数学文化及发展第六讲
数学文化课件

四、幻方欣赏 1、富兰克林八阶幻方,是美国著名电学家富兰克林 (1706~1790)制作的八阶幻方 美国著名电学家富兰克林(1706~1790)制作的八阶幻 方,它有一些独特的性质: (1)幻方中的64个数字是从1顺序增加至64; (2)每半行、半列上各数和为130(幻和是260); (3)幻方角上的四个数与最中心四个数和等于幻和值 260;52+45+16+17+54+43+10+23=260; (4)从16到10,再从23到17所成折线"∧"上八个数字 之和也为 260; 且平行这种折线的诸折线"∧"上的八 个数字和也为260。 补充(5)将幻方从中心竖线左右分成两部分,17~48全 在右边,剩下的(1~16、49~64)全在左边。 补充(6)幻方中任意2*8或8*2的数幻和值为260。 另外,在丹布朗的小说《失落的秘符》里,哈佛大 学符号学家罗伯特· 兰登运用富兰克林的八阶幻方的 数字重新排列相应格子中的字符,成功地破解原来 在金字塔底部的图案。
它是将从一到若干个数的自然数排成纵横各为若干个数的正方形使在同一行同一列和同一对角线上的几个数的和都相等目录构造原理一幻方种类完全幻方完全幻方指一个幻方行列主对角线及泛对角线各数之和均相等次方个自然数组成的一个n阶方阵其各行各列及两条对角线所含的n个数的和相等
幻方
{是一种将数字安排在正方形格子中,使每行、列和对角线上的数字和都 相等的方法。 幻方也是一种中国传统游戏。旧时在官府、学堂多见。它是将从一到若 干个数的自然数排成纵横各为若干个数的正方形,使在同一行、同一列 和同一对角线上的几个数的和都相等}
五、构造原理 最简单的幻方就是平面幻方,还有立体幻方、高次幻方等。对于立体 幻方、高次幻方世界上很多数学家仍在研究,只讨论平面幻方。 对平面幻方的构造,分为三种情况:N为奇数、N为4的倍数、N为其 它偶数(4n+2的形式) 1、 N 为奇数时,最简单: ⑴ 将1放在第一行中间一列; ⑵ 从2开始直到n×n止各数依次按下列规则存放: 按 45°方向行走,如向右上 每一个数存放的行比前一个数的行数减1,列数加1 ⑶ 如果行列范围超出矩阵范围,则回绕。 例如1在第1行,则2应放在最下一行,列数同样加1; ⑷ 如果按上面规则确定的位置上已有数,或上一个数是第1行第n列时, 则把下一个数放在上一个数的下面。 2、 N为4的倍数时 采用对称元素交换法。 首先把数1到n×n按从上至下,从左到右顺序填入矩阵 然后将方阵的所有4×4子方阵中的两对角线上位置的数关于方阵中心 作对 称交换,即a(i,j)与a(n+1-i,n+1-j)交换,所有其它位置上的数不变。 (或者将对角线不变,其它位置对称交换也可) **以上方法只适合于n=4时**
《数学文化——数字的发展 》ppt

“0”传入欧洲
乘着骆驼队和船 只旅行的商人将古 印度数字带到了欧 洲。
巴格达 公元800年 古印度数字和“0” 流传到了新建立的穆斯 林帝国的中心——巴格 达。一位数学家写了许 多关于数学的著作,推 动了古印度数字和“0” 向世界其他地区的传播。
最初的符号都是像古老的代币一样的圆圈和锥形,随着古巴比伦人在制 作木笔工艺上的提高,这些符号转变成了小而深的楔(xiē )形。
下面就是古巴比伦人如何表示数字99:
古埃及数字(公元前3000~前1000年)
在穿过撒哈拉大沙漠的尼罗河沿岸,古埃及人在狭窄的绿洲上耕种。每 年夏天尼罗河水都会泛滥,冲毁田地和沟渠。年复一年,古埃及人都要更新 标记他们的田地。因此他们都成了娴熟的土地测量者和时间记录者。数学不 仅用来计数,同时用来丈量土地、建筑房屋以及寻找时间的规律。
古埃及数字(公元前3000~前1000年)
古埃及人以“十进制”进行计数,数字的写法 就像画画,或者称为“象形文字”。简单的线条 表示1、10和100。画一朵莲花表示1000,一根手 指表示10000,100000是一只青蛙,而1000000则 是一个神。
这些象形文字被堆积在一起用来表示更大的数 字。下面就是用古埃及文字书写的1996:
穆斯林帝国进入 非洲,并把“0”带 了过去
访问北非阿拉伯国家的 意大利商人偶然学会了使 用古印度数字。在1202年 ,一位名叫斐波那契的意 大利人在《算盘书》中阐 明了这些数字的用法,从 而使得古印度数字流传到 了意大利。
欧洲 1200年至今 在欧洲,人们发现古印度 数字在计算方面非常实用,于 是古印度数字就慢慢取代了罗 马数字。新数字极大地推动了 文艺复兴的到来,文艺复兴时 期又称为“学习时代”,也是 现代科学诞生的历史时期。
高中数学《第六讲近代数学两巨星一分析的化身──欧拉》11PPT课件 一等奖名师共32页文档

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
高中数学《第六讲近代数学两巨星一分 析的化身──欧拉》11PPT课件 一等奖
名师
61、辍学如磨刀之石,不见其损,日 有所亏 。
62、奇文共欣赞,疑义相与析。
63、暧暧远人村,依依墟里烟,狗吠 深巷中 ,鸡鸣 桑树颠 。
64、一生复能几,倏如流电惊。
65、少无适俗韵,性本爱丘山。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人ቤተ መጻሕፍቲ ባይዱ一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
《数学与文化》课件

《数学与文化》课件一、导入1、引言:数学是人类文化的重要组成部分,它不仅是一种语言,更是一种思想,一种精神。
在我们的生活中,无论是购物、旅行、科学研究,还是日常生活中的时间计算、财务管理等等,都离不开数学的应用。
因此,我们要学习数学,理解数学,掌握数学。
2、展示图片:展示一些具有代表性的数学符号、公式和图形,如π、加减乘除、坐标系等,以此引出数学的概念和特点。
二、数学的本质1、数学的起源:介绍数学的起源和发展,从原始社会的计数到现代数学的各个分支。
2、数学的语言:介绍数学的语言和符号系统,包括数字、符号、公式和图形等。
3、数学的方法:介绍数学的基本方法和应用,包括演绎推理、归纳推理、类比推理等。
三、数学与文化1、数学与艺术:介绍数学在艺术中的应用,如黄金分割、对称性等。
2、数学与经济:介绍数学在经济中的应用,如概率统计、优化问题等。
3、数学与科学:介绍数学在科学研究中的应用,如物理学、化学、生物学等。
四、数学的未来1、数学的挑战:介绍当前数学面临的挑战和问题,如哥德巴赫猜想等。
2、数学的未来:探讨数学的未来发展方向和趋势,如人工智能中的机器学习等。
五、结语1、强调数学的重要性和意义。
2、鼓励学生们热爱数学,掌握数学,运用数学。
传统文化与文化传统是我们在学习和生活中经常遇到的概念。
然而,这两个词的含义和关系却往往被人们所混淆。
因此,本课件旨在帮助学生们明确传统文化与文化传统的定义、特点及其关系,从而更好地理解和应用这两个概念。
传统文化的概念及特点:通过案例分析,展示传统文化在历史、地理、社会等方面的表现,引导学生理解传统文化的概念和特点。
文化传统的概念及特点:通过案例分析,展示文化传统在价值观、信仰、艺术等方面的表现,引导学生理解文化传统的概念和特点。
传统文化与文化传统的关系:通过对比分析,让学生明确传统文化与文化传统的和区别,进一步理解二者的关系。
运用所学知识分析具体的文化现象:通过小组讨论的形式,让学生运用所学知识分析具体的文化现象,提高他们的应用能力。
初一数学第6讲:有理数的乘方(教师版)

第六讲有理数的乘方一、有理数乘方1.乘方的定义(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;2.有理数的乘方法则(1)正数的任何次幂都是正数.(2)负数的奇次幂是负数.负数的偶次幂是正数.注意:当n为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =a n或(a-b)n=(b-a)n .二、科学记数法把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.三、近似数的精确位一个近似数,四舍五入到哪一位,就说这个近似数的精确到那一位.四、有效数字从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.1.区分乘方与幂的不同2.熟练掌握科学计数法表示数的方法例1.﹣12的值是()A.1B.﹣1 C.2D.﹣2考点:有理数的乘方.分析:根据乘方运算,可得幂,根据有理数的乘法运算,可得答案.解答:解:原式=﹣1,故选;B.点评:本题考查了有理数的乘方,注意底数是1.例2.(﹣2)3的值为()A.﹣6 B.6C.﹣8 D.8考点:有理数的乘方.专题:计算题.分析:根据有理数乘方的法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.解答:解:(﹣2)3=﹣8,故选C.点评:本题考查了有理数的乘方法则,解题时牢记法则是关键,此题比较简单,易于掌握.例3.据统计,2014年河南省机动车保有量突破280万辆,对数据“280万”的理解错误的是()A.精确到万位B.有三个有效数字C.这是一个精确数D.用科学记数法表示为2.80×106考点:近似数和有效数字.分析:根据近似数、有效数字的意义和科学记数法的计数方法逐一分析得出答案即可.解答:解:A、280万精确到万位是正确的,此选项不合题意;B、280万有三个有效数字是正确的,此选项不合题意;C、280万是一个近似数,不是精确数,此选项符合题意;D、280万用科学记数法表示为2.80×106是正确的,此选项不合题意.故选:C.点评:此题考查近似数与有效数字,以及科学计数法,掌握基本概念和方法是解决问题的关键.例4.据国家统计局初步核算,2012年全年国内生产总值519322亿元,请用科学记数法表示519322亿元正确的是()A.5.19322×105元B.519322×105元C.5.19322×108元D.5.19322×1013元考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于519322亿有14位,所以可以确定n=14﹣1=13.解答:解:519322亿=51 932 200 000 000=5.19322×1013.故选D.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.例5.一种病毒长度约为0.000056mm,用科学记数法表示这个数为()A.5.6×10﹣6B.5.6×10﹣5C.0.56×10﹣5D.56×10﹣6考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000056=5.6×10﹣5.故选:B.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.例6.用科学记数法表示数5.8×10﹣5,它应该等于()A.0.005 8 B.0.000 58 C.0.000 058 D.0.O00 005 8考点:科学记数法—原数.分析:把5.8的小数点向右移动5个位,即可得到.解答:解:5.8×10﹣5=0.000 058.故选:C.点评:本题主要考查了用科学记数法表示的数化成一般的数的方法,用科学记数法表示的数还原成原数时,n>0时,n是几,小数点就向后移几位.A档1.计算:32=.考点:有理数的乘方.分析:此题比较简单,直接利用平方的定义即可求出结果.解答:解:32=9.故填空答案:9.点评:此题只要利用平方的定义即可.2.﹣32=.考点:有理数的乘方.分析:﹣32即32的相反数.解答:解:﹣32=﹣9.点评:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.乘方的意义就是多少个某个数字的乘积.负数的奇数次幂是负数,负数的偶数次幂是正数;﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.3.计算:﹣22﹣(﹣2)2=.考点:有理数的乘方.分析:利用有理数的乘方运算法则得出即可.解答:解:﹣22﹣(﹣2)2=﹣4﹣4=﹣8.故答案为:﹣8.点评:此题主要考查了有理数的乘方运算法则,注意运算符号.4.近似数8.6×105精确到位.考点:近似数和有效数字.分析:根据近似数精确到哪一位,应当看末位数字实际在哪一位,即可得出答案.解答:解:近似数8.6×105精确到万位;故答案为:万.点评:此题考查了近似数和有效数字,最后一位所在的位置就是精确度.5.近似数3.06精确到位.考点:近似数和有效数字.分析:精确到哪一位就是看这个近似数的最后一位的数字在什么位.解答:解:近似数3.06精确到百分位.故答案为:百分.点评:本题考查近似数与有效数字,精确度由所得近似数的最后一位有效数字在该数中的位置决定.B档6.近似数1.02×105精确到了位.考点:近似数和有效数字.分析:根据近似数的精确度求解.解答:解:近似数1.02×105精确到了千位.故答案为千.点评:本题考查了近似数与有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.7.由四舍五入得到的近似数0.5600的有效数字的个数是,精确度是.考点:近似数和有效数字.分析:根据有效数字的定义和近似数的精确度求解.解答:解:近似数0.5600的有效数字是5、6、0、0,精确度为精确到0.0001.故答案为4,精确到0.0001.点评:本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.8.世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:6 700 000=6.7×106,则n=6,故答案为:6.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.嫦娥三号是嫦娥绕月探月工程计划中嫦娥系列的第三颗人造绕月探月卫星.将于2013年下半年择机发射.奔向距地球1500000km的深空.用科学记数法表示1500000为.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:1 500 000=1.5×106,故答案为:1.5×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.截至2013年12月31日,余额宝规模已达到1853亿元,这个数据用科学记数法可表示为元.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1853亿有12位,所以可以确定n=12﹣1=11.解答:解:1853亿=185 300 000 000=1.853×1011.故答案为:1.853×1011.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.C档11.环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 0025=2.5×10﹣6;故答案为:2.5×10﹣6.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.人的眼睛可以看见的红光的波长是0.000077cm,请把这个数用科学记数法表示,其结果是cm.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000077=7.7×10﹣5,故答案为:7.7×10﹣5.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.用小数表示1.027×10﹣6=0.000001027.考点:科学记数法—原数.分析:科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.027×10﹣6中1.027的小数点向左移动6位就可以得到.解答:解:原式=0.000001027,故答案为0.000001027.点评:本题考查了科学记数法,写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.14.我国第六次人口普查公布全国人口数约为137054万,将这个数精确到亿位,结果为.考点:科学记数法与有效数字.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于137054万有10位,所以可以确定n=10﹣1=9.解答:解:我国第六次人口普查公布全国人口数约为137054万,将这个数精确到亿位,结果为1.3×109,故答案为:1.3×109.点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.15.2015年3月10日,苹果公司宣布Apple Watch从4月10日起开始预售,价格从2588元﹣126800元不等,将126800元精确到千位,结果为.考点:科学记数法与有效数字.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于126800有6位,所以可以确定n=6﹣1=5.解答:解:将126800元精确到千位,结果为1.27×105;故答案为:1.27×105.点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.1.用科学记数法表示0.0000216,结果是(保留两位有效数字).考点:科学记数法与有效数字.分析:根据科学记数法的表示方法,有效数字的意义,可得答案.解答:解:0.0000216=2.2×10﹣5,故答案为:2.2×10﹣5.点评:本题考查了科学记数法与有效数字,数字的前面有几个零,科学计数法中10的指数就是负几.2.计算:=.考点:有理数的乘方.分析:直接利用乘方的意义和计算方法计算得出答案即可.解答:解:﹣(﹣)2=﹣.故答案为:﹣.点评:此题考查有理数的乘方,掌握乘方的意义和计算方法是解决问题的关键.3.计算(﹣1)2012﹣(﹣1)2011的值是.考点:有理数的乘方.分析:根据﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1解答.解答:解:(﹣1)2012﹣(﹣1)2011,=1﹣(﹣1),=1+1,=2.故答案为:2.点评:本题考查了有理数的乘方,熟记﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1是解题的关键.4.中央电视台统计显示,南京青奥会开幕式直播有超过2亿观众通过央视收看,2亿用科学记数法可记为.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将2亿=200000000用科学记数法表示为:2×108.故答案为:2×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.光的速度为300000千米/秒,太阳光从太阳照到地球约需500秒,地球与太阳距离是米(用科学记数法).考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:300000×500=150000000千米=1.5×1014米.故答案为1.5×1014.点评:本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.1.计算:﹣24+(﹣2)4=.考点:有理数的乘方.专题:计算题.分析:此题比较简单,直接利用幂的定义就可以求出结果.解答:解:﹣24+(﹣2)4=﹣16+16=0.故填空答案:0.点评:此题主要考查了乘方的定义,其中的规律:①负数的奇数次幂是负数,负数的偶数次幂是正数;②﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.2.在近似数6.48中,精确到位,有个有效数字.考点:近似数和有效数字.分析:近似数精确到哪一位,应当看末位数字实际在哪一位,最后一位是什么位就是精确到哪一位;一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.解答:解:近似数6.48中,最后一位是百分位,因而是精确到百分位,有6,4,8共3个有效数字.故答案是百分和3.点评:本题主要考查了近似数与有效数字的确定方法,精确到哪一位,即对下一位的数字进行四舍五入.有效数字的计算方法以及与精确到哪一位是需要识记的内容,经常会出错.3.用四舍五入法把3.0987精确到0.01的结果是.考点:近似数和有效数字.分析:精确到哪位,就是对它后边的一位进行四舍五入.解答:解:把3.0987精确到0.01,即对千分位的数字进行四舍五入,是3.10.故答案为:3.10.点评:精确到哪一位,即对下一位的数字进行四舍五入.这里对千分位的8入了后,百分位的是9,满了10后要进1.4.数2.30×103精确到位.考点:近似数和有效数字.分析:根据近似数的精确度求解.解答:解:2.30×103精确到十位.故答案为十.点评:本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.5.2014年我国的国内生产总值(GPD)达到636000亿元,请将636000用科学记数法表示,记为.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将636000用科学记数法表示为6.36×105.故答案为:6.36×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.人的眼睛可以看见的红光的波长是0.000077cm,请把这个数用科学记数法表示,其结果是cm.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000077=7.7×10﹣5,故答案为:7.7×10﹣5.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.写出下列用科学记数法表示的数的原来的数:2.35×10﹣2=.考点:科学记数法—原数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.因而把这个数还原,就是把2的小数点向左移动2位.解答:解:2.35×10﹣2=0.0235.故答案为:0.0235.点评:本题考查写出用科学记数法表示的原数.将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.8.我国现有约7849万名共青团员,用科学记数法(保留两个有效数字)表示为名.考点:科学记数法与有效数字.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于7849万有8位,所以可以确定n=8﹣1=7.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:7849万=7.849×107≈7.8×107,故答案为7.8×107.点评:本题考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.课程顾问签字: 教学主管签字:。
(修改2014)第六讲:有限与无限

一、创设情境:有无限个房间的旅馆客满了 还要再安排新来的客人住下
1 号 房 间 的 客 人 搬 到 2 号 房 间,2 号 房 间的客人
“有无限个房间”的旅馆
1. “客满”后又来1位客人
1 2 3 4 ┅ k ┅ ┅ ↓ ↓ ↓ ↓ ┅ ↓ 2 3 4
空出了1号房间
14
5 ┅ k+1 ┅
2. 客满后又来了一个旅游团,旅游团 中有无穷个客人
注意“有限个”的条件)
无穷多个无穷小量的乘积未必是无穷小量
(甚至可以是无穷大量)。
54
2. 联系
在“有限”与“无限”间建立联系的手段,往
往很重要。
1)数学归纳法 通过有限的步骤,证明了命
题对无限个自然数均成立。
2)极限 通过有限的方法,描写无限的过程。
如:
lim an 自然数 ; N ,都
4. [思考题] 该旅馆客满后又来了无
穷个旅游团,每个团中都有无穷个客
人,还能否安排?
19
思考题解答
20
答 :能。 法I. 将所有旅游团的客人统一编号排成下表,按箭头进 入1,2,3,4,5,…各号房间顺序入住,则所有人都有
房间住。
一团: 1.1 → 1.2 ↙ 二团: 2.1 ↙ ↙ 2.2 ↙ 1.3 ↙ 2.3 2.4 …… 1.4 ……
50
在“无限”的情况下,加法结合律不
再成立。如
1 (1) 1 (1) 1 (1) [1 (1)] [1 (1)] [1 (1)] 1 [(1) 1] [(1) 1] [( 1) 1]
0 1
51
有限半群若满足消去律则一定是群。
[ 该两集合:有一一对应,于是推出两集合的 元素个数相等;但由“部分小于全体”,又推 出两集合的元素个数不相等。这就形成悖论。
数学文化MathematicalCulture

II
c-b
a
c-a
刘徽和赵爽的证明
I + II = III ⇒ (a + b − c)2 = 2(c − a)(c − b)
6.1 Ancient Chinese Mathematics: Geometry
3.4.4 勾股容方与容圆
《九章算术》勾股章:“今
b
有勾五步,股十二步,问勾
中容方几何。”
d = ab a+b
C1 ' C1
B 1' B1
中国堤积公式
V=
1 6
( 2h1
+
h2
)
a1
+ 2
b1
+
( 2h2
+
h1 )
a2
+ 2
b2
l
6.1 Ancient Chinese Mathematics: Geometry
a2
l a1
h
羡除
a3
V羡除=
1 6
(a1
+
a2
+
a3
)bh
6.1 Ancient Chinese Mathematics: Geometry
数学文化 Mathematical Culture
汪晓勤 华东师范大学数学系
第6讲 大哉言数 2013-11-25
Lecture 6 Mathematics in history
6.1 几何 6.2 数论
6.1 Ancient Chinese Mathematics: Geometry
● 三角形面积公式
6.1 Ancient Chinese Mathematics: Geometry
数学发展简史

《数学发展简史》主讲教师:王幼军目录导言:为什么学习数学史第一讲:早期文明中的数学1.古埃及的数学2.巴比伦的数学3.中国早期的数学第二讲:古希腊的数学1.希腊数学——从爱奥尼亚到亚历山大2.亚历山大时期第三讲:中国古代的数学1.汉以前的中国数学2.从魏晋到隋唐时期的中国数学3.十二、三世纪的宋元数学第四讲:印度与阿拉伯的数学1.印度的数学2.阿拉伯数学第五章:数学的复兴1.中世纪的欧洲数学2.经验主义数学观的形成及其对于近代数学实践的影响3.三次、四次方程的求根公式的解决4.三角学的历史第六讲:近代数学的兴起1.对数2.解析几何的诞生3.微积分的产生与发展4.概率论的产生第七讲:近代数学的发展1.几何学的发展2.代数学的发展3.分析学的发展4.公理化运动第八讲:现代数学概观1.集合论悖论与数学基础的研究2.纯数学的发展3.应用数学的发展4.六十年代以后的数学导言:为什么学习数学史1.为了更全面、更深刻地了解数学每一门学科都有它的历史,文学有文学史,哲学有哲学史,天文学有天文学史等等。
数学有它自己的发展过程,有它的历史。
它是活生生的、有血有肉的。
无论是概念还是体系,无论是内容还是方法,都只有在与其发展过程相联系时,才容易被理解。
可以说,不懂得数学史,就不能真心地理解数学。
数学课本上的数学,经过多次加工,已经不是原来的面貌;刀斧的痕迹,清晰可见。
数学教师要把课本上的内容放到历史的背景上考察,才能求得自己的理解;然后,才有可能帮助学生理解。
2.为了总结经验教训,探索发展规律我国自古以来就非常重视历史、“前事之不忘,后事之师”(《战国策·赵策一》)早已成为人们的共识。
英国哲学家培根(Francis Bacon,1561—1626)的名言“历史使人明智”(Histories make men wise)也是尽人皆知的成语。
数学有悠久的历史,它的成长道路是相当曲折的。
有时兴旺发达,有时衰败凋残。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
1
2
谢谢!2 1
4
4
1
2
二、哥德巴赫猜想
1、问题的提出 1729年~1764年,哥德巴赫与欧拉保持了长达 三十五年的书信往来。在1742年6月7日给欧拉 的信中,哥德巴赫提出了以下的猜想: (a) 任何一个>=6之偶数,都可以表示成两个 奇质数之和。 (b) 任何一个>=9之奇数,都可以表示成三个 奇质数之和。
4
1
数学思想、方法与文化
4
1
2
第六讲 陈景润与哥德巴赫猜想
哥德巴赫简介 哥德巴赫猜想 陈景润与哥德巴赫猜想
4
1
2
一、哥德巴赫简介
哥德巴赫(Goldbach C., 1690.3.18~1764.11.20) 是德国数学家;出生于格奥 尼格斯别尔格(现名加里宁 城)。
4
1
2
曾在英国牛津大学学习,原学法学,由于在 欧洲各国访问期间结识了贝努利家族,所以对 数学研究产生了兴趣;1725年到俄国,同年被 选为彼得堡科学院院士;1725年~1740年担任 彼得堡科学院会议秘书;1742年移居莫斯科, 并在俄国外交部任职。 因此,哥德巴赫(C. Goldbach)并不是职业数 学家,而是一个喜欢研究数学的富家子弟。哥 德巴赫喜欢到处旅游,结交数学家,然后跟他 们通讯。1742年,他在给好友欧拉的一封信里 陈述了他著名的猜想——哥德巴赫猜想。
4
1
2
1、数学家的小故事(2000字以上,生平、 科学成就、有关故事)。
外国:阿基米德、欧几里德、毕达哥拉斯、牛顿、 欧拉 、高斯 、伽罗瓦(伽罗华 ) 、黎曼 、庞 伽莱 、希尔伯特 中国:刘徽 、祖冲之 、沈括 、杨辉 、华罗 庚 、苏步青 、陈省身 、陈景润 、吴文俊 、丘 成桐 、王梓坤 、陈希儒
4
1
2
1948年,匈牙利的瑞尼证明了“1+ c”,其中c是一 很大的自然数; 1956年,中国的王元证明了“3 + 4”; 1957年,中国的王元先后证明了“3 + 3”和“2 + 3”; 1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”; 1965年,苏联的布赫夕太勃和小维诺格拉多夫,及 意大利的朋比利证明了“1 + 3 ”; 1966年,中国的陈景润证明了 “1 + 2 ”。
4
1
2
三、陈景润与哥德巴赫猜想
1、生平 陈景润(1933年5月22日-1996 年3月19日),福建福州人,中 国著名数学家,厦门大学数学系 毕业。1953年-1954年在北京四 中任教,因口齿不清,被拒绝上 讲台授课,只可批改作业,后被 “停职回乡养病”。
4料员,同时研究数 论。1956年调入中国科学院数学研究所。1980 年当选中科院物理学数学部委员。 1984年4月27日,陈景润在横过马路时,被 一辆急驶而来的自行车撞倒,后脑着地,诱发 帕金森氏综合症。 1996年3月19日,著名数学家陈景润因病住 院,经抢救无效逝世,享年62岁 。
4
1
2
3、有关故事
家庭出身 中学时代 (接触哥德巴赫猜想 ) 大学时代 厦门大学校长王亚南 1956年调入中国科学院数学研究所 爱情
4
1
2
作业:
1、数学家的小故事(2000字以上,生平、 科学成就、有关故事)。 2、前面的作业任选一题。 要求:每人两篇,4月底之前发至: cjzhao1691@ 只收电子
2
• 在信中他写道:“我的问题是这样的: • 随便取某一个奇数,比如77,可以把它写成三个素 数之和: • 77=53+17+7; • 再任取一个奇数,比如461, • 461=449+7+5, • 也是三个素数之和,461还可以写成257+199+5,仍 然是三个素数之和。这样,我发现:任何大于9的奇 数都是三个素数之和。 • 但这怎样证明呢?虽然做过的每一次试验都得到了 上述结果,但是不可能把所有的奇数都拿来检验, 需要的是一般的证明,而不是个别的检验。”
4
1
2
2、科学成就
1966年,中国的陈景润证明了 “1 + 2 ”。 陈景润是在改革开放 时期被社会广为流传,当时文学作 家徐迟于78年在《人民文学》杂志 发表了报告文学《哥德巴赫猜想》 。这篇报告文学的作者徐迟和主人 公陈景润皆已去世,他们曾经感动 和激励着一代人为“科学的春天” 而奋斗,为改革开放的伟大事业而 奋斗,两位先生长垂史册。
4
1
2
• 欧拉回信说:“这个命题看来 是正确的”。但是他也给不出 严格的证明。 • 同时欧拉又提出了此一猜想可 以有另一个等价的版本:任何 一个大于2的偶数都是两个素数 之和,但是这个命题他也没能 给予证明。不难看出,哥德巴 赫的命题是欧拉命题的推论。
4
1
2
2、进展 1920年,挪威的布朗证明了“9 + 9”; 1924年,德国的拉特马赫证明了“7 + 7”; 1932年,英国的埃斯特曼证明了“6 + 6”; 1937年,意大利的蕾西先后证明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”; 1938年,苏联的布赫夕太勃证明了“5 + 5”; 1940年,苏联的布赫夕太勃证明了“4 + 4”;