排列与组合综合应用题的解法

合集下载

解排列组合应用题的21种策略

解排列组合应用题的21种策略

解排列组合应用题的21种策略排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题绑定方法:标题规定将几个相邻元素绑定成一个组,作为一个大元素参与安排例1.a,b,c,d,e五人并排站成一排,如果a,b必须相邻且b在a的右边,那么不同的排法种数有a、 B类60种,C类48种,D类36种,D类24种2.不相邻问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2七个人并排站成一排。

如果甲方和乙方不得相邻,则不同的安排类型为A、1440 B、3600 C、4820 D和48003.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3 a.B、C、D和e并排站成一排。

如果B必须站在a的右边(a和B不能相邻),有多少种不同的安排a、24种b、60种c、90种d、120种4.标签排序问题的分步方法:将元素排列到指定位置,首先按照规定排列一个元素,然后在第二步排列另一个元素。

如果你继续这样做,你可以依次完成例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有a、6种b、9种c、11种d、23种5.有序分配问题:有序分配问题是指将元素分成若干组,可以逐步分成若干组例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是a、 1260种B,2025种C,2520种D,5040种(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同样的分配方案也是如此44c12c84c4a、ccc种b、3ccc种c、cca种d、种3a34124844412484441248336.全员分配的分组方法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?2)五本不同的书将分发给四名学生,每个学生至少一本。

排列组合问题基本类型及解题方法

排列组合问题基本类型及解题方法

排列组合问题的基本模型及解题方法导语:解决排列组合问题要讲究策略,首先要认真审题,弄清楚是排列(有序)还是组合(无序),还是排列与组合混合问题。

其次,要抓住问题的本质特征,准确合理地利用两个基本原则进行“分类与分步”。

加法原理的特征是分类解决问题,分类必须满足两个条件:①类与类必须互斥(不相容),②总类必须完备(不遗漏);乘法原理的特征是分步解决问题,分步必须做到步与步互相独立,互不干扰并确保连续性。

分类与分步是解决排列组合问题的最基本的思想策略,在实际操作中往往是“步”与“类”交叉,有机结合,可以是类中有步,也可以是步中有类,以上解题思路分析,可以用顺口溜概括为:审明题意,排(组)分清;合理分类,用准加乘;周密思考,防漏防重;直接间接,思路可循;元素位置,特殊先行;一题多解,检验真伪。

注意以下几点:1、解排列组合应用题的一般步骤为:①什么事:明确要完成的是一件什么事(审题);②怎么做:分步还是分类,有序还是无序。

2、解排列组合问题的思路(1) 两种思路:直接法,间接法。

(2) 两种途径:元素分析法,位置分析法。

3、基本模型及解题方法:(一)、元素相邻问题(1)、全相邻问题,捆邦法例1、6名同学排成一排,其中甲,乙两人必须排在一起的不同排法有( C )种。

A 、720B 、360C 、240D 、120说明:从上述解法可以看出,所谓“捆邦法”,就是在解决对于某几个元素要求相邻问题时,可以整体考虑将相邻元素视作一个“大”元素。

(2)、全不相邻问题插空法例2、要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,问有多少不同的排法,解:先将6个歌唱节目排好,其中不同的排法有6!,这6个节目的空隙及两端共有七个位置中再排4个舞蹈节目有47A 种排法,由乘法原理可知,任何两个舞蹈节目不得相邻的排法为4676A A 种例3、高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是A 、1800B 、3600C 、4320D 、5040解:不同排法的种数为5256A A =3600,故选B说明:从解题过程可以看出,不相邻问题是指要求某些元素不能相邻,由其它元素将它隔开,此类问题可以先将其它元素排好,再将特殊元素插入,故叫插空法。

解排列组合应用题的26种策略

解排列组合应用题的26种策略

解排列组合应用题的26种策略排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握.解排列组合问题的基础是两个基本原理,分类用加法原理,分步用乘法原理,问题在于怎样合理地进行分类、分步,特别是在分类时如何做到既不重复,又不遗漏,正确分每一步,这是比较困难的。

要求我们周密思考,细心分析,理解并掌握解题的常用方法和技巧,掌握并能运用分类思想、转化思想、整体思想、正难则反等数学思想解决排列组合问题。

实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1、相邻排列——捆绑法:n个不同元素排列成一排,其中某k个元素排在相邻位置上,有多少种不同排法?先将这k个元素“捆绑在一起”,看成一个整体,当作一个元素同其它元素一起排列,共有种排法.然后再将“捆绑”在一起的元素进行内部排列,共有种方法.由乘法原理得符合条件的排列,共种.例1.五人并排站成一排,如果必须相邻且在的右边,那么不同的排法种数有()A、60种B、48种C、36种D、24种解析:把视为一人,且固定在的右边,则本题相当于4人的全排列,种,答案:.例2 有3名女生4名男生站成一排,女生必须相邻,男生必须相邻,共有多少种不同的站法?解:先把3名女生作为一个整体,看成一个元素,4名男生作为一个整体,看成一个元素,两个元素排列成一排共有种排法;女生内部的排法有种,男生内部的排法有种.故合题意的排法有种.2.相离排列——插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.将n个不同元素排成一排,其中k个元素互不相邻,有多少种排法?先把个元素排成一排,然后把k个元素插入个空隙中,共有排法种.例3 五位科学家和五名中学生站成一排照像,中学生不相邻的站法有多少种?解:先把科学家作排列,共有种排法;然后把5名中学生插入6个空中,共有种排法,故符合条件的站法共有种站法.例4.七位同学并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种解析:除甲乙外,其余5个排列数为种,再用甲乙去插6个空位有种,不同的排法种数是种,选.3、定序问题---倍缩法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.此法也被叫消序法.将n个不同元素排列成一排,其中某k个元素的顺序保持一定,有多少种不同排法?n个不同元素排列成一排,共有种排法;k个不同元素排列成一排共有种不同排法.于是,k个不同元素顺序一定的排法只占排列总数的分之一.故符合条件的排列共种.例5.五人并排站成一排,如果必须站在的右边(可以不相邻)那么不同的排法种数是()A、24种B、60种C、90种D、120种解析:在的右边与在的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即种,选.例6. A,B,C,D,E五个元素排成一列,要求A在B 的前面且D在E的前面,有多少种不同的排法?解:5个不同元素排列一列,共有种排法. A,B两个元素的排列数为;D,E两个元素的排列数为.因此,符合条件的排列法为种.4、标号排位问题---分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例7.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有()A、6种B、9种C、11种D、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选.5、留空排列——借元法例8、一排10个坐位,3人去坐,每两人之间都要留空位,共有种坐法。

排列、组合的综合问题

排列、组合的综合问题
答案:1 560
从 1,3,5,7,9 中任取三个数,从 2,4,6,8 中任取两 个数,则可以组成没有重复数字的五位数的个数为________. 解析:“先取元素后排列”,分三步完成:第一步,从 1,3, 5,7,9 中任取三个数,有 C35种取法;第二步,从 2,4,6,8 中任取两个数,有 C24种取法;第三步,将取出的五个数全排列, 有 A55种排法.共有符合条件的五位数 C35C24A55=7 200(个). 答案:7 200
• 处理有附加条件的排列、组合应用题的策略: • (1)以元素为主考虑,即先满足特殊元素的要求,
再考虑其他元素; • (2)以位置为主考虑,即先满足特殊位置的要求,
再考虑其他位置; • (3)先不考虑附加条件,计算出排列数或组合数,
再减去不合要求的排列数或组合数.
【基础检测】
1.从黄瓜、白菜、油菜、扁豆 4 种蔬菜中选
个,再加上 3 开头的排列数才共有 180 个,如果加
上 4 开头的,则共有 240 个,所以第 200 项应该是
4 开头的数.
而形如 4 1
数,有 A24=12 个.
故 200 项在形如 4 2
中.
又 421
, 423
各有 3 个数,故此数应在形如 4 2 5 中 的 第 二 个数、即符合 180+12+3+3+2=200. 故所求第 200 项为:4253.
A.24
B.48
C.120
D.72
D
【解析】解法一:特殊位置法:第一步:从除
A 外的 4 人中选 2 人参加理、化竞赛,有 A24种选法; 第二步:从剩余 3 人中选 2 人参加数、英竞赛,有 A23种选法,共 A24·A23=72 种.
解法二:特殊元素法:分选 A 及不选 A 两种, 共 C34·C12A33+A44=72 种.

排列组合问题的解答技巧和记忆方法

排列组合问题的解答技巧和记忆方法

排列组合问题的解题策略关键词:排列组合,解题策略①分堆问题;②解决排列、组合问题的一些常用方法:错位法、剪截法(隔板法)、捆绑法、剔除法、插孔法、消序法(留空法). 一、相临问题——捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。

评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。

二、不相临问题——选空插入法例2.7名学生站成一排,甲乙互不相邻有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 .评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。

三、复杂问题——总体排除法在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。

例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.四、特殊元素——优先考虑法对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。

例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种.解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法.例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种.解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种.五、多元问题——分类讨论法对于元素多,选取情况多,可按要求进行分类讨论,最后总计。

(完整版)解排列组合应用题的解法技巧

(完整版)解排列组合应用题的解法技巧

解排列组合应用题的解法•技巧引言:1、本资料对排列、组合应用题归纳为8种解法、13种技巧2、解排列组合问题的“16字方针”:分类相加,分步相乘,有序排列,无序组合一般先选再排,即先组合再排列,先分再排。

弄清要完成什么样的事件是前提,解决这类问题通常有三种途径(1)以元素为主,应先满足特殊元素的要求,再考虑其他元素(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置即采用“先特殊后一般”的解题原则(3)先不考虑附加条件,计算岀排列或组合数,再减去不符合要求的排列数或组合数前两种方式叫直接解法,后一种方式叫间接(剔除)解法注:数量不大时可以逐一排出结果。

3、解排列组合问题的依据是:分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得岀的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得岀的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列,无序组合.(一)排列组合应用题的解法排列组合应用题的解题方法既有一般的规律,又有很多特别的技巧,它要求我们要认真地审题,对题目中的信息进行科学地加工处理。

下面通过一些例题来说明几种常见的解法。

一.运用两个基本原理二.特殊元素(位置)优先三.捆绑法四.插入法五.排除法六.机会均等法七.转化法八.隔板法一.运用两个基本原理加法原理和乘法原理是解排列组合应用题的最基本的出发点,可以说对每道应用题我们都要考虑在记数的时候进行分数或分步处理。

例1: n个人参加某项资格考试,能否通过,有多少种可能的结果?解法1:用分类记数的原理,没有人通过,有C0种结果;1个人通过,有c n种结果,……;n个人通过,有C;种结果。

所以一共有C: C n C:2n种可能的结果。

解法2 :用分步记数的原理。

第一个人有通过与不通过两种可能,第二个人也是这样,……,第n个人也是这样。

所以一共有2n种可能的结果。

排列组合问题的几种巧解方法

排列组合问题的几种巧解方法

排列组合问题的几种巧解方法排列组合应用问题是历年高考必考题目,因其内容比较抽象、题型繁多、灵活多变、解题方法独特,与学生原有解题经验甚不相同,而成为高中数学教学的一个难点。

但只要我们认真审题,明确题目属于排列还是组合问题,或是排组混合问题,抓住问题本质特征,把握基本思想,灵活应用基本原理,注意讲究一些基本策略和方法技巧,善于分类讨论,适当转化,就能开拓思路,化难为易,使问题迎刃而解。

求解排列组合问题除了掌握两个基本原理(加法原理和乘法原理)外,没有现成的方法可套,只能根据具体问题灵活采用各种技巧。

本文就此通过一些实例介绍一下解决此类问题的一些常见的技巧。

一、对等法。

在有些问题中,某种限制条件的肯定与否定是对等的,各占全体的二分之一,在求解中只要求出全体,就可以得到所求。

例如:期中安排考试科目9门,语文要在数学之前考,有多少种不同的安排顺序?分析:对于任何一个排列问题,就其中的两个元素来讲的话,他们的排列顺序只有两种情况,并且在整个排列中,他们出现的机会是均等的,因此要求其中的某一种情况,能够得到全体,那么问题就可以解决了。

并且也避免了问题的复杂性。

解:不加任何限制条件,整个排法有种,“语文安排在数学之前考”,与“数学安排在语文之前考”的排法是相等的,所以语文安排在数学之前考的排法共有种。

二、插入法。

对于某两个元素或者几个元素要求不相邻的问题,可以用插入法,即先排好没有限制条件的元素,然后将有限制条件的元素按要求插入排好元素后的空档之中即可。

例如:学校组织老师学生一起看电影,同一排电影票12张。

8个学生,4个老师,要求老师在学生中间,且老师互不相邻,共有多少种不同的坐法?分析:此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待。

所涉及问题是排列问题。

解:先排学生共有种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有种选法。

根据乘法原理,共有的不同坐法为种。

专题一 排列与组合

专题一 排列与组合

专题一排列与组合应用题一、知识提要1.排列与组合应用题,是高考的常见题型,且与后面学习的古典概型问题联系密切。

高考中重点考查有附加条件的应用问题,解决的方法主要从以下三个方面考虑:(1)以元素为主,特殊元素优先考虑(2)以位置为主,特殊位置优先考虑(3)间接法:暂不考虑附加条件,计算出排列或组合数,再减去不符合条件的情况。

2.排列组合综合问题一般思路:先组合后排列,即先选元素后排列,同时注意按性质分类或按时间的发生过程分步。

3.解决首先纸条的排列、组合问题的一般策略有:(1)特殊元素优先考虑安排的策略;(2)正难则反,等价转化的策略;(3)相邻问题捆绑处理策略;(4)不相邻问题插空处理策略;(5)定序问题、平均分组问题除法策略;(6)“小集团”排列问题宪政体后局部策略;(7)分排问题直排处理策略;(8)构造模型的策略。

二、典型问题(一)排队问题例1.4男3女坐在一排,分别求下列各种排法的种数(1)某人必须在中间(2)某两人必须站在两端(3)某人不在中间和两端(4)甲不在最左端且乙不能在最左端(5)甲乙两人必须相邻(6)甲乙两人不能相邻(7)甲乙两人必须相隔1人(8)4男必须相邻,3女也必须相邻(9)3女不能相邻(10)甲必须在乙的左边(11)4男不等高,按高矮顺序排列点评:排队问题中常分为“在和不在”、“邻与不邻”、“顺序固定”等问题。

变式练习:1、四个人参加一次聚会,若任意两人不同是到场,则甲比乙先到的情况有__种,若甲乙丙三人中甲先到,其次是乙,丙最后到的情况有___种。

2、三名男歌手,两名女歌手联合举行一场音乐会,演出的出场顺寻要求两名女歌手之间恰有一名男歌手,不同的出场顺序有___种。

3、有6名同学参加了演讲比赛,决出了第一至第六的名次,评委告诉甲,乙两位同学“你们都没有拿到冠军,但甲不是最差”则这6名同学的排名顺序有___种。

(二)分组问题:1.弄清是否为平均分租,若是平均分组,则需用除法策略2.分组后是否需分配,若分配则需要排列.(先分组在排列)例2.六本不同的书,按下列要求各有多少种不同的分法?(1)分成三堆,一堆一本,一堆二本,一堆三本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

现有尺码各不相同的5双袜子, 从中任取5支,至少能配成一 双的取法有________种。
Байду номын сангаас
要从7所学校选出10人参加素 质教育研讨班,每所学校至少 参加1人,则这10个名额共有 ______种分配方案。
某博物馆要在20天内接待8所学 校的学生参观,每天只安排一 所学校,其中一所人数较多的 学校要连续参观3天,其余学校 均只参观1天,则在这20天内不 同的安排方法有______种。 (用式子作答)
排列与组合综合应用题 的解法
(1)从5门不同的文科学科和 4门不同的理科学科中任选4门, 组成一组综合高考科目组。若 要求这组科目中文理科都有, 则不同的选法的种数为( ) A.60 B.80 C.120 D.140
(2)某人射击8枪,命中4枪, 4枪命中恰好有3枪连在一起的 情形的不同种数为( )
(5)一直线和圆相离,这条 直线上有6个点,圆周上有4个 点,通过任意两点作直线,最 少可作直线的条数为( ) A.37 B.19 C.13 D.7
(6)某运输公司有7个车队,每 个车队的车多于4辆,现从这7个 车队中抽取10辆,且每个车队至 少抽一辆组成运输队,则不同的 抽法有( ) A.84 B.120 C.63 D.301
A.720 B.480 C.224 D.20
(3)某种产品有4只次品和6只 正品,每只均不同且可区分, 今每次取出一只测试,直到4只 次品全部测出为止,则最后一 只次品恰好在第五次测试中被 发现的不同情况有( ) A.24 B.144 C.576 D.720
(4)从6双不同颜色的手套中 任取4只,其中恰好有1双同色 的取法有( ) A.240 B.180 C.120 D.60
(9)从5部不同的影片中选出4部, 在3个影院放映,每个影院至少 放映一部,每部影片只放映一 场,共有_____种不同的放映 方法。(用数字作答)
从6台原装计算机和5台组装计 算机中任意选取5台,其中至少 有原装和组装计算机各2台,则 不同的选取法有_________种。 (结果用数值表示)
停车场有12个停车位,现有8 辆车停放,若要求四个空车位 连在一起,则有_______种不 同的停车方法。
(7)在一次文艺演出中,需给 舞台上方安装一排彩灯共15只, 以不同的点亮方式增加舞台效 果。要求每次点亮时,必须有6 只灯是关的,且相邻的灯不能 同时被关掉,两端的灯必须点 亮,则不同的点亮方式有( ) A.28 B.84 C.180 D.360
(8)有编号为1、2、3的3个盒 子和10个相同的小球,现把这 10个小球全部装入3个盒子中, 使得每个盒子所装球数不小于 盒子的编号数,这种装法共有 ( ) A.9 B.12 C.15 D.18
相关文档
最新文档