人教版高中数学必修四+三角函数
高中数学必修四三角函数PPT课件

01
02
03
04
第一象限
正弦、余弦、正切均为正。
第二象限
正弦为正、余弦为负、正切为 负。
第三象限
正弦、余弦均为负、正切为正。
第四象限
正弦为负、余弦为正、正切为 负。
02 三角函数诱导公 式与变换
诱导公式及其应用
诱导公式的基本形式
01
通过角度的加减、倍角、半角等变换,得到三角函数的等价表
达式。
诱导公式的推导
02
正切函数的周期为$pi$,即$tan(x + kpi) = tan x$,其中$k in Z$。
三角函数的奇偶性
正弦函数是奇函数, 即$sin(-x) = -sin x$。
正切函数是奇函数, 即$tan(-x) = -tan x$。
余弦函数是偶函数, 即$cos(-x) = cos x$。
三角函数在各象限的符号
三角恒等变换
和差化积、积化和差等公式及应用
三角函数的图像与性质
周期性、奇偶性、单调性等
解三角形
正弦定理、余弦定理及应用
常见题型解析及技巧点拨
01
三角函数求值问题:利 用同角关系式、诱导公 式等求解
02
三角函数的图像与性质 应用:判断单调性、周 期性等
03
三角恒等变换的应用: 证明等式、化简表达式 等
余弦定理及其应用
余弦定理的公式表达 在任意三角形ABC中,有$a^2 = b^2 + c^2 - 2bccos A$,以及相应的其他两个式子。
余弦定理的推导 通过向量的数量积和投影进行推导。
余弦定理的应用 用于求解三角形的边和角,尤其在已知三边或两边及夹角 的情况下。同时,也可用于判断三角形的形状(锐角、直 角或钝角)。
人教版高中数学必修四第2讲:任意角的三角函数(学生版)

人教版高中数学 任意角的三角函数__________________________________________________________________________________ __________________________________________________________________________________1.能根据三角函数的定义导出同角三角函数的基本关系式及它们之间的联系;2.熟练掌握已知一个角的三角函数值求其它三角函数值的方法。
3.牢固掌握同角三角函数的两个关系式,并能灵活运用于解题.(一)任意角的三角函数: 任意点到原点的距离公式:=r ____________________1.三角函数定义:在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y ,它与原点的距离为2222(||||0)r r x y x y =+=+>,那么(1)比值y r 叫做α的正弦,记作sin α,即sin y r α=; (2)比值x r 叫做α的余弦,记作cos α,即cos xr α=;(3)比值y x 叫做α的正切,记作tan α,即tan yxα=;(4)比值x y 叫做α的余切,记作cot α,即cot x yα=; 正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。
(二)单位圆与三角函数线:1.三角函数线的定义:当角的终边上一点(,)P x y 的坐标满足____________时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。
2.有向线段:____________________________规定:与坐标轴方向一致时为_____,与坐标方向相反时为______。
3.三角函数线的定义:设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与点P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T .由四个图看出:当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有sin 1y y y MP r α====_________________, cos 1x x x OM r α====_______________,tan y MP AT AT x OM OA α====_______________ 我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。
高中数学必修四 角度制 三角函数关系及诱导公式讲解

3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
A90B 90∠-︒=∠︒=∠+∠得由B A7、正切、余切的增减性:一、任意角的三角函数的定义: 设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin ,cos y x r r αα==,()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec rxα=()0x ≠,()csc 0ry yα=≠。
三角函数值只与角的大小有关,而与终边上点P 的位置无关。
设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的正射影.由三角函数的定义知,点P 的坐标为(cos_α,sin_α),即P (cos_α,sin_α),其中cos α=OM ,sin α=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.三角函数线的特征是:正弦线MP “站在x 轴上(起点在x 轴上)”、余弦线OM “躺在x 轴上(起点是原点)”、正切线AT “站在点(1,0)A 处(起点是A )”.有向线段OM 为余弦线有向线段AT 为正切线比较)2,0(∈x ,x sin ,x tan ,x 的大小关系:三角函数线的重要应用是比较三角函数值的大小和解三角不等式。
四、一条规律三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦.两个技巧(1)在利用三角函数定义时,点P 可取终边上任一点,如有可能则取终边与单位圆的交点,|OP |=r 一定是正值.(2)在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧. 利用单位圆解三角不等式(组)的一般步骤是: (1)用边界值定出角的终边位置; (2)根据不等式(组)定出角的范围; (3)求交集,找单位圆中公共的部分; (4)写出角的表达式.(1)注意易混概念的区别:第一象限角、锐角、小于90°的角是概念不同的三类角,第一类是象限角,第二类、第三类是区间角.(2)角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.(3)α与2α的终边关系:由“两等分各象限、一二三四确定”.若α是第一象限,则2α是第一、三象限角;若α是第二象限,则2α是第一、三象限角;若α是第三象限角,则2α是第二、四象限;若α是第四象限角,则2α是第二、四象限。
数学必修4第一章三角函数

第一章三角函数1.1任意角和弧度制1.1.1任意角1.B.2.C.3.C.4.-1485°=-5³360°+315°.5.{-240°,120°}.6.{α|α=k²360°-490°,k∈Z};230°;-130°;三.7.2α的终边在第一、二象限或y轴的正半轴上,α2的终边在第二、四象限.集合表示略.8.(1)M={α|α=k²360°-1840°,k∈Z}.(2)∵α∈M,且-360°≤α≤360°,∴-360°≤k²360°-1840°≤360°.∴1480°≤k²360°≤2200°,379≤k≤559.∵k∈Z,∴k=5,6,故α=-40°,或α=320°.9.与45°角的终边关于x轴对称的角的集合为{α|α=k²360°-45°,k∈Z},关于y轴对称的角的集合为{α|α=k²360°+135°,k∈Z},关于原点对称的角的集合为{α|α=k²360°+225°,k∈Z},关于y=-x对称的角的集合为{α|α=k²360°+225°,k∈Z}.10.(1){α|30°+k²180°≤α≤90°+k²180°,k∈Z}.(2){α|k²360°-45°≤α≤k²360°+45°,k∈Z}.11.∵当大链轮转过一周时,转过了48个齿,这时小链轮也必须同步转过48个齿,为4820=2.4(周),即小链轮转过2.4周.∴小链轮转过的角度为360°³2 4=864°.1.1.2弧度制1.B.2.D.3.D.4.αα=kπ+π4,k∈Z.5.-5π4.6.111km.7.π9,7π9,13π9.8.2π15,2π5,2π3,4π5.9.设扇形的圆心角是θrad,∵扇形的弧长是r θ,∴扇形的周长是2r+rθ,依题意,得2r+rθ=πr,∴θ=π-2,∴扇形的面积为S=12r2θ=12(π-2)r2.10.设扇形的半径为R,其内切圆的半径为r,由已知得l=π2R,R=2lπ.又∵2r+r=R,∴r=R2+1=(2-1)R=2(2-1)πl,∴内切圆的面积为S=πr2=4(3-22)πl2.11.设圆心为O,则R=5,d=3,OP=R2-d2=4,ω=5rad/s,l=|α|R,α=ωt=25rad,l=4³25=100(cm).1.2任意角的三角函数1.2.1任意角的三角函数(一)1.B.2.B.3.C.4.k.5.π6,56π.6.x|x≠2kπ+32π,k∈Z.7.-25.8.2kπ+π2,2kπ+π,k∈Z.9.α为第二象限角.10.y=-3|x|=-3x(x≥0),3x(x<0),若角α的终边为y=3x(x<0),即α是第三象限角,则sinα=-31010,tanα=3;若角α的终边为y=-3x(x≥0),即α是第四象限角,则sinα=-31010,tanα=-3.11.f(x)=-(x-1)2+4(0≤x≤3).当x=1时,f(x)max=f(1)=4,即m=4;当x=3时,f(x)min=f(3)=0,即n=0.∴角α的终边经过点P(4,-1),r=17,sinα+cosα=-117+417=31717.1.2.1任意角的三角函数(二)1.B.2.C.3.B.4.334.5.2.6.1.7.0.8.x|2kπ+π≤x<2kπ+32π,或x=2kπ,k∈Z.9.(1)sin100°²cos240°<0.(2)tan-11π4-cos-11π4>0.(3)sin5+tan5<0.10.(1)sin25π6=sin4π+π6=sinπ6=12.(2)cos-15π4=cos-4π+π4=cosπ4=22.(3)tan13π3=tan4π+π3=tanπ3=3.11.(1)∵cosα>0,∴α的终边在第一或第四象限,或在x轴的非负半轴上;∵tanα<0,∴α的终边在第四象限.故角α的集合为α2kπ-π2<α<2kπ,k∈Z.(2)∵2kπ-π2<α<2kπ,k∈Z,∴kπ-π4<α2<kπ,k∈Z .当k=2n(n∈Z)时,2nπ-π4<α2<2nπ,n∈Z,sinα2<0,cosα2>0,tanα2<0;当k=2n+1(n∈Z)时,2nπ+3π4<α2<2nπ+π,n∈Z,sinα2>0,cosα2<0,tanα2<0. 1.2.2同角三角函数的基本关系1.B.2.A.3.B.4.-22.5.43.6.232.7.4-22.8.α2kπ+π2<α<2kπ+3π2,或α=kπ,k∈Z.9.0.10.15.11.3+12.1.3三角函数的诱导公式(一)1.C.2.A.3.B.4.-1-a2a.5.12.6.-cos2α.7.-tanα.8.-2sinθ.9.32.10.-22+13.11.3.1.3三角函数的诱导公式(二)1.C.2.A.3.C.4.2+22.5.-33.6.13.7.-73.8.-35.9.1.10.1+a4.11.2+3.1.4三角函数的图象与性质1.4.1正弦函数、余弦函数的图象1.B.2.C.3.B.4.3;-3.5.2.6.关于x轴对称.7.(1)取(0,0),π2,1,(π,2),3π2,1,(2π,0)这五点作图.(2)取-π2,0,0,12,π2,0,π,-12,3π2,0这五点作图.8.五点法作出y=1+sinx的简图,在同一坐标系中画出直线y=32,交点有2个.9.(1)(2kπ,(2k+1)π)(k∈Z).(2)2kπ+π2,2kπ+32π(k∈Z).10.y=|sinx|=sinx(2kπ≤x≤π+2kπ,k∈Z),-sinx(π+2kπ<x<2π+2kπ,k∈Z),图象略.y=sin|x|=sinx(x≥0),-sinx(x<0),图象略.11.当x>0时,x>sinx;当x=0时,x=sinx;当x<0时,x<sinx,∴sinx=x只有一解.1.4.2正弦函数、余弦函数的性质(一)1.C.2.A.3.D.4.4π.5.12,±1.6.0或8.提示:先由sin2θ+cos2θ=1,解得m=0,或m=8.7.(1)4.(2)25π.8.(1)π.(2)π.9.32,2.10.(1)sin215π<sin425π.(2)sin15<cos5.11.342.1.4.2正弦函数、余弦函数的性质(二)1.B.2.B.3.C.4.<.5.2π.6.3,4,5,6.7.函数的最大值为43,最小值为-2.8.-5.9.偶函数.10.f(x)=log21-sin2x=log2|cosx|.(1)定义域:xx≠kπ+π2,k∈Z.(2)值域:(-∞,0]. (3)增区间:kπ-π2,kπ(k∈Z),减区间:kπ,kπ+π2(k∈Z).(4)偶函数.(5)π.11.当x<0时,-x>0,∴f(-x)=(-x)2-sin(-x)=x2+sinx.又∵f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=-f(-x)=-x2-sinx.1.4.3正切函数的性质与图象1.D.2.C.3.A.4.5π.5.tan1>tan3>tan2.6.kπ2-π4,0(k∈Z).7.2kπ+6π5<x<2kπ+3π2,k∈Z .8.定义域为kπ2-π4,kπ2+π4,k∈Z,值域为R,周期是T=π2,图象略.9.(1)x=π4.(2)x=π4或54π.10.y|y≥34.11.T=2π,∴f99π5=f-π5+20π=f-π5,又f(x)-1是奇函数,∴f-π5-1=-fπ5-1 f-π5=2-fπ5=-5,∴原式=-5.1.5函数y=Asin(ωx+φ)的图象(一)1.A.2.A.3.B.4.3.5.-π2.6.向左平移π4个单位.7.y=sinx+2的图象可以看作是将y=sinx图象向上平移2个单位得到,y=sinx-1的图象可以看作是将y=sinx图象向下平移1个单位而得到.8.±5.9.∵y=sin3x-π3=sin3x-π9,∴可将y=sin3x的图象向右平移π9个单位得到.10.y=sin2x+π4的图象向左平移π2个单位,得到y=sin2x+π2+π4,故函数表达式为y=sin2x+5π4.11.y=-2sinx-π3,向左平移m(m>0)个单位,得y=-2sin(x+m)-π3,由于它关于y轴对称,则当x=0时,取得最值±2,此时m-π3=kπ±π2,k∈Z,∴m的最小正值是5π6.1.5函数y=Asin(ωx+φ)的图象(二)1.D.2.A.3.C.4.y=sin4x.5.-2a;-310a+2ka(k∈Z);-2a.6.y=3sin6x+116π.7.方法1y=sinx横坐标缩短到原来的12y=sin2x向左平移π6个单位y=sin2x+π6=y=sin2x+π3.方法2y=sinx向左平移π3个单位y=sinx+π3横坐标缩短到原来的12y=sin2x+π3.8.(1)略.(2)T=4π,A=3,φ=-π4.9.(1)ω=2,φ=π6.(2)x=12kπ+π6(k∈Z),12kπ-112π,0(k∈Z).10.(1)f(x)的单调递增区间是3kπ-5π4,3kπ+π4(k∈Z).(2)使f(x)取最小值的x的集合是x|x=7π4+3kπ,k∈Z.11.(1)M=1,m=-1,T=10|k|π.(2)由T≤2,即10|k|π≤2得|k|≥5π,∴最小正整数k 为16.1.6三角函数模型的简单应用(一)1.C.2.C.3.C.4.2sinα.5.1s.6.k²360°+212 5°(k∈Z).7.扇形圆心角为2rad时,扇形有最大面积m216.8.θ=4π7或5π7.9.(1)设振幅为A,则2A=20cm,A=10cm.设周期为T,则T2=0.5,T=1s,f=1Hz.(2)振子在1T内通过的距离为4A,故在t=5s=5T内距离s=5³4A=20A=20³10=200cm=2(m).5s末物体处在点B,所以它相对平衡位置的位移为10cm.10.(1)T=2πs.(2)12π次.11.(1)d-710=sint-1.8517.5π.(2)约为5.6秒.1.6三角函数模型的简单应用(二)1.D.2.B.3.B.4.1-22.5.1124π.6.y=sin52πx+π4.7.95.8.12sin212,1sin12+2.9.设表示该曲线的三角函数为y=Asin(ωx+φ)+b.由已知平均数量为800,最高数量与最低数量差为200,数量变化周期为12个月,所以振幅A=2002=100,ω=2π12=π6,b=800,又7月1日种群数量达最高,∴π6³6+φ=π2.∴φ=-π2.∴种群数量关于时间t的函数解析式为y=800+100sinπ6(t-3).10.由已知数据,易知y=f(t)的周期T=12,所以ω=2πT=π6.由已知,振幅A=3,b=10,所以y=3sinπ6t+10.11.(1)图略.(2)y-12.47=cos2π(x-172)365,约为19.4h.单元练习1.C.2.B.3.C.4.D.5.C.6.C.7.B.8.C.9.D.10.C.11.5π12+2kπ,13π12+2kπ(k∈Z).12.4412.13.-3,-π2∪0,π2.14.1972π.15.原式=(1+sinα)21-sin2α-(1-sinα)21-sin2α=1+sinα|cosα|-1-sinα|cosα|=2sinα|cosα|. ∵α为第三象限角,|cosα|=-cosα,∴原式=-2tanα.16.1+sinα+cosα+2sinαcosα1+sinα+cosα=sin2α+cos2α+2sinαcosα+sinα+cosα1+sinα+cosα=(sinα+cosα)2+sinα+cosα1+sinα+cosα=(sinα+cosα)·(1+sinα+cosα)1+sinα+cosα=sinα+cosα. 17.f(x)=(sin2x+cos2x)2-sin2xcos2x2-2sinxcosx-12sinxcosx+14cos2x=1-sin2xcos2x2(1-sinxcosx)-12sinxcosx+14cos2x=12+12sinxcosx-12sinxcosx+14cos2x=12+14cos2x.∴T=2π2=π,而-1≤cos2x≤1,∴f(x)max=34,f(x)min=14.18.∵Aπ3,12在递减段上,∴2π3+φ∈2kπ+π2,2kπ+3π2.∴2π3+φ=5π6,φ=π6.19.(1)周期T=π,f(x)的最大值为2+2,此时x∈x|x=kπ+π8,k∈Z;f(x)的最小值为2-2,此时x ∈x|x=kπ-38π,k∈Z;函数的单调递增区间为kπ-3π8,kπ+π8,k∈Z.(2)先将y=sinx(x∈R)的图象向左平移π4个单位,而后将所得图象上各点的横坐标缩小为原来的12,纵坐标扩大成原来的2倍,最后将所得图象向上平移2个单位.20.(1)1π.(2)5π或15.7s.(3)略.。
人教版高中数学必修四第一章三角函数图像变换

人教版高中数学必修四第一章三角函 数图像 变换
总结: y=sinx
y=Asin(x+)
方法1:(按 ,ω, A 顺序变换)
y=sinx
向左>0 (向右<0) 平移||个单位
y=sin(x+)
横坐标缩短>1 (伸长0<<1)到原来的1/倍
纵坐标不变
y=sin(x+)
横坐标不变
y=Asin(x+)
纵坐标伸长A>1 (缩短0<A<1)到原来的A倍
课后作业
1、指出函数y=2/5sin3x的振幅、周期,并画出其图象。 2、作出y=2sin1/2x的简图。
人教版高中数学必修四第一章三角函 数图像 变换
人教版高中数学必修四第一章三角函 数图像 变换
谢谢莅临指导! 再见!
人教版高中数学必修四第一章三角函 数图像 变换
人教版高中数学必修四第一章三角函 数图像 变换
教学重点: “用五点法”作函数y=Asinx和y=sinωx的简图及振 幅、周期对正弦函数图象的影响。
教学难点:在直角坐标中会寻找“五点”的位置及由y=sinx的 图象变为y=Asinωx的图象规律。
人教版高中数学必修四第一章三角函 数图像 变换
人教版高中数学必修四第一章三角函 数图像 变换
导入课题:
解:∵函数y=sin4x的周期T=/2 ∴在[0, /2]上作图
令Z=4x 则x=Z/4 从而sinZ=sin4x
x
0
8
4
3
8
2
4x 0
2
3 2
2
sin 4 x 0 1 0 -1 0
y
1
y sin 4 x
人教版高一数学必修四第一章正、余弦函数的周期性与奇偶性

第一章 三角函数
y=cosx
图象
定义域 周期 最小
正周期 奇偶性
R 2kπ(k∈Z 且 k≠0)
_2_π__ _奇__函__数___
R 2kπ(k∈Z 且 k≠0)
_2_π__
_偶__函__数___
栏目 导引
第一章 三角函数
■名师点拨 (1)正、余弦函数的周期性 ①正弦函数和余弦函数所具有的周期性实质上是由终边相同的角 具有的周期性所决定的; ②由诱导公式 sin(x+2kπ)=sinx(k∈Z),cos(x+2kπ)=cosx(k∈Z) 也可以说明它们的周期性. (2)关于正、余弦函数的奇偶性 ①正弦函数是奇函数,余弦函数是偶函数,反映在图象上,正弦曲 线关于原点 O 对称,余弦曲线关于 y 轴对称; ②正弦曲线、余弦曲线既是中心对称图形又是轴对称图形.
答案:B
栏目 导引
第一章 三角函数
若函数 f(x)是周期为 3 的周期函数,且 f(-1)=2017,则 f(2)= ________. 答案:2017
栏目 导引
第一章 三角函数
正、余弦函数的周期问题
求下列三角函数的最小正周期 T: (1)f(x)=sinx+π3; (2)f(x)=12cos(2x+π3); (3)f(x)=|sinx|.
第一章 三角函数
1.4.2 正弦函数、余弦函数的性质
第 1 课时 正、余弦函数的周期性与奇偶性
第一章 三角函数
考点
学习目标
函数的周期性 了解周期函数的概念
正、余数的周 期
正、余弦函 数的奇偶性
理解三角函数的奇偶性以 及对称性,会判断给定函 数的奇偶性
栏目 导引
第一章 三角函数
判断(正确的打“√”,错误的打“×”)
人教版高中数学必修四1.4三角函数的图象与性质1.4.2二含答案

1.4.2 正弦函数、余弦函数的性质(二) 课时目标 1.掌握y =sin x ,y =cos x 的最大值与最小值,并会求简单三角函数的值域或最值.2.掌握y =sin x ,y =cos x 的单调性,并能用单调性比较大小.3.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的单调区间.正弦函数、余弦函数的性质: 函数 y =sin xy =cos x 图象定义域______ ______ 值域______ ______ 奇偶性______ ______ 周期性最小正周期:______ 最小正周期:______ 单调性在__________________________________ 上单调递增;在__________________________________________________上单调递减 在__________________________________________上单调递增;在______________________________上单调递减 最值 在________________________时,y max =1;在________________________________________时,y min =-1在______________时,y max =1;在__________________________时,y min =-1 一、选择题1.若y =sin x 是减函数,y =cos x 是增函数,那么角x 在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.若α,β都是第一象限的角,且α<β,那么( )A .sin α>sin βB .sin β>sin αC .sin α≥sin βD .sin α与sin β的大小不定3.函数y =sin 2x +sin x -1的值域为( )A.[]-1,1B.⎣⎡⎦⎤-54,-1 C.⎣⎡⎦⎤-54,1 D.⎣⎡⎦⎤-1,54 4.函数y =|sin x |的一个单调增区间是( )A.⎝⎛⎭⎫-π4,π4B.⎝⎛⎭⎫π4,3π4 C.⎝⎛⎭⎫π,3π2 D.⎝⎛⎭⎫3π2,2π 5.下列关系式中正确的是( )A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos 10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin 11°6.下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( )A .y =sin(2x +π2)B .y =cos(2x +π2) C .y =sin(x +π2) D .y =cos(x +π2) 题 号 1 2 3 4 5 6 答 案二、填空题7.函数y =sin(π+x ),x ∈⎣⎡⎦⎤-π2,π的单调增区间是____________. 8.函数y =2sin(2x +π3)(-π6≤x ≤π6)的值域是________. 9.sin 1,sin 2,sin 3按从小到大排列的顺序为__________________.10.设|x |≤π4,函数f (x )=cos 2x +sin x 的最小值是______. 三、解答题11.求下列函数的单调增区间.(1)y =1-sin x 2; (2)y =log 12(cos 2x ).12.已知函数f (x )=2a sin ⎝⎛⎭⎫2x -π3+b 的定义域为⎣⎡⎦⎤0,π2,最大值为1,最小值为-5,求a 和b 的值.能力提升13.已知sin α>sin β,α∈⎝⎛⎭⎫-π2,0,β∈⎝⎛⎭⎫π,32π,则( ) A .α+β>π B .α+β<πC .α-β≥-32πD .α-β≤-32π 14.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23 B.32C .2D .31.求函数y =A sin(ωx +φ)(A >0,ω>0)单调区间的方法是:把ωx +φ看成一个整体,由2k π-π2≤ωx +φ≤2k π+π2(k ∈Z )解出x 的范围,所得区间即为增区间,由2k π+π2≤ωx +φ≤2k π+32π (k ∈Z )解出x 的范围,所得区间即为减区间.若ω<0,先利用诱导公式把ω转化为正数后,再利用上述整体思想求出相应的单调区间.2.比较三角函数值的大小,先利用诱导公式把问题转化为同一单调区间上的同名三角函数值的大小比较,再利用单调性作出判断.3.求三角函数值域或最值的常用求法将y 表示成以sin x (或cos x )为元的一次或二次等复合函数再利用换元或配方、或利用函数的单调性等来确定y 的范围.1.4.2 正弦函数、余弦函数的性质(二)答案知识梳理 R R [-1,1] [-1,1] 奇函数 偶函数 2π 2π [-π2+2k π,π2+2k π](k ∈Z ) [π2+2k π,3π2+2k π] (k ∈Z ) [-π+2k π,2k π] (k ∈Z ) [2k π,π+2k π] (k ∈Z ) x =π2+2k π (k ∈Z ) x =-π2+2k π (k ∈Z ) x =2k π (k ∈Z ) x =π+2k π (k ∈Z ) 作业设计1.C 2.D3.C [y =sin 2x +sin x -1=(sin x +12)2-54当sin x =-12时,y min =-54; 当sin x =1时,y max =1.]4.C [由y =|sin x |图象易得函数单调递增区间⎣⎡⎦⎤k π,k π+π2,k ∈Z ,当k =1时,得⎝⎛⎭⎫π,32π为y =|sin x |的单调递增区间.]5.C [∵sin 168°=sin (180°-12°)=sin 12°,cos 10°=sin (90°-10°)=sin 80°由三角函数线得sin 11°<sin 12°<sin 80°,即sin 11°<sin 168°<cos 10°.]6.A [因为函数周期为π,所以排除C 、D.又因为y =cos(2x +π2)=-sin 2x 在⎣⎡⎦⎤π4,π2上为增函数,故B 不符合.故选A.]7.⎣⎡⎦⎤π2,π8.[0,2]解析 ∵-π6≤x ≤π6,∴0≤2x +π3≤2π3. ∴0≤sin(2x +π3)≤1,∴y ∈[0,2] 9.b <c <a解析 ∵1<π2<2<3<π, sin(π-2)=sin 2,sin(π-3)=sin 3.y =sin x 在⎝⎛⎭⎫0,π2上递增,且0<π-3<1<π-2<π2, ∴sin(π-3)<sin 1<sin(π-2),即sin 3<sin 1<sin 2.∵b <c <a . 10.1-22解析 f (x )=cos 2x +sin x =1-sin 2x +sin x=-(sin x -12)2+54∵|x |≤π4,∴-22≤sin x ≤22. ∴当sin x =-22时,f (x )min =1-22. 11.解 (1)由2k π+π2≤x 2≤2k π+32π,k ∈Z , 得4k π+π≤x ≤4k π+3π,k ∈Z .∴y =1-sin x 2的增区间为[4k π+π,4k π+3π] (k ∈Z ). (2)由题意得cos 2x >0且y =cos 2x 递减.∴x 只须满足:2k π<2x <2k π+π2,k ∈Z . ∴k π<x <k π+π4,k ∈Z . ∴y =log 12(cos 2x )的增区间为⎝⎛⎭⎫k π,k π+π4,k ∈Z . 12.解 ∵0≤x ≤π2,∴-π3≤2x -x 3≤23π, ∴-32≤sin ⎝⎛⎭⎫2x -π3≤1,易知a ≠0. 当a >0时,f (x )max =2a +b =1,f (x )min =-3a +b =-5.由⎩⎨⎧ 2a +b =1-3a +b =-5,解得⎩⎨⎧a =12-63b =-23+123. 当a <0时,f (x )max =-3a +b =1,f (x )min =2a +b =-5. 由⎩⎨⎧ -3a +b =12a +b =-5,解得⎩⎨⎧a =-12+63b =19-123. 13.A [∵β∈⎝⎛⎭⎫π,32π, ∴π-β∈⎝⎛⎭⎫-π2,0,且sin(π-β)=sin β. ∵y =sin x 在x ∈⎝⎛⎭⎫-π2,0上单调递增,∴sin α>sin β⇔sin α>sin(π-β)⇔α>π-β⇔α+β>π.]14.B [要使函数f (x )=2sin ωx (ω>0)在区间[-π3,π4]上的最小值是-2,则应有T 4≤π3或34T ≤π4,即2π4ω≤π3或6πω≤π,解得ω≥32或ω≥6. ∴ω的最小值为32,故选B.]附赠材料答题六注意 :规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点:第一,考前做好准备工作。
高中数学 任意角的三角函数教案 新人教版必修4-新人教版高一必修4数学教案

任意角的三角函数(一)一、教学目标:1、知识与技能〔1〕掌握任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕;〔2〕理解任意角的三角函数不同的定义方法;〔3〕了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;〔4〕掌握并能初步运用公式一;〔5〕树立映射观点,正确理解三角函数是以实数为自变量的函数.2、过程与方法初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习.3、情态与价值任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值〞来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合〞的对应关系与学生熟悉的一般函数概念中的“数集到数集〞的对应关系有冲突,而且“比值〞需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解.本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.这个定义清楚地说明了正弦、余弦函数中从自变量到函数值之间的对应关系,也说明了这两个函数之间的关系.二、教学重、难点重点: 任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕;终边相同的角的同一三角函数值相等〔公式一〕.难点: 任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕;三角函数线的正确理解.三、学法与教学用具任意角的三角函数可以有不同的定义方法,本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.说明了正弦、余弦函数中从自变量到函数值之间的对应关系,也说明了这两个函数之间的关系.另外,这样的定义使得三角函数所反映的数与形的关系更加直接,数形结合更加紧密,这就为后续内容的学习带来方便,也使三角函数更加好用了.教学用具:投影机、三角板、圆规、计算器四、教学设想第一课时任意角的三角函数〔一〕提问:锐角O的正弦、余弦、正切怎样表示?借助右图直角三角形,复习回顾.数,你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗?如图,设锐角α的顶点与原点O重合,始边与x轴的正半轴重合,么它的终边在第一象限.在α的终边上任取一点(,)P a b ,它与原点的距离0r =>.过P 作x 轴的垂线,垂足为M ,那么线段OM 的长度为a ,线段MP 的长度为b .那么sin MP bOP rα==;cos OM a OP r α==; tan MP bOM aα==.思考:对于确定的角α,这三个比值是否会随点P 在α的终边上的位置的改变而改变呢?显然,我们可以将点取在使线段OP 的长1r =的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数:sin MP b OP α==; cos OM a OP α==; tan MP bOM aα==. 思考:上述锐角α的三角函数值可以用终边上一点的坐标表示.那么,角的概念推广以后,我们应该如何对初中的三角函数的定义进行修改,以利推广到任意角呢?本节课就研究这个问题――任意角的三角函数.【探究新知】1.探究:结合上述锐角α的三角函数值的求法,我们应如何求解任意角的三角函数值呢?显然,我们只需在角的终边上找到一个点,使这个点到原点的距离为1,然后就可以类似锐角求得该角的三角函数值了.所以,我们在此引入单位圆的定义:在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆.2.思考:如何利用单位圆定义任意角的三角函数的定义?如图,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么: (1)y 叫做α的正弦(sine),记做sin α,即sin y α=; 〔2〕x 叫做α的余弦(cossine),记做cos α,即cos x α=; 〔3〕y x 叫做α的正切(tangent),记做tan α,即tan (0)yx xα=≠. 注意:当α是锐角时,此定义与初中定义相同〔指出对边,邻边,斜边所在〕;当α不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,终边就必然与单位圆有交点(,)P x y ,从而就必然能够最终算出三角函数值.3.思考:如果知道角终边上一点,而这个点不是终边与单位圆的交点,该如何求它的三角函数值呢? 前面我们已经知道,三角函数的值与点P 在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离r =那么sin α=,cos α=,tan yxα=.所以,三角函数是以为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,又因为角的集合与实数集之间可以建立一一对应关系,故三角函数也可以看成实数为自变量的函数.4.例题讲评例1.求53π的正弦、余弦和正切值. 例2.角α的终边过点0(3,4)P --,求角α的正弦、余弦和正切值.教材给出这两个例题,主要是帮助理解任意角的三角函数定义.我也可以尝试其他方法:如例2:设3,4,x y =-=-那么5r ==.于是4sin 5y r α==-,3cos 5x r α==-,4tan 3y x α==. 5.巩固练习17P 第1,2,3题6.探究:请根据任意角的三角函数定义,将正弦、余弦和正切函数的定义域填入下表;再将这三种函数的值在各个象限的符号填入表格中:例3.求证:当且仅当不等式组sin 0{tan 0θθ<>成立时,角θ为第三象限角.8.思考:根据三角函数的定义,终边相同的角的同一三角函数值有和关系? 显然: 终边相同的角的同一三角函数值相等.即有公式一:sin(2)sin k απα+=cos(2)cos k απα+= (其中k Z ∈) tan(2)tan k απα+=9.例题讲评例4.确定以下三角函数值的符号,然后用计算器验证: (1)cos250︒; (2)sin()4π-; (3)tan(672)︒-; (4)tan3π例5.求以下三角函数值:(1)'sin148010︒; (2)9cos4π; (3)11tan()6π- 利用公式一,可以把求任意角的三角函数值, 转化为求0到2π(或0︒到360︒)角的三角函数值. 另外可以直接利用计算器求三角函数值,但要注意角度制的问题. 10.巩固练习17P 第4,5,6,7题11.学习小结(1)本章的三角函数定义与初中时的定义有何异同? (2)你能准确判断三角函数值在各象限内的符号吗? (3)请写出各三角函数的定义域;(4)终边相同的角的同一三角函数值有什么关系?你在解题时会准确熟练应用公式一吗?五、评价设计1.作业:习题1.2 A组第1,2题.2.比较角概念推广以后,三角函数定义的变化.思考公式一的本质是什么?要做到熟练应用.另外,关于三角函数值在各象限的符号要熟练掌握,知道推导方法.第二课时任意角的三角函数〔二〕【复习回顾】1、三角函数的定义;2、 三角函数在各象限角的符号;3、 三角函数在轴上角的值;4、 诱导公式〔一〕:终边相同的角的同一三角函数的值相等;5、 三角函数的定义域.要求:记忆.并指出,三角函数没有定义的地方一定是在轴上角,所以,凡是碰到轴上角时,要结合定义进行分析;并要求在理解的基础上记忆. 【探究新知】1.引入:角是一个图形概念,也是一个数量概念〔弧度数〕.作为角的函数——三角函数是一个数量概念〔比值〕,但它是否也是一个图形概念呢?换句话说,能否用几何方式来表示三角函数呢?2.[边描述边画]以坐标原点为圆心,以单位长度1为半径画一个圆,这个圆就叫做单位圆〔注意:这个单位长度不一定就是1厘米或1米〕.当角α为第一象限角时,那么其终边与单位圆必有一个交点(,)P x y ,过点P 作PM x ⊥轴交x 轴于点M ,那么请你观察:根据三角函数的定义:|||||sin |MP y α==;|||||cos |OM x α==随着α在第一象限内转动,MP 、OM 是否也跟着变化? 3.思考:〔1〕为了去掉上述等式中的绝对值符号,能否给线段MP 、OM 规定一个适当的方向,使它们的取值与点P 的坐标一致?〔2〕你能借助单位圆,找到一条如MP 、OM 一样的线段来表示角α的正切值吗?我们知道,指标坐标系内点的坐标与坐标轴的方向有关.当角α的终边不在坐标轴时,以O 为始点、M 为终点,规定:当线段OM 与x 轴同向时,OM 的方向为正向,且有正值x ;当线段OM 与x 轴反向时,OM 的方向为负向,且有正值x ;其中x 为P 点的横坐标.这样,无论那种情况都有cos OM x α==同理,当角α的终边不在x 轴上时,以M 为始点、P 为终点,规定:当线段MP 与y 轴同向时,MP 的方向为正向,且有正值y ;当线段MP 与y 轴反向 时,MP 的方向为负向,且有正值y ;其中y 为P 点的横坐标.这样,无论那种情况都有sin MP y α==4.像MP OM 、这种被看作带有方向的线段,叫做有向线段〔direct line segment 〕.5.如何用有向线段来表示角α的正切呢?如上图,过点(1,0)A 作单位圆的切线,这条切线必然平行于轴,设它与α的终边交于点T ,请根据正切函数的定义与相似三角形的知识,借助有向线段OA AT 、,我们有tan y AT xα==我们把这三条与单位圆有关的有向线段MP OM AT 、、,分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线.6.探究:〔1〕当角α的终边在第二、第三、第四象限时,你能分别作出它们的正弦线、余弦线和正切线吗?〔2〕当α的终边与x 轴或y 轴重合时,又是怎样的情形呢?7.例题讲解 例1.42ππα<<,试比较,tan ,sin ,cos αααα的大小.处理:师生共同分析解答,目的体会三角函数线的用处和实质. 8.练习19P 第1,2,3,4题9学习小结(1)了解有向线段的概念.(2)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来.(3)体会三角函数线的简单应用. 【评价设计】1. 作业:比较以下各三角函数值的大小(不能使用计算器)(1)sin15︒、tan15︒〔2〕'cos15018︒、cos121︒〔3〕5π、tan 5π2.练习三角函数线的作图.同角三角函数的基本关系一、教学目标: 1、知识与技能(1) 使学生掌握同角三角函数的基本关系;(2)某角的一个三角函数值,求它的其余各三角函数值;(3)利用同角三角函数关系式化简三角函数式;(4)利用同角三角函数关系式证明三角恒等式;〔5〕牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;〔6〕灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力,进一步树立化归思想方法;〔7〕掌握恒等式证明的一般方法.2、过程与方法由圆的几何性质出发,利用三角函数线,探究同一个角的不同三角函数之间的关系;学习一个三角函数值,求它的其余各三角函数值;利用同角三角函数关系式化简三角函数式;利用同角三角函数关系式证明三角恒等式等.通过例题讲解,总结方法.通过做练习,巩固所学知识.3、情态与价值通过本节的学习,牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;进一步树立化归思想方法和证明三角恒等式的一般方法.二、教学重、难点重点:公式1cos sin 22=+αα及αααtan cos sin =的推导及运用:〔1〕某任意角的正弦、余弦、正切值中的一个,求其余两个;〔2〕化简三角函数式;〔3〕证明简单的三角恒等式.难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式.三、学法与教学用具利用三角函数线的定义, 推导同角三角函数的基本关系式:1cos sin 22=+αα及αααtan cos sin =,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等.教学用具:圆规、三角板、投影四、教学设想【创设情境】与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.【探究新知】 1. 探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一 下同一个角不同三角函数之间的关系吗?如图:以正弦线MP ,余弦线OM 和半径OP 三者的长构成直角三角形,而且1OP =.由勾股定理由221MP OM +=,因此221x y +=,即22sin cos 1αα+=.根据三角函数的定义,当()2a k k Z ππ≠+∈时,有sin tan cos ααα=.这就是说,同一个角α的正弦、余弦的平方等于1,商等于角α的正切.2. 例题讲评 例6.3sin 5α=-,求cos ,tan αα的值. sin ,cos ,tan ααα三者知一求二,熟练掌握.3. 巩固练习23P 页第1,2,3题4.例题讲评例7.求证:cos 1sin 1sin cos x xx x+=-. 通过本例题,总结证明一个三角恒等式的方法步骤. 5.巩固练习23P 页第4,5题 6.学习小结〔1〕同角三角函数的关系式的前提是“同角〞,因此1cos sin 22≠+βα,γβαcos sin tan ≠. 〔2〕利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论.五、评价设计(1) 作业:习题组第10,13题.(2) 熟练掌握记忆同角三角函数的关系式,试将关系式变形等,得到其他几个常用的关 系式;注意三角恒等式的证明方法与步骤.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高中数学必修四三角函数一.选择题(共16小题)1.(2014•商丘二模)已知α∈(﹣,0),sin(﹣α﹣π)=,则sin(﹣π﹣α)=().C.D.3.(2014•温州二模)已知函数f(x)=,则下列结论中正确的是()x=)的图象关于点(4.(2015•河南二模)将函数y=sin(x﹣)的图象上所有点的横坐标缩短为原来的(纵坐标不变),再将所得函数的图象向左平移个单位,则最终所得函数图象对应的解析式为()x5.(2015•资阳模拟)将函数的图象向右平移φ(φ>0)个单位,所得图象关于原点O对称,则φ的最小值为.C D.7.(2014•漳州二模)函数的最小正周期是().C8.(2014•河南)在函数①y=cos丨2x丨,②y=丨cosx丨,③y=cos(2x+)④y=tan(2x﹣)中,最小正周期为π向右平移向左平移个单位向右平移向左平移个单位10.(2014•浙江模拟)与角﹣终边相同的角是().C D.14.(2014•南昌模拟)函数f(x)=Asin(ωx+φ)(其中A>0,|φ|<)的图象如图所示,为了得到f(x)的图象,则只需将g(x)=sin2x的图象()向右平移向左平移个长度单位向右平移向左平移个长度单位15.(2014•荆州模拟)要得到函数的导函数f′(x)的图象,只需将f(x)的图象()向左平移向左平移个单位,再把各点的纵坐标缩短到原来的向左平移向左平移个单位,再把各点的纵坐标缩短到原来的16.(2014•南昌模拟)若函数y=sin2x的图象向左平移个单位得到y=f(x)的图象,则()二.填空题(共9小题)17.(2014•淄博二模)已知α∈(,π),且sinα=,则tanα的值为_________.18.(2015•成都模拟)已知α∈(0,),cosα=,则sin(π﹣α)=_________.19.(2014•嘉定区三模)函数y=cos(2x﹣)的单调递减区间是_________.20.(2014•淮安模拟)已知函数f(x)=sin(ωx+φ)的图象如图所示,则f(2)=_________.21.(2013•自贡模拟)计算:=_________.22.(2013•普陀区一模)函数y=sin2x﹣cos2x的最小正周期是_________.23.(2011•资中县模拟)已知sinα+cosα=1,则sinα﹣cosα=_________.24.(2011•杭州一模)已知△ABC中,tanA=﹣,则cosA=_________.25.(2011•淮南一模)设α是第三象限角,,则cosα=_________.三.解答题(共5小题)26.(2012•北京模拟)已知,.(1)求tanα的值;(2)求的值.27.(2014•信阳一模)已知函数f(x)=Asin(ωx+φ),(x∈R,A>0,ω>0,|φ|<)的部分图象如图所示:(1)试确定f(x)的解析式;(2)若f()=,求的值.28.(2013•东城区模拟)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<π)的图象如图所示.(Ⅰ)求ω,φ的值;(Ⅱ)设g(x)=f(x)f(x﹣),求函数g(x)的单调递增区间.29.(2013•普陀区二模)已知函数f(x)=Acos(ωx+ϕ)(A>0,ω>0,)的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,﹣2)(1)求函数f(x)的解析式;(2)若锐角θ满足,求f(2θ)的值.30.(2012•湖南)已知函数f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ<)的部分图象如图所示.(Ⅰ)求函数f(x)的解析式;(Ⅱ)求函数g(x)=f(x﹣)﹣f(x+)的单调递增区间.人教版高中数学必修四三角函数参考答案与试题解析一.选择题(共16小题)1.(2014•商丘二模)已知α∈(﹣,0),sin(﹣α﹣π)=,则sin(﹣π﹣α)=().Cππ=(﹣,﹣=.D.= 3.(2014•温州二模)已知函数f(x)=,则下列结论中正确的是()x=)的图象关于点(=T=+k+k<,)的图象关于点(4.(2015•河南二模)将函数y=sin(x﹣)的图象上所有点的横坐标缩短为原来的(纵坐标不变),再将所得函数的图象向左平移个单位,则最终所得函数图象对应的解析式为()x)的图象上所有点的横坐标缩短为原来的(纵坐标不变)﹣)再将所得函数的图象向左平移)﹣]2x+5.(2015•资阳模拟)将函数的图象向右平移φ(φ>0)个单位,所得图象关于原点O对称,则φ的最小值为.C D.+﹣]+﹣为正数中的最小值,﹣∴7.(2014•漳州二模)函数的最小正周期是().CT=T=8.(2014•河南)在函数①y=cos丨2x丨,②y=丨cosx丨,③y=cos(2x+)④y=tan(2x﹣)中,最小正周期为π的最小正周期,为=丨的最小正周期为2x+=)的最小正周期为,向右平移向左平移个单位向右平移向左平移个单位y=sin3x+cos3x=cos3x的图象向右平移=10.(2014•浙江模拟)与角﹣终边相同的角是().C D.π终边相同的角为,时,此角等于π,,,=,1==异号,即或14.(2014•南昌模拟)函数f(x)=Asin(ωx+φ)(其中A>0,|φ|<)的图象如图所示,为了得到f(x)的图象,则只需将g(x)=sin2x的图象()向右平移向左平移个长度单位向右平移向左平移个长度单位,×+,)x+的图象向左平移15.(2014•荆州模拟)要得到函数的导函数f′(x)的图象,只需将f(x)的图象()向左平移向左平移个单位,再把各点的纵坐标缩短到原来的向左平移向左平移个单位,再把各点的纵坐标缩短到原来的2x+)+2x+2x+2x++2x+)])]2x+)的图象向左平移个单2x+ 16.(2014•南昌模拟)若函数y=sin2x的图象向左平移个单位得到y=f(x)的图象,则()的图象向左平移的图象向左平移))二.填空题(共9小题)17.(2014•淄博二模)已知α∈(,π),且sinα=,则tanα的值为﹣.(,=,=18.(2015•成都模拟)已知α∈(0,),cosα=,则sin(π﹣α)=.,)=.故答案为:19.(2014•嘉定区三模)函数y=cos(2x﹣)的单调递减区间是[kπ+,kπ+](k∈Z).﹣对于函数≤≤+],+20.(2014•淮安模拟)已知函数f(x)=sin(ωx+φ)的图象如图所示,则f(2)=﹣.)的图象可得••=3=×,﹣x)﹣=sin=,.21.(2013•自贡模拟)计算:=.故答案为:22.(2013•普陀区一模)函数y=sin2x﹣cos2x的最小正周期是π.得到答案.cos2x=(sin)T==可解23.(2011•资中县模拟)已知sinα+cosα=1,则sinα﹣cosα=±1.24.(2011•杭州一模)已知△ABC中,tanA=﹣,则cosA=﹣.﹣为钝角,利用﹣,∴=,﹣故答案为﹣25.(2011•淮南一模)设α是第三象限角,,则cosα=.是第三象限角,,﹣==.三.解答题(共5小题)26.(2012•北京模拟)已知,.(1)求tanα的值;(2)求的值.)因为,,.27.(2014•信阳一模)已知函数f(x)=Asin(ωx+φ),(x∈R,A>0,ω>0,|φ|<)的部分图象如图所示:(1)试确定f(x)的解析式;(2)若f()=,求的值.,,可求得,再利用ω),可求得﹣=﹣,又T==2)经过(∴,即+,,x+),(),+)=cos[﹣(+)(﹣=(﹣×28.(2013•东城区模拟)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<π)的图象如图所示.(Ⅰ)求ω,φ的值;(Ⅱ)设g(x)=f(x)f(x﹣),求函数g(x)的单调递增区间.)由图象知,周期的四分之一为的值,又图象过(,∴(,即)的单调增区间为29.(2013•普陀区二模)已知函数f(x)=Acos(ωx+ϕ)(A>0,ω>0,)的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,﹣2)(1)求函数f(x)的解析式;(2)若锐角θ满足,求f(2θ)的值.,求出,且)由于为锐角,所以=30.(2012•湖南)已知函数f(x)=Asin(ωx+φ)(x∈R,ω>0,0<φ<)的部分图象如图所示.(Ⅰ)求函数f(x)的解析式;(Ⅱ)求函数g(x)=f(x﹣)﹣f(x+)的单调递增区间.的值,再将点(﹣)点(,×++,∴,2x+﹣+)]2x+)sin2x+cos2x)+2k≤+2k﹣)﹣x+,+。