供电系统的分类
配电系统分类类

1)TN-C供电系统。
它的工作零线兼做接零保护线。
这种供电系统就是平常所说的三相四线制。
但是如果三相负荷不平衡时,零线上有不平衡电流,所以保护线所连接的电气设备金属外壳有一定电位。
如果中性线断线,则保护接零的漏电设备外壳带电。
因此这种供电系统存在着一定缺点。
2)TN-S供电系统。
它是把工作零线N和专用保护线Pe.在供电电源处严格分开的供电系统,也称三相五线制。
它的优点是专用保护线上无电流,此线专门承接故障电流,确保其保护装置动作。
应该特别指出,PE线不许断线。
在供电末端应将PE线做重复接地。
3)TN-C-S供电系统。
在建筑施工现场如果与外单位共用一台变压器或本施工现场变压器中性点没有接出PE线,是三相四线制供电,而施工现场必须采用专用保护线PE时,可在施工现场总箱中零线做重复接地后引出一根专用PE线,这种系统就称为TN-C-S供电系统。
施工时应注意:除了总箱处外,其他各处均不得把N线和PE线连接,PE线上不许安装开关和熔断器,也不得把大地兼做PE线。
Pe 线也不得进入漏电保护器,因为线路末端的漏电保护器动作,会使前级漏电保护器动作。
不管采用保护接地还是保护接零,必须注意:在同一系统中不允许对一部分设备采取接地,对另一部分采取接零。
因为在同一系统中,如果有的设备采取接地,有的设备采取接零,则当采取接地的设备发生碰壳时,零线电位将升高,而使所有接零的设备外壳都带上危险的电压。
低压配电系统解决方案我国发电厂的发电机组输出额定电压为3.15~20KV。
为了减少线路能耗、压降,以及节约有色金属和降低线路工程造价,必须经发电厂中的升压变电所升压至35~500KV,再由高压输电线传送到受电区域变电所,降压至6~10KV,经高压配电线送到用户配电变电所降压至380V低压,供用电设备使用。
低压配电系统系统图基本如下:建筑工程供电使用的基本供电系统有三相三线制三相四线制等,但这些名词术语内涵不是十分严格。
国际电工委员会(IEC )根据接地方式的不同,统一规定,称为TT 系统、TN 系统、IT 系统。
供电系统N-PE环路电阻分析-1

防雷专业检测换证培训教材二供电系统N-PE环路电阻分析1.供电系统分类电力供电分TN、TT、IT三种系统,分述如下:1.1TN系统:中性点采用直接接地,电力设备的外露可导电部分(外壳)采用接零保护的称谓TN系统。
TN系统又分为三种形式:1.1.1TN-S系统:这种保护系统是整个系统的中性线N与保护线PE是分开的。
见图1所示,即将设备外壳接在保护线PE(无流零线)上,在正常情况下,保护线上没有电流流过,所以外壳不带电。
具有三条相线(L1,L2,L3),一条工作中性线(N)和一条保护线(PE),即三相五线制系统,称谓TN-S 系统。
N线入户端不重复接地,由PE线重复接地,因此加长了环路导线的接地电阻,其电阻值较TN-C-S偏大。
1.1.2TN-C系统:这种保护系统是整个系统的中性线N与保护线PE是合一的。
见图2所示的PEN线,在这种系统中由于电气设备的外壳接到保护中性线PEN上,当一相绝缘损坏与外壳相连时,则该相线、设备外壳、保护中性线形成闭合回路。
这时,电流一般来说是比较大的,从而引起保护电器(空气开关)动作,使故障设备脱离电源线。
TN-C系统由于是将保护线与中性线合一的,所以通常适用于三相负荷比较平衡,且单相负荷容量较小的场所。
具有三条相线(L1,L2,L3),一条工作中性线(N),即三相四线系统,称谓TN-C系统。
中性线(N)兼做保护线PEN,中性线(零线)重复接地。
该系统一般用在建筑物的供电有区域变电所引来的场所。
由于N线与PE线合一,故不存在环路电阻的问题。
1.1.3 TN-C-S系统:该系统中有一部分采用中性线与保护线合一的,局部采用专设的保护线,如图3所示。
具有三条相线(L1,L2,L3),一条中性线(N),又有部分电路实行N和PE线分开设置的,称谓TN-C-S 系统,该系统一般在建筑物的供电有区域变电所引来的场所,进户之前采用TN-C系统,进户处重复接地,进户后变成TN-S系统。
由于N线与PE线在入户处重复接地,其环路电阻比TN-S线路缩短,故电阻值也小些。
供电系统的分类

供电系统的分类供电系统是指为用户提供电力能源的组织、设施和设备。
根据供电方式、供电范围和用途不同,可以将供电系统分为不同的类型。
本文将介绍几种常见的供电系统分类。
按供电方式分类集中供电系统集中供电系统是指在电厂发电后,采用输电、变电和配电手段,将电能送往用户的系统。
该系统可以直接向用户提供交流或直流电。
传统的集中供电系统一般采用交流电,但近年来,随着太阳能和风能等新能源的开发应用,也逐渐采用了直流输电方式。
集中供电系统适用于大范围的供电,供电能力强,但投资和运营成本高。
分布式供电系统分布式供电系统是指通过自发电设备或小型电力设备(如太阳能电池板、小风力发电机等)在用户场址现场实现电能转换和供应的系统。
由于其小型化、轻便化的特点,该系统可随时随地进行扩容或下调功率,维护维修方便,适用于一些小范围、分散的供电需求。
联合供电系统联合供电系统是指将集中供电系统和分布式供电系统相结合,以满足社会不同范围和用途的供电需求。
联合供电系统一般是由集中供电网络与分布式供电网络在一定范围内相互衔接,形成用户电网。
同时,联合供电系统还可以利用储能设备、微网、智能控制等多种技术手段,提高供电质量和效率。
按供电范围和用途分类送电系统送电系统是指以输电线路为主,将电厂发出的电能输送到大范围的缺电地区或其他供电系统的系统。
送电系统一般采用高压输电线路,以保证被送电系统的稳定可靠运行。
配电系统配电系统是指将送来的电能通过变电站变压、变流,按照用户不同范围和用途的需求进行供应的系统。
配电系统是整个供电系统的最后一个环节,其准确高效的运行是保障用户用电质量和稳定供电的重要保障。
通信供电系统通信供电系统是指在电力传输和配电过程中要进行监测和控制的各种设备和通信系统,包括各种电缆、绝缘子、电缆桥架等。
该系统在电力供应过程中发挥着极为重要的作用,它不但能够实现对供电系统的精确监测,还能够保障电力运行稳定、可靠。
结语供电系统的分类并不是固定不变的,随着时代的推进和技术的发展,它也在不断地演变和升级。
供电系统概述

第一章供电系统概述第一节电力系统与供电系统一、电力系统的构成由发电厂的发电机、升压及降压变电设备、电力网及电能用户(用电设备)组成的系统统称为电力系统。
1.发电厂(1)功能:发电厂是生产电能的场所。
把自然界中的一次能源转换为用户可以直接使用的二次能源——电能。
(2)种类:火力发电厂、水利发电厂、核能发电厂、潮汐发电、地热发电、太阳能发电、风力发电等。
(3)发电设备:发电机。
2.电力网(1)功能:变换电压、传送电能。
(2)组成:由升压和降压变电所和与之对应的电力线路组成。
3.电力用户(用电设备)消耗电能的场所,将电能通过用电设备转换为满足用户需求的其他形式的能量例如:电动机将电能转换为机械能、电热设备将电能转换为热能、照明设备将电能转换为光能等。
二、配电系统的组成1.供电电源配电系统的电源可以取自电力系统的电力网或企业、用户的自备发电机。
2.配电网(1)作用:接受电能、变换电压、分配电能。
(2)组成:由企业或用户的总降压变电所(或高压配电所)、高压输电线路、车间降压变电所(或配电所)、低压配电线路组成。
3.用电设备(1)作用:用电设备是指专门消耗电能的电气设备。
据统计用电设备中70%是电动机类设备,20%左右是照明用电设备。
(2)结构:与电力系统是极其相似的,所不同的是配电系统的电源是电力系统中的电力网,电力系统的用户实际上就是配电系统。
(3)分类:高压用电设备:额定电压在1kV以上。
低压用电设备:额定电压在400V以下。
第二节供电质量供电质量指标是评价供电质量优劣的标准参数。
一、电压偏移1.定义:电压偏移指用电设备的实际端电压偏离其额定电压的百分数。
用公式表示为U-U NU%=────×100%U N式中U N——用电设备的额定电压,kV;U——用电设备的实际端电压,kV。
2.原因:是系统滞后的无功负荷所引起的系统电压损失。
3.用电设备端子处电压偏移允许值(以额定电压百分数表示):(1)一般电动机±5%,特殊情况下-10%~+5%。
市电分类及供电系统

主讲:凌太平
一、市电等级分类
通信用交流电源宜利用市电作为主用电源。 根据通信局(站)所在地区的供电条件、线路引入方式及运行状态,将市电供 电分为四类,其划分条件应符合下列要求: 1. 一类市电供电为从两个稳定可靠的独立电源各自引入一路供电线。该两路不 应同时出现检修停电,平均每月停电次数不应大于1 次,平均每次故障时间不 应大于0.5h。两路供电线宜配置备用市电电源自动投入装置。 2. 二类市电供电线路允许有计划检修停电,平均每月停电次数不应大于3.5 次, 平均每次故障时间不应大于6h。供电应符合下列条件之一的要求: 1)由两个以上独立电源构成稳定可靠的环形网上引入一路供电线。 2)由一个稳定可靠的独立电源或从稳定可靠的输电线路上引入一路供电线。 3. 三类市电供电为从一个电源引入一路供电线,供电线路长、用户多、平均每 月停电次数不应大于4.5 次,平均每次故障时间不应大于8h。 4. 四类市电供电应符合下列条件之一的要求: 1)由一个电源引入一路供电线,经常昼夜停电,供电无保证,达不到第三类市电 供电要求。 2)有季节性长时间停电或无市电可用。
4、动力环境集中监控系统 动力环境集中监控系统(以下简称监控系统)是对分布 的各个独立的动力设备和机房环境监控对象进行遥测、遥 信等采集,实时监视系统和设备的运行状态,记录和处理 相关数据,及时侦测故障,并作必要的遥控操作,适时通 知人员处理;实现通信局(站)的少人无人值守,以及电 源、空调的集中监控维护管理,提高供电系统的可靠性和 通信设备的安全性。
感谢下 载
电池组组成的直流供电系统,对通 信设备可采用分散或集中供电方式供电。 分散供电方式应根据通信容量、机房分布、维护技术和 维护体制等条件,使电源设备尽量靠近负荷中心,并能 提供机动灵活的扩容条件。对于大型通信枢纽,大型或 重要的通信局(站)、容量超过5 万门或有两个以上交 换系统的电话交换局,宜采用分散供电方式。电源设备 安装于通信机房时:必须采用高频开关型整流器、阀控 式密封铅酸蓄电池组。直流供电系统应采用在线充电方 式以全浮充制运行。电池浮充电压、电池再充电或均衡 充电电压、初充电电压等,均应根据蓄电池种类和通信 设备端子电压要求计算确 定。
煤矿综采工作面供电设计说明

煤矿综采工作面供电设计说明一、供电系统的分类根据煤矿综采工作面的情况和电压等级,供电系统可以分为高压供电系统和低压供电系统两部分。
1.高压供电系统:2.低压供电系统:低压供电系统主要为井下照明、通风、监控等非主要设备供电。
具体包括配电箱、照明灯具、电缆桥架、插座等。
二、供电系统的设计原则供电系统的设计应遵循以下原则:1.安全可靠:供电系统设计应满足国家相关安全规定,确保供电设备在运行过程中不发生故障,且能够及时发现和排除隐患。
2.合理高效:供电系统设计应根据工作面的实际情况,满足设备运行所需的电能供应,降低能耗,提高供电的效率和质量。
3.经济合理:供电系统的设计应充分考虑成本问题,根据实际需要进行合理配置,避免不必要的浪费。
三、供电系统的具体设计要点1.高压供电系统设计要点:(1)变电站的选择:变电站应选择可靠性高、运行安全稳定的设备,具备过流、过压、短路等保护功能。
(2)高压开关柜的选型:高压开关柜应满足可靠性高、操作简便、经济合理的要求,具备过流、短路等继电保护功能。
(3)高压电缆敷设:应选择符合国家标准的高压电缆,并进行正确敷设,保证电缆的绝缘完好性和安全可靠性。
2.低压供电系统设计要点:(1)配电箱的选型:配电箱应选择品牌可靠、结构合理的产品,具备过载保护、漏电保护等功能。
(2)电缆的选择:应选择符合国家标准的低压电缆,并进行正确敷设和维护,保证电缆的安全可靠性。
(3)照明设计:应根据工作面的具体情况,合理选用照明灯具,并进行合理布局,保证工作面的照明质量,提高工作面的安全性。
四、供电系统的检验和维护程序1.定期检测:供电系统应定期进行综合性能和安全性能的检查,排除存在的故障和隐患。
2.配电设备的定期维护:配电设备应进行定期的保养和维修,并进行记录,以保证设备的安全可靠性。
3.灯具的定期更换:照明灯具应定期进行检查和更换,保证井下的照明质量。
总之,煤矿综采工作面供电设计是煤矿安全生产中的重要环节,其合理的设计能够保证设备的安全高效运行,并提高煤矿的开采效率和安全性。
TN、TT、IT供电系统的特点及区别解析

TN、TT、IT供电系统的特点及安装要求380V/220V低压配电系统按保护接地的形式不同可分为:IT系统、TT系统和TN系统。
IT系统的电源中性点是对地绝缘的或经高阻抗接地,而用电设备的金属外壳直接接地。
即:过去称三相三线制供电系统的保护接地。
TT系统的电源中性点直接接地;用电设备的金属外壳亦直接接地,且与电源中性点的接地无关。
即过去的三相四线制供电系统中的保护接地。
TN系统,在变压器或发电机中性点直接接地的380/220V三相四线低压电网中,将正常运行时不带电的用电设备的金属外壳经公共的保护线与电源的中性点直接电气连接。
即过去的三相四线制供电系统中的保护接零。
TN系统的电源中性点直接接地,并有中性线引出。
按其保护线形式,TN系统又分为:TN-C系统、TN-S系统和TN-C-S系统等三种。
(1)TN-C系统(三相四线制),该系统的中性线(N)和保护线(PE)是合一的,该线又称为保护中性线(PEN)线。
它的优点是节省了一条导线,缺点是三相负载不平衡或保护中性线断开时会使所有用电设备的金属外壳都带上危险电压。
(2)TN-S系统就是三相五线制,该系统的N线和PE线是分开的,从变压器起就用五线供电。
它的优点是PE线在正常情况下没有电流通过,因此不会对接在PE线上的其他设备产生电磁干扰。
此外,由于N线与PE线分开,N线断开也不会影响PE线的保护作用。
③TN-C-S系统(三相四线与三相五线混合系统),该系统从变压器到用户配电箱式四线制,中性线和保护地线是合一的;从配电箱到用户中性线和保护地线是分开的,所以它兼有TN-C系统和TN-S系统的特点,常用于配电系统末端环境较差或有对电磁抗干扰要求较严的场所。
我国的低压配电系统基本上有三种:即TT系统、TN系统、IT系统。
上述各种保护系统均采用国际标准所用符号,第一字母T:表示中性点直接接地;I表示中性点不直接接地(不接地或经高电阻接地等);第二个字母T:表示外露可导电部分对地直接电气连接与电力系统任何接地无关;N表示外露可导电部分与电力系统的接地点直接电气连接。
市电分类及供电系统

1、交流市电电源供电标准应符合下表1-1-1要求: 受电端子上电 标称电 压变动范围 (V) 压 (V ) 220 380 187~242 323~418 频率标称 频率变动范围 值(hz) (hz) 功率因数 100KVA以 100KVA 下 以上 ≥0.85 ≥0.85 ≥0.90 ≥0.90
直流供电系统 由整流配电设备和蓄电池组组成的直流供电系统,对通 信设备可采用分散或集中供电方式供电。 分散供电方式应根据通信容量、机房分布、维护技术和 维护体制等条件,使电源设备尽量靠近负荷中心,并能 提供机动灵活的扩容条件。对于大型通信枢纽,大型或 重要的通信局(站)、容量超过5 万门或有两个以上交 换系统的电话交换局,宜采用分散供电方式。电源设备 安装于通信机房时:必须采用高频开关型整流器、阀控 式密封铅酸蓄电池组。直流供电系统应采用在线充电方 式以全浮充制运行。电池浮充电压、电池再充电或均衡 充电电压、初充电电压等,均应根据蓄电池种类和通信 设备端子电压要求计算确 定。
几个重要的概念 1、系统容量。系统容量指的是交流供电时,供电设备所能提供的最大功 率。如市电供电时,指的就是电力变压器的额定容量;柴油发电机组供电 时指的就是柴油机的额定功率;UPS供电时指的就是UPS的额定功率等等。 但是它们表示容量的单位却不一样,电力变压器和UPS计量单位是伏安VA (或千伏安KVA),我国国家标准(GB)规定发电机组必须用瓦W(或千 瓦KW)表示。伏安表示的是视在功率,瓦表示的是有功功率。这在实际应 用中是有很大的区别的,只有在理想情况下,它们的功率因数都等于1时, 在数值上是相等的。 2、功率因数。功率因数的定义是有功功率与视在功率的比值。功率因数 cosφ = P/S的物理意义是供电线路上的电压与电流的相位差的余弦。 国标规定:变压器的功率因数为0.8;柴油发电机组的功率因数为0.85; 例如,标称容量100KVA的变压器,在规定的使用环境下,它的输出最大有 功功率是80KW;同理,标称容量是100KW的柴油发电机组,在规定的使 用环境下,可以提供116KVA的视在功率。UPS的功率因数,因类型不同, 工作方式不同,实际使用时差异较大。 3、电功和电功率。电功指的是供电系统实际消耗的电能,计量单位是千 瓦时(KWH)。电功率指的是正常工作情况下,负载上消耗的额定功率。 在市电和油机供电的情况下,由于每个负载的功率相对于系统总容量较小, 故不需要考虑它的瞬时功率;而UPS系统供电的情况则不同,负载功率与 系统容量比较接近,就必须考虑负载的瞬时功率(例如负载的启动功率)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什么是TT、TN-C、TN-S、TN-C-S、IT系统?
一、建筑工程供电系统
建筑工程供电使用的基本供电系统有三相三线制三相四线制等,但这些名词术语内涵不是十分严格。
国际电工委员会(IEC)对此作了统一规定,称为TT系统、TN系统、IT系统。
其中TN系统又分为TN-C、TN-S、TN-C-S系统。
下面内容就是对各种供电系统做一个扼要的介绍。
(一)工程供电的基本方式
根据IEC规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即TT、TN和IT系统,分述如下。
(1)TT方式供电系统
TT方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT系统。
第一个符号T表示电力系统中性点直接接地;第二个符号T表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。
在TT系统中负载的所有接地均称为保护接地,如图1所示。
这种供电系统的特点如下。
图1 TT方式供电系统
1)当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。
但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。
2)当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困此TT系统难以推广。
3)TT系统接地装置耗用钢材多,而且难以回收、费工时、费料。
现在有的建筑单位是采用TT系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量,如图2所示。
图2 带专用保护线的TT方式供电系统
图中点画线框内是施工用电总配电箱,把新增加的专用保护线PE线和工作零线N分开,其特点是:①共用接地线与工作零线没有电的联系;②正常运行时,工作零线可以有电流,而专用保护线没有电流;③TT系统适用于接地保护占很分散的地方。
(2)TN方式供电系统
这种供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用TN表示。
它的特点如下。
1)一旦设备出现外壳带电,接零保护系统能将漏电电流上升为短路电流,这个电流很大,是TT系统的5.3倍,实际上就是单相对地短路故障,熔断器的熔丝会熔断,低压断路器的脱扣器会立即动作而跳闸,使故障设备断电,比较安全。
2)TN系统节省材料、工时,在我国和其他许多国家广泛得到应用,可见比TT系统优点多。
TN系统根据其保护零线是否与工作零线分开而划分为TN-C和TN-S等两种。
(3)TN-C方式供电系统
它是用工作零线兼作接零保护线,可以称作保护中性线,可用NPE表示,如图3所示。
这种供电系统的特点如下。
图3 TN-C方式供电系统
1)由于三相负载不平衡,工作零线上有不平衡电流,对地有电压,所以与保护线所联接的电气设备金属外壳有一定的电压。
2)如果工作零线断线,则保护接零的漏电设备外壳带电。
3)如果电源的相线碰地,则设备的外壳电位升高,使中性线上的危险电位蔓延。
4)TN-C系统干线上使用漏电保护器时,工作零线后面的所有重复接地必须拆除,否则漏电开关合不上;而且,工作零线在任何情况下都不得断线。
所以,实用中工作零线只能让漏电保护器的上侧有重复接地。
5)TN-C方式供电系统只适用于三相负载基本平衡情况。
(4)TN-S方式供电系统
它是把工作零线N和专用保护线PE严格分开的供电系统,称作TN-S供电系统,如图4所示。
TN-S供电系统的特点如下。
图4 TN-S方式供电系统
1)系统正常运行时,专用保护线上不有电流,只是工作零线上有不平衡电流。
PE线对地没有电压,所以电气设备金属外壳接零保护是接在专用的保护线PE上,安全可靠。
2)工作零线只用作单相照明负载回路。
3)专用保护线PE不许断线,也不许进入漏电开关。
4)干线上使用漏电保护器,工作零线不得有重复接地,而PE线有重复接地,但是不经过漏电保护器,所以TN-S系统供电干线上也可以安装漏电保护器。
5)TN-S方式供电系统安全可靠,适用于工业与民用建筑等低压供电系统。
在建筑工程工前的“三通一平”(电通、水通、路通和地平)必须采用TN-S方式供电系统。
(5 )TN-C-S方式供电系统
在建筑施工临时供电中,如果前部分是TN-C方式供电,而施工规范规定施工现场必须采用TN-S方式供电系统,则可以在系统后部分现场总配电箱分出PE线,这种系统称为TN-C-S 供电系统,如图5、6所示。
TN-C-S系统的特点如下。
图5 TN-C-S方式供电系统
图6 工地总配电箱分出PE线
1)工作零线N与专用保护线PE相联通,如图5中ND这段线路不平衡电流比较大时,电气设备的接零保护受到零线电位的影响。
D点至后面PE线上没有电流,即该段导线上没有电压降,因此,TN-C-S系统可以降低电动机外壳对地的电压,然而又不能完全消除这个电压,这个电压的大小取决于ND线的负载不平衡情况及ND这段线路的长度。
负载越不平衡,且ND线又很长时,设备外壳对地电压偏移就越大。
所以要求负载不平衡电流不能太大,而且在PE线上应作重复接地,如上图6所示。
2)PE线在任何情况下都不能进入漏电保护器,因为线路末端的漏电保护器动作会使前级漏电保护器跳闸造成大范围停电。
3)对PE线除了在总箱处必须和N线相接以外,其他各分箱处均不得把N线和PE线相联,PE线上不许安装开关和熔断器,也不得用大顾兼作PE线。
通过上述分析,TN-C-S供电系统是在TN-C系统上临时变通的作法。
当三相电力变压器工作接地情况良好、三相负载比较平衡时,TN-C-S系统在施工用电实践中效果还是可行的。
但是,在三相负载不平衡、建筑施工工地有专用的电力变压器时,必须采用TN-S方式供电系统。
(6)IT方式供电系统
I表示电源侧没有工作接地,或经过高阻抗接地。
每二个字母T表示负载侧电气设备进行接
地保护,如图7所示。
图7 IT方式供电系统
IT方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。
一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电力炼钢、大医院的手术室、地下矿井等处。
地下矿井内供电条件比较差,电缆易受潮。
运用IT方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。
但是,如果用在供电距离很长时,供电线路对大地的分布电容就不能忽视了。
从图8可见,在负载发生短路故障或漏电使设备外壳带电时,漏电电流经大地形成架路,保护设备不一定动作,这是危险的。
只有在供电距离不太长时才比较安全。
这种供电方式在工地上很少见。
图8 IT方式供电系统
(二)供电线路符号小结
1)国际电工委员会(IEC)规定的供电方式符号中,第一个字母表示电力(电源)系统对地关系。
T表示是中性点直接接地;I表示所有带电部分绝缘。
2)第二个字母表示用电装置外露的可导电部分对地的关系。
如T表示设备外壳接地,它与
系统中的其他任何接地点无直接关系;N表示负载采用接零保护。
3)第三个字母表示工作零线与保护线的组合关系。
C表示工作零线与保护线是合一的,如TN-C系统;S表示工作零线与保护线是严格分开的,所以PE线称为专用保护线,如TN-S 系统。
附:单相和三相电路的地线和零线怎么选择?
在380V低压配电网中,按接地方式有三种五类:TT、TN-C、TN-S、TN-C-S、IT。
TT系统:根据《安全技术规范》中,TT系统指:电源侧配电变压器中性点直接接地,负荷侧设备不带电的金属外壳直接与大地连接,但与电源侧配电变压器中性点没有直接电气连接。
TN系统:根据《安全技术规范》中,TN-S、TN-C、TN-C-S系统指:电源侧配电变压器中性点直接接地,负荷侧设备不带电的金属外壳与变压器中性点有直接电气连接。
这三类系统中区别是:TN-S零线和保护零线(地线)是分开的。
TN-C零线和保护零线是共用的。
TN-C-S零线和保护零线部分共用,部分分开。
IT系统是三相三线式接地系统,该系统变压器中性点不接地或经阻抗接地,无中性线N,只有线电压(380V),无相电压(220V),保护接地线PE各自独立接地。
该系统的优点是当一相接地时,不会使外壳带有较大的故障电流,系统可以照常运行。
缺点是不能配出中性线N。
因此它是不适用于拥有大量单相设备的智能化大楼的。
备注:在同一供电系统中采用了保护接地,就不能同时采用保护接零,即同一电网中只能采用同一种接地系统。