ∴2a =-. 故选:B .二、填空题 16.2-【解析】 【分析】由()()2140x x ax -++=得1231x x x a ++=-,即可求解参数.【详解】由()()2140x x ax -++=得10x -=或240x ax ++=所以11x =或23x x a +=-依题意得12313x x x a ++=-=,得2a =- 故答案为:2-.17.{}3,9【解析】 【分析】首先求I 和B ,再求A B . 【详解】{}1,2,3,4,5,6,7,8,9I =,{3,6,9}A =,{2,4,6,8}B =, {}1,3,5,7,9B =,所以{}3,9A B =. 故答案为:{}3,9 18.2 【解析】 【分析】由已知,两集合相等,可借助集合中元素的的互异性列出方程组,解方程即可完成求解. 【详解】因为集合2{2,}x 与{4,}x 相等,则242x x ⎧=⎨=⎩,解得2x =.故答案为:2. 19.4a ≤-或5a ≥ 【解析】 【分析】由3a a <+可得A ≠∅,根据题意可得到端点的大小关系,得到不等式,从而可得答案. 【详解】由题意 3a a <+,则A ≠∅要使得A B =∅,则31a +≤-或5a ≥ 解得4a ≤-或5a ≥ 故答案为:4a ≤-或5a ≥20. {2} {直角三角形或钝角三角形} {1, 2, 4, 8} 1或-3##-3或1 {1, 4}##{}4,1 【解析】 【分析】利用补集的定义,依次分析即得解 【详解】若全集S ={2, 3, 4},集合A ={4, 3},由补集的定义可得S A ={2};若全集S ={三角形},集合B ={锐角三角形},由于三角形分为锐角、直角、钝角三角形,故S B ={直角三角形或钝角三角形};若全集S ={1, 2, 4, 8}, A =∅,由补集的定义S A ={1, 2, 4, 8}; 若全集U ={1, 3, a 2+2a +1},集合A ={1, 3},UA ={4},故{1,3,4}UU A A =⋃=即2214a a ++=,即223(1)(30a a a a +-=-+=),解得=a 1或-3; 已知U 是全集,集合A ={0, 2, 4},UA ={-1, 1},故{1,0,1,2,4}UU A A =⋃=-,UB ={-1, 0, 2},故B ={1, 4}故答案为:{2},{直角三角形或钝角三角形},{1, 2, 4, 8},1或-3,{1, 4}21. ⊆ = ⊇ ⊆ 【解析】 【分析】根据集合子集的定义及集合相等的概念求解. 【详解】由集合的子集、集合的相等可知(1)⊆,(2)=,(3)⊇,(4)⊆ 故答案为:⊆,=,⊇,⊆ 22.(1,2)##{}12,x x x R <<∈ 【解析】 【分析】根据集合交集的定义可得解. 【详解】由(1,2)A =-,(1,3)B =根据集合交集的定义,()1,2A B ⋂=. 故答案为:(1,2) 23. 2a =-或23a =或0 30k -<≤ 【解析】 【分析】(1)分情况讨论,0,a B ==∅满足题意;当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a=,解出即可;(2)分情况讨论,当0k =时,满足题意;当0k ≠时,只需要满足23Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解不等式组即可. 【详解】已知集合{}{}22301,3A x x x =--==-,{}20B x ax =-=当0,a B ==∅,满足B A ⊆;当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a= 解得2a =-或23a =; 不等式23208kx kx +-<对一切实数x 都成立,当0k =时,满足题意;当0k ≠时,只需要满足203Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解得30k -<< 综上结果为:30k -<≤. 故答案为:2a =-或23a =或0;30k -<≤ 24.2【解析】 【分析】根据题意得1x =是方程2220x m x m -+=一个实数根,进而代入解方程得2m =或1m =-,再分别检验即可得答案. 【详解】解:因为{}1A B ⋂=,所以1B ∈,即1x =是方程2220x m x m -+=一个实数根, 所以220m m --=,解得2m =或1m =-,当1m =-时,{}21210,12B x x x ⎧⎫=--==-⎨⎬⎩⎭,此时不满足{}1A B ⋂=,舍;当2m =时,{}{}224201B x x x =-+==,满足条件.故答案为:2 25.4 【解析】 【分析】集合A 只有一个元素,分别讨论当0a =和0a ≠时对应的等价条件即可 【详解】解:2{|10}A x R ax ax =∈++=中只有一个元素, ∴若0a =,方程等价为10=,等式不成立,不满足条件.若0a ≠,则方程满足0∆=,即240a a -=,解得4a =或0a =(舍去). 故答案为:4三、解答题26.(1){}R 25B x x =-≤≤;(){R 2A B x x ⋂=<-或}5x >;(2)2m ≤-或m 1≥.【解析】【分析】(1)利用二次不等式的解法可化简集合A ,B ,进而即得;(2)由题可得x C x A ∀∈∉,为真命题,即A C ⋂=∅,然后分C =∅,C ≠∅讨论即得.(1)∵集合{}{}2340||14A x x x x x ==-++≥-≤≤, {}{231002B x x x x x =--=<-或}5x >, ∴{}R 25B x x =-≤≤,{R 1A x x =<-或}4x >,∴(){R 2A B x x ⋂=<-或}5x >;(2)∵∃x C x A ∈∈,为假命题,∴x C x A ∀∈∉,为真命题,即A C ⋂=∅,又{}21|C x m x m =<<+,{}|14A x x =-≤≤,当C =∅时,21m m ≥+,即m 1≥,A C ⋂=∅;当C ≠∅时,由A C ⋂=∅可得,2111m m m <+⎧⎨+≤-⎩,或2124m m m <+⎧⎨≥⎩, 解得2m ≤-,综上,m 的取值范围为2m ≤-或m 1≥.27.(1){|0x x ≤或52x ≥} (2){}|02x x <<【解析】【分析】(1)先进行补集运算,再进行并集运算即可;(2)先求A B 和U P ,再求交集即可. (1)因为{}|13B x x =-<≤,P ={0|x x ≤或52x ≥}, 所以U B ={1x ≤-或3x >},所以()U B P ⋃={0|x x ≤或52x ≥}. (2)因为{}|42A x x =-≤<,{}|13B x x =-<≤,P ={0|x x ≤或52x ≥}所以{}12A B x x ⋂=-<<,502U P x x ⎧⎫=<<⎨⎬⎩⎭, 所以()(){}02U A B P x x ⋂⋂=<<.28.(1){}e 3A B x x ⋂=≤≤(2)[0,)+∞【解析】【分析】(1)根据交集的定义直解, (2)分C =∅和C ≠∅两种情况求解 (1)因为{}13A x x =<≤,{}3e e B y y =≤≤, 所以{}e 3A B x x ⋂=≤≤(2) 当C =∅时,满足A C ⋂=∅,则21m m ,得13m ≥, 当C ≠∅时,因为A C ⋂=∅,所以2111m m m <-⎧⎨-≤⎩,或2123m m m <-⎧⎨≥⎩, 解得103m ≤<或m ∈∅, 所以103m ≤<, 综上,0m ≥,即m 的取值范围为[0,)+∞29.(1){}3A B x x ⋃=≠,(){}23R A B x x ⋂=≤<(2){}2m m ≠【解析】【分析】(1)解出集合B ,利用并集、补集以及交集的定义可求得结果; (2)由已知条件可得出关于m 的不等式,即可解得实数m 的取值范围.(1)解:因为{}3A x x =<,{}{25602B x x x x x =-+>=<或}3x >, 所以{}3A B x x ⋃=≠,{}23R B x x =≤≤,(){}23R A B x x ⋂=≤<.(2)解:因为B C ≠∅,所以2m <或13m +>,解得2m <或2m >, 所以m 的取值范围为{}2m m ≠.30.(1)A ⊂S, B ⊂S(2)A ⊂S, B ⊂S(3)A⊂S, B⊂S【解析】【分析】利用集合包含关系的定义,依次分析即得解(1)由于集合,A B中的每个元素都包含在集合S中,故A⊂S, B⊂S (2)由于集合,A B中的每个元素都是实数,故A⊂S, B⊂S(3)由奇数、偶数都属于整数,故A⊂S, B⊂S。
高一数学集合试题答案及解析

高一数学集合试题答案及解析1.已知A={1,3,a},B={1,a2},且A∪B={1,3,a},求a.【答案】a=±或a=0.【解析】由A∪B={1,3,a}且A={1,3,a}知B A,所以a2∈A,故有a2=3,或a2=a解得a=±,或a=0或a=1.又由元素互异性可知,a≠1且a≠3,所以a=±或a=0.【考点】本题主要考查集合性质,集合的并集。
点评:已知并集或交集,求参数问题,往往需要利用集合中元素的互异性加以检验。
2.已知U={x|-1≤x≤3},A={x|-1<x<3},B={x|x2-2x-3=0},C={x|-1≤x<3},则下列关系正确的是 ()A. A=BB.B=CC.(B) CD.A C【答案】A【解析】B={-1,3},A={-1,3},∴A=B.【考点】本题主要考查集合的子集,集合的补集。
点评:综合题,综合应用集合、方程及不等式知识解题。
3.设U=Z,A={1,3,5,7,9},B={1,2,3,4,5},则图中阴影部分表示的集合是 ()A.{1,3,5}B.{1,2,3,4,5}C.{7,9}D.{2,4}【答案】D【解析】由Venn图可知阴影部分表示的集合为B∩(A)={2,4}.【考点】本题主要考查集合的交集,集合的补集。
点评:读图视图能力的考查,近几年有增加趋势。
4.集合S={x|x≤10,且x∈N*},A S,B S,且A∩B={4,5},(B)∩A={1,2,3},(A)∩(B)={6,7,8},求集合A和B.【答案】A={1,2,3,4,5},B={4,5,9,10}.【解析】如下图所示.因为A∩B={4,5},所以将4,5写在A∩B中.因为(B)∩A={1,2,3},所以将1,2,3写在A中.因为(B)∩(A)={6,7,8},所以将6,7,8写在S中A,B外.因为(B)∩A与(B)∩(A)中均无9,10,所以9,10在B中.故A={1,2,3,4,5},B={4,5,9,10}.【考点】本题主要考查集合的交集,集合的补集。
高一数学集合试题答案及解析

高一数学集合试题答案及解析1.已知U={x|-1≤x≤3},A={x|-1<x<3},B={x|x2-2x-3=0},C={x|-1≤x<3},则下列关系正确的是 ()A. A=BB.B=CC.(B) CD.A C【答案】A【解析】B={-1,3},A={-1,3},∴A=B.【考点】本题主要考查集合的子集,集合的补集。
点评:综合题,综合应用集合、方程及不等式知识解题。
2.集合S={x|x≤10,且x∈N*},A S,B S,且A∩B={4,5},(B)∩A={1,2,3},(A)∩(B)={6,7,8},求集合A和B.【答案】A={1,2,3,4,5},B={4,5,9,10}.【解析】如下图所示.因为A∩B={4,5},所以将4,5写在A∩B中.因为(B)∩A={1,2,3},所以将1,2,3写在A中.因为(B)∩(A)={6,7,8},所以将6,7,8写在S中A,B外.因为(B)∩A与(B)∩(A)中均无9,10,所以9,10在B中.故A={1,2,3,4,5},B={4,5,9,10}.【考点】本题主要考查集合的交集,集合的补集。
点评:涉及实数构成集合问题,常常借助于韦恩图。
3.已知集合A={x|ax2-2x+1=0}.(1)若A中恰好只有一个元素,求实数a的值;(2)若A中至少有一个元素,求实数a的取值范围.【答案】(1) a=0,或a=1 (2) a≤1【解析】(1)∵A中恰好只有一个元素,∴方程ax2-2x+1=0恰好只有一个根.当a=0时,方程的解为x=满足题意;当a≠0时,Δ=(-2)2-4a=0,∴a=1.∴所求a的值为a=0,或a=1.(2)∵A中至少有一个元素,∴方程ax2-2x+1=0有实数根.当a=0时,恰有一个根x=满足题意;当a≠0时,Δ≥0,即(-2)2-4a≥0,解得a≤1.∴所求实数a的取值范围是a≤1【考点】集合的表示、元素与集合的关系点评:本题是一个综合问题,既考查了集合的表示方法、元素与集合的关系,又用到一元二次方程根与系数的关系来确定的取值。
高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)一、单选题1.已知全集{}1,2,3,4,5U =,集合{}3,4,5A =,{}2,3,4B =,则()U AB =( )A .{}1,3,5B .{}1,2,5C .{}1,5D .{}2,5 2.设集合{}22M x Z x =∈-<,则集合M 的真子集个数为( )A .16B .15C .8D .7 3.如图,已知集合{A =1-,0,1,2},{|128}x B x N +=∈<≤,则图中的阴影部分表示的集合为( )A .{1,2}B .{1-,0,3}C .{1-,3}D .{0,1,2} 4.已知集合{}1,2,3A =,{}20B x x =-<,则A B =( )A .{}1B .{}1,2C .{}0,1,2D .{}1,2,3 5.设集合{}|3,A x x x R =<∈,{}1,2,3B =,则A B =( )A .{}1B .{}1,2,3C .{}1,2D .{}1,0,1-6.已知集合{}20A x x =-≤≤,{}21B x x =>,则A B ⋃=( ) A .[)2,1--B .[]()2,01,-⋃+∞C .(](),01,-∞⋃+∞D .[)2,1-7.已知集合{}21A x x =<,{}e 2x B x =<,则A B =( ) A .()1,1- B .()1,ln 2- C .()0,ln 2 D .()ln 2,1 8.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B ( )A .{}0,1,2,3B .{}0,1,2C .{}1,2,3D .{}1,2 9.已知集合11A x x x ⎧⎫-=<⎨⎬+⎩⎭,{}log 4x y x =-,则A B =( ) A .{}41xx -<<∣ B .{}14x x -<< C .{}14x x << D .{}1x x ≥-10.已知集合{}21A x x =-<<,{}03B x x =≤≤,则A B ⋃=( )A .{}01x x ≤<B .{}23x x -<≤C .{}13x x <≤D .{}01x x <<11.已知集合1144A x x ⎧⎫=-<⎨⎬⎩⎭,12B x a x ⎧⎫=<<⎨⎬⎩⎭,若B A ⊆,则实数a 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,2⎛⎤ ⎥⎝⎦C .[)0,∞+D .[)1,+∞12.已知集合{}22280,03x A x x x B x x -⎧⎫=--≤=≤⎨⎬+⎩⎭,则A B ⋃=( ) A .{}42x x -≤≤B .{42x x -≤≤且3}x ≠-C .{}34x x -≤≤ D .{34}x x -<≤ 13.已知全集{}0,1,2,3,4,5U A B ==,(){}1,2,4U AB =,B =( ) A .{}0B .{}3,5C .{}0,3,5D .{}1,2,4 14.已知集合{|13}A x x =-<<,1,{}1,2B =-,则A B =( ) A .{}1,2B .{}1,1,2-C .{}0,1,2D .{}1,0,1,2,3- 15.下面给出的四类对象中,构成集合的是( ) A .某班视力较好的同学B .长寿的人C .π的近似值D .倒数等于它本身的数二、填空题16.已知(){}22,1,01M x y x y y =+=<≤,(){},,N x y y x b b R ==+∈,如果M N ≠∅,那么b 的取值范围是______.17.集合*83A x N N x ⎧⎫=∈∈⎨⎬-⎩⎭,用列举法可以表示为A =_________. 18.已知集合(){}(){},24,,5A x y x y B x y x y =-==+=∣∣,则A B 中元素个数为__________.19.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.20.若集合{}2210A x x x =-+=,{}210B x x =-=,则A ______B .(用符号“⊂”“=”或“⊃”连接)21.若集合{}3cos23,x A x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______. 22.设α:()124R m x m m +≤≤+∈;β:13x ≤≤.若β是α的充分条件,则实数m 的取值范围为______.23.某学校开设校本课程,高一(2110)班确定了数学类、英语类、历史类三个类别校本课程供班上的40名学生选择参加,且40名学生全部参与选择.其中只选数学类的有8人,只选英语类的有8人,只选历史类的有8人,既选数学类又选英语类的有7人,既选数学类又选历史类的有11人,既选英语类又选历史类的有8人,则三类课程都选择参加的有___________人.24.若全集{}0,1,2,3,4U =,{}0,1,2,3A =,{}2,3,4B =,则A B ⋃=______.25.判断下列命题的真假:(1)集合{}1,2,3是集合{}1,2,3的真子集;( )(2){}1是集合{}1,2,3的元素;( )(3)2是集合{}1,2,3的子集;( )(4)满足{}{}00,1,2,3A 的集合A 的个数是322-个.( )三、解答题26.已知{}28200P x x x =--≤,非空集合{}11S x m x m =-≤≤+.若x P ∈是x S ∈的必要不充分条件,求实数m 的取值范围.27.已知集合{}26A x x =-≤≤,{}11,0B x m x m m =-≤≤+>.(1)若A B A ⋃=,求实数m 的取值范围;(2)若x A ∈是x B ∈的充分条件,求m 的取值范围.28.已知函数2()327mx n h x x +=+为奇函数,||1)3x m k x ﹣()=( ,其中R m n ∈、 . (1)若函数h (x )的图象过点A (1,1),求实数m 和n 的值;(2)若m =3,试判断函数11()+()()f x h x k x =在[3x ∈+∞,)上的单调性并证明; (3)设函数()()(),39,3h x x g x k x x ⎧≥⎪=⎨<⎪⎩,若对每一个不小于3的实数1x ,都恰有一个小于3的实数2x ,使得12g x g x ()=() 成立,求实数m 的取值范围.29.已知集合{}3A x a x a =≤≤+,{1B x x =<-或5}x >.(1)若A B =∅,求a 的取值范围;(2)若A B A =,求a 的取值范围.30.已知U =R ,{}2=160A x x -<,{}2=3180B x x x -++>,求A B ,A B .【参考答案】一、单选题1.B【解析】【分析】根据给定条件,利用交集、补集的定义直接计算作答.【详解】集合{}3,4,5A =,{}2,3,4B =,则{3,4}A B =,而全集{}1,2,3,4,5U =,所以(){1,2,5}U A B ⋂=. 故选:B2.D【解析】【分析】求出集合M 中的元素,再由子集的定义求解.【详解】由题意{|04}{1,2,3}M x Z x =∈<<=,因此其真子集个数为3217-=.故选:D .3.B【解析】【分析】由题知{}1,2,3B =,进而得{}1,2A B =,再求阴影部分表示的集合即可.【详解】解:解不等式128x <≤得03x <≤,所以{}1,2,3B =,因为{A =1-,0,1,2},所以{}1,2A B =所以,图中的阴影部分表示的集合为{}1,0,3-.故选:B4.A【解析】【分析】根据集合交集的概念及运算,即可求解.【详解】 由题意,集合{}{}202B x x x x =-<=<,又由{}1,2,3A =,根据集合交集的概念及运算,可得{}1A B ⋂=.故选:A.5.C【解析】【分析】求出集合A 的解集,取交集运算即可.【详解】因为{}|33A x x =-<<,{}1,2,3B =,所以{}1,2A B =.故选:C.6.C【解析】【分析】解不等式求得集合B ,由此求得A B .【详解】()()21,110x x x >+->,解得1x <-或1x >,所以()(),11,B =-∞-⋃+∞,所以(](),01,A B ⋃=-∞⋃+∞.故选:C7.B【解析】【分析】由已知,分别求解出集合A 、集合B 的范围,然后直接求解交集即可.【详解】 由已知,集合{}21A x x =<,即集合{}11A x x =-<<, 集合{}2x B x e =<,即集合{}ln 2B x x =<, 因为11ln ln 21ln e e-=<<=,所以A B ={}1ln 2x x -<<.故选:B.8.D【解析】【分析】先化简集合A ,继而求出A B .【详解】解:(){}{}30=03A x x x x x =-<<<,{}0,1,2,3B =,则A B ={}1,2.故选:D.9.B【解析】【分析】先求出集合A ,B ,再求两集合的交集即可【详解】 解:由11x x -<+得2101x x x ++>+, 因为210x x ++>恒成立,所以1x >-,即{}1A x x =>-.由函数2log y =4x <,即{}4B x x =<. 所以{}14A B x x ⋂=-<<.故选:B10.B【解析】【分析】根据集合的并集计算即可.【详解】{}21A x x =-<<,{}03B x x =≤≤{}|23A B x x ∴=-<≤,故选:B11.C【解析】【分析】解不等式求得集合A ,对a 进行分类讨论,根据B 是A 的子集列不等式,从而求得a 的取值范围. 【详解】1111111,,0,0,4444422x x x A ⎛⎫-<-<-<<<= ⎪⎝⎭,当12a ≥时,B =∅,满足B A ⊆. 当12a <时,由于B A ⊆,所以102a ≤<. 综上所述,a 的取值范围是[)0,∞+.故选:C12.D【解析】【分析】分别解一元二次不等式以及分式不等式得集合A ,B ,再进行并集运算即可.【详解】 因为{}{}228024A x x x x x =--≤=-≤≤,{}20323x B x x x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭, 所以{}34A B x x ⋃=-<≤,故选:D.13.C【解析】【分析】根据条件可得1,2,4∈U B ,则1,2,4B ∉,结合条件即可得答案. 【详解】因为(){}1,2,4U A B =,所以1,2,4∈U B ,则1,2,4B ∉,又{}0,1,2,3,4,5U A B ==,所以0,3,5B ∈,即{}0,3,5B =.故选:C14.A【解析】【分析】根据交集运算求A B【详解】{|13}A x x =-<<,1,{}1,2B =-,{1,2}A B ∴=,故选:A15.D【解析】【分析】根据集合的定义分析判断即可.【详解】对于A ,视力较好不是一个明确的定义,故不能构成集合;对于B ,长寿也不是一个明确的定义,故不能构成集合;对于C ,π 的近似值没有明确近似到小数点后面几位,不是明确的定义,故不能构成集合;对于D ,倒数等于自身的数很明确,只有1和-1,故可以构成集合;故选:D.二、填空题16.(1,2⎤-⎦【解析】【分析】数形结合,进行求解.【详解】M 是以原点为圆心,1为半径的圆位于x 轴上方部分上的点,N 为直线y x b =+上的点,如图,当直线过点()1,0时,此时11b =-,当直线与半圆相切时,此时圆心到直线距离111bd ==+,解得:22b =±,因为直线与y 轴交点在y 轴正半轴,故22b =,由图可知:b 的取值范围是(1,2⎤-⎦.故答案为:(2-17.{1,2}##{2,1}【解析】【分析】根据集合元素属性特征进行求解即可.【详解】因为83N x *∈-,所以31,2,4,8-=x ,可得2,1,1,5=--x ,因为x N ∈,所以1,2x =,集合{1,2}A =.故答案为:{1,2}18.1【分析】利用交集的定义直接求解.【详解】∵集合(){},24A x y x y =-=∣,(){},5B x y x y =+=∣, ∴()(){}24,3,25x y A B x y x y ⎧⎫-=⎧⎪⎪⋂==⎨⎨⎬+=⎩⎪⎪⎩⎭, ∴A B 中元素个数为1.故答案为:1.19.12【解析】【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可.【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12.20.⊂【解析】【分析】先化简集合A 、B ,再去判断集合A 、B 间的关系即可解决.【详解】{}{}22101A x x x =-+==,{}{}2101,1B x x =-==-,则A B ⊂ 故答案为:⊂21.{}1【解析】【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果.【详解】 因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉, 所以{}1A B ⋂=,故答案为:{}1.22.102m -≤≤【解析】【分析】根据给定条件可得β所对集合包含于α所对集合,再利用集合的包含关系列式作答.令α所对集合为:{|124(R)}x m x m m +≤≤+∈,β所对集合为:{|13}x x ≤≤, 因β是α的充分条件,则必有{|13}{|124(R)}x x x m x m m ≤≤⊆+≤≤+∈,于是得11243m m +≤⎧⎨+≥⎩,解得102m -≤≤, 所以实数m 的取值范围为102m -≤≤. 故答案为:102m -≤≤ 23.5【解析】【分析】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解方程可求得结果【详解】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解得5x =.故答案为:524.{}0,1,4【解析】【分析】根据集合的运算法则计算.【详解】 由已知{4}A =,{0,1}B =,所以{0,1,4}A B =.故答案为:{0,1,4}.25. 假 假 假 真【解析】【分析】(1)利用真子集的定义即可判断.(2)由集合与集合的关系即可判断真假.(3)由元素与集合的关系即可判断真假.(4)由真子集的定义即可找到满足条件集合A 的个数.【详解】(1)因为{}1,2,3的真子集有{}{}{}{}{}{},1,2,3,1,2,1,3,2,3∅,所以{}1,2,3不是{}1,2,3真子集,命题为假命题.(2){}1是集合,因此不是{}1,2,3的元素,命题为假命题.(3)因为2是元素,因此不是{}1,2,3的子集,命题为假命题.(4)若{}0A ,所以集合A 中至少含有两个元素且其中一个必须为0,又因为{}0,1,2,3A ,所以集合A 可以从1,2,3中再选取一个元素、或者两个元素,所以满足条件的集合A 把∅和{}0,1,2,3去掉,所以满足条件集合A 的个数为322-个,命题为真命题. 故答案为:假;假;假;真三、解答题26.[]0,3.【解析】【分析】先解出集合P ,由x P ∈是x S ∈的必要不充分条件得出S P ,又S 为非空集合,解不等式求出m 的取值范围即可.【详解】由28200x x --≤,得210x -≤≤,∴{}210P x x =-≤≤.∵S 为非空集合,∴11m m -≤+,解得0m ≥. 又∵x P ∈是x S ∈的必要不充分条件,则S P , ∴12,110,m m -≥-⎧⎨+≤⎩且不能同时取等,解得3m ≤. 综上,m 的取值范围是[]0,3.27.(1)(0,3](2)[5,)+∞【解析】【分析】(1)根据A B A ⋃=,由B A 求解;(2)根据x A ∈是x B ∈的充分条件,由A B 求解.(1) 解:因为{}26A x x =-≤≤,{}11,0B x m x m m =-≤≤+>,且 A B A ⋃=,所以B A ,则01216m m m >⎧⎪-≥-⎨⎪+≤⎩, 解得03m <≤,所以实数m 的取值范围是(0,3];(2)因为x A ∈是x B ∈的充分条件,所以A B ,则01216m m m >⎧⎪-≤-⎨⎪+≥⎩, 解得5m ≥,所以m 的取值范围是 [5,)+∞.28.(1)30,0m n ==(2)单调递增,证明见解析(3)(0,6)【解析】【分析】(1)运用奇函数的定义可得0n =,再由()h x 图象经过点(1,1),解方程可得m ; (2)39()3x f x x x-=++在[3,)∞+递增.运用单调性的定义,结合因式分解和指数函数的单调性,即可得证;(3)求得当3x 时,2()()273273mx m g x h x x x x ===++;当3x <时,||1()9()9()3x m g x k x -==⋅;分别讨论0m ,03m <<,3m ,运用基本不等式和函数的单调性,求得m 的范围.(1) 函数2()327mx n h x x +=+为奇函数, 可得()()h x h x -=-,即22327327mx n mx n x x -++=-++,则0n =, 由()h x 的图象过(1,1)A ,可得h (1)1=,即130m n +=, 解得30m =,故30,0m n ==;(2)3m =,可得39()3x f x x x -=++,[3,)x ∈+∞,()f x 在[3,)+∞ 上递增.证明:设123x x <,则123312121299()()33x x f x f x x x x x ---=++--- 12331221129()33x x x x x x x x ---=-⋅+-, 由123x x <,可得210x x ->,129x x >,1233330x x ---<,则12())0(f x f x -<,即12()()f x f x <,可得()f x 在[3,)∞+递增;(3)当3x 时,2()()273273mx m g x h x x x x===++;当3x <时,||1()9()9()3x m g x k x -==⋅.①0m 时,13x ∀时,1111()()0273m g x h x x x ==+;23x ∀<时,2||221()9()9)30(x m g x k x -==>⋅不满足条件,舍去;②当03m <<时,13x ∀≥时,1111()()(0273mg x h x x x ==∈+,]18m , 23x ∀<时,2||0x m -≥,2||221()9()9()(03x m g x k x -==⋅∈,9], 由题意可得(0,](018m ⊆,9],可得918m ,即162m ; 综上可得03m <<; ③当3m 时,13x ∀≥时,1111()()(0273mg x h x x x ==∈+,]18m , 23x ∀<时,2||30x m m ->-,2||221()9()9()(03x m g x k x -==⋅∈,319())3m -⋅, 由题意可得(0,](018m ⊆,319())3m -⋅, 可得5318m m -<,可令5()318x x H x -=-,则()H x 在R 上递减,(6)0H =, 故由5318m m -<,可得6m <,即36m <, 综上可得06m <<,所以m 的取值范围是(0,6).【点睛】本题考查函数的奇偶性和单调性的定义和运用,考查分类讨论思想方法和化简整理的运算能力,属于难题.29.(1)[]1,2-(2)()(),45,-∞-+∞【解析】【分析】(1)根据交集的定义,列出关于a 的不等式组即可求解;(2)由题意,A B ⊆,根据集合的包含关系列出关于a 的不等式组即可求解;(1) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B =∅, ∴135a a ≥-⎧⎨+≤⎩,解得12a -≤≤, ∴a 的取值范围为[]1,2-;(2) 解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B A =,∴A B ⊆,∴31a +<-或5a >,即4a或5a >, ∴a 的取值范围是()(),45,-∞-+∞.30.{}=34A B x x ⋂-<<,{}=46A B x x ⋃-<<【解析】【分析】先化简集合A 、B ,再去求A B 、A B 即可解决.【详解】{}{}2=16044A x x x x -<=-<< {}{}2=318036B x x x x x -++>=-<< 则{}{}{}=443634A B x x x x x x ⋂-<<⋂-<<=-<< {}{}{}=443646A B x x x x x x ⋃-<<⋃-<<=-<<。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
高一数学集合测试
又a A,b B,
则有
(
)
A. (a+b ) A
B. (a+b) B
C.(a+b)
C D. (a+b) A 、 B 、C 任- 一个 8.集合 A={1 , 2, x},集合 B={2 , 4 , 5},若 A
B={1 , 2 , 3 , 4 , 5}, 则x=( )
A.
1
B. 3
C. 4
D. 5
9.满足条件{1,2,3}
M {1,234,5,6}的集合 M 的个数是
(
)
A. 8
B. 7
C. 6
D. 5
10.全集 U = {1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 }, A= {3
, 4 , 5 },
6 },那么集合{ 2 ,
7 , 8}是
一、选择题 洪12小题,每题5分,四个选项中只有一个符合要求
1.下列选项中元素的全体可以组成集合的是
A.学校篮球水平较高的学生
B.校园中长的高大的树木
C.2007年所有的欧盟国家
D.中国经济发达的城市
2. 方程组
{ x
2
o 的解构成的集合是
A . {(1,1)}
B . {1,1}
C . (1,1)
3. 已知集合A={a , b , c},下列可以作为集合 A 的子集的是
A. a
B. { a , c}
C. { a , e}
4.
下列图形中,表示 M N 的是
)
(
)
(
)
D . {1}
(
)
D.{ a , b , c , d}
A. {0}
B. {0}
C. {0}
D. {0}
6、设集合A = {x|x 参加自由泳的运动员
} , B = {x|x 参加蛙泳的运动员
},对于“既参 加自由泳又参加蛙泳的运动员”用集合运算表示为
A.A AB
B.A
C.A U B
) D.A
7.集合 A={x x
2k,k Z } ,B={ XX 2k 1,k Z } ,C={ xx
4k 1,k Z }
B= {1 , 3 ,
(
5.下列表述正确的是
(
)
( )
2
A. A B
B. A B
C. C U A C U B
D. C U A C U B
11.设集合M {m Z | 3 m 2} ,N { n Z|
1 < n <
3}, 则 MIN ( )
A .
0,1 B .
101 C . 0,1,2 D . 101 ,2
12.如果集合 A={ x|ax 2 + 2x + 1=0} 中只有 「个兀素,
则 a 的值是 (
)
A . 0
B . 0 或 1
C . 1
D . 不能确定
二、填空题 洪4小题,每题4分,把答案填在题中横线上 )
13.用描述法表示被 3除余1的集合 __________________________ 14•用适当的符号填空:
2003 , 2004
a b
N ___________ , M
(C u N)
三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)
17. 已知集合A {xx 2 4 0},集合B {x|ax 2 0},若B A ,求实数a 的取值.
18. 已知集合 A {x1 x 7},集合 B {xa 1 x 2a 5},若满足 A B {x3 x 7},
求实数a 的值.
19. 已知方程x 2 ax b 0 . (1)
若方程的解集只有一个元素,求实数 a , b 满
足的关系式; (2) 若方程的解集有两个元素分别为 1, 3,求实数a , b
的值
20. 已知集合 A {x 1 x 3} , B {y x 2 y,x A} , C {y y 2x a, x A},若满足
C B ,求实数a 的取值范围.
(1) {
xx 2
1 0}
;
⑵{1 , 2, 3}
N ; (3) {1}
{xx 2 x };
(4) 0
{xx 2
2x}.
15.含有三个实数的集合既可表示成
b 一、 2
{a, —,1},又可表示成{a ,a
a
b,0},则
16.已知集合 U {x| 3 x 3} , M
{x | 1 x 1} , C U N
{x|0 x 2}那么集合
3
必修1第一章集合测试参考答案:
M N {x|
3 x 1 或 2 x 3}.
、17 .{0.-1,1};
18. a 2;
19. (1) a 2-4b=0
⑵ a=-4, b=3
20. 2 a 3
1~5 CABCB
6~10
CBBCC
13 {xx 3n 1 ,n Z},
14 (1) {x
2 x
1 0} ;(2){1 ,2,3}
N
;
15 -1 16 N {x| 3 x 0或2 x
11~12 BB
(3)
{1} {xx 2 x} ;(4)0 {xx 2 2x};
3} ; M (C u N) {x|0 x 1};。