九上数学每日一练:二次函数的实际应用-销售问题练习题及答案_2020年综合题版

合集下载

人教版2020年九年级数学上册 二次函数-函数的实际应用(含答案)

人教版2020年九年级数学上册 二次函数-函数的实际应用(含答案)

坐标系,如果喷头所在处 A(0,1.25),水流路线最高处 M(1,2.25),如果不考虑其他因
素,那么水池的半径至少要 m,才能使喷出的水流不至落到池外.
15.用一根长为 32 cm 的铁丝围成一个矩形,则围成矩形面积的最大值是
cm2.
16.如图,在平面直角坐标系中,点 A 是抛物线 y=a(x-3)2+4 与 y 轴的交点,点 B 是这条抛物线
D.28 米
4.如图,假设篱笆(虚线部分)的长度 16m,则所围成矩形 ABCD 最大面积是( )
A.60 m2
B.63 m2
C.64 m2
D.66 m2
5.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的
关系式为
,当水面离桥拱顶的高度 DO 是 4m 时,这时水面宽度 AB 为( )
11.便民商店经营一种商品,在销售过程中,发现一周利润 y(元)与每件销售价 x(元)之间的关
系满足 y=-2x2+80x+750,由于某种原因,售价只能满足 15≤x≤22,那么一周可获得的最大利
润是 元.
12.2013 年 5 月 26 日,中国羽毛球队蝉联苏迪曼杯团体赛冠军,成就了首个五连冠霸业.比赛 中羽毛球的某次运动路线可以看作是一条抛物线(如图).若不考虑外力因素,羽毛球行进高度
20.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售 单价 x(元)之间满足一次函数关系,其图象如图所示. (1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式; (2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商 品每天获得的利润 w(元)最大?最大利润是多少? (3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?

人教版九年级上册数学实际问题与二次函数——销售问题专题训练(含答案)

人教版九年级上册数学实际问题与二次函数——销售问题专题训练(含答案)

人教版九年级上册数学22.3实际问题与二次函数——销售问题同步训练一、单选题1.某商品的进价为每件20元,现在的售价为每件40元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出5件.则每星期售出商品的利润y (单位:元)与每件涨价x (单位:元)之间的函数关系式是( )A .y =(200﹣5x )(40﹣20+x )B .y =(200+5x )(40﹣20﹣x )C .y =200(40﹣20﹣x )D .y =200﹣5x2.某超市销售一种商品,每件成本为50元,销售人员经调查发现,该商品每月的销售量y (件)与销售单价x (元)之间满足函数关系式5550y x =-+,若要求销售单价不得低于成本,为每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少?( )A .90元,4500元B .80元,4500元C .90元,4000元D .80元,4000元3.重装专卖店销售一种童装,若这种童装每天获利y (元)与销售单价x (元)满足关系250500y x x =-+-,则要想获得最大利润每天必须卖出( )A .25件B .20件C .30件D .40件 4.国家决定对某药品分两次降价,若设平均每次降价的百分比为x ,该药品的原价为33元,降价后的价格为y 元,则y 与x 之间的函数关系为( )A .()3321y x =⨯-B .()23321y x =⨯-C .()2331y x =⨯-D .()331y x =-5.一人一盔安全守规,一人一带平安常在!某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为( )元.A .60B .65C .70D .75 6.为了减少空气污染,国家要求限制塑料玩具生产,这样有时企业会被迫停产,经过调研预测,某塑料玩具生产公司一年中每月获得的利润y (万元)和月份n 之间满足函数关系式y =﹣n 2+14n ﹣24,则没有盈利的月份为( )A .2月和12月B .2月至12月C .1月D .1月、2月和12月 7.将进货价为35元的商品按单价40元售出时,能卖出200个,已知该商品单价每上涨1元,其销售量就减少5个,设这种商品的售价为x 元时,获得的利润为y 元,则下列关系式正确的是( )A .()()352005y x x =--B .()()354005y x x =--C .()()402005y x x =--D .()()403755y x x =--8.某商场经营一种小商品,已知进购时单价是20元.调查发现:当销售单价是30元时,月销售量为240件,而销售单价每上涨1元,月销售量就减少10件,但每件商品的售价不能高于40元.当月销售利润最大时,销售单价为( )A .35元B .36元C .37元D .36或37元二、填空题9.某种商品每件的进价为20元,调查表明:在某段时间内若以每件x 元(20 ≤x ≤30)出售,可卖出(600-20x )件,为使利润最大,则每件售价应定为________元. 10.进价为80元的某衬衣定价为100元时,每月可卖出2000件,价格每上涨1元,销售量便减少5件,那么每月售出衬衣的总件数y (件)与衬衣售价x (元)之间的函数关系式为______,每月利润w (元)与衬衣售价x (元)之间的函数关系式为__________.(以上关系式只列式不化简).11.某商品现在的售价为每件60元,每星期可卖出300件,已知商品的进价为每件40元,则每星期销售额是_________元,销售利润_______元.12.某网店某种商品成本为50元/件,售价为60元/件时,每天可销售100件;售价单价高于60元时,每涨价1元,日销售量就减少2件.据此,当销售单价为____元时,网店该商品每天盈利最多.13.某种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(2030x ≤≤,且x 为整数)出售,可卖出(30)x -件,若使利润最大,则每件商品的售价应为_______元.14.某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲。

中考数学总复习《二次函数的实际应用》专题训练(附答案)

中考数学总复习《二次函数的实际应用》专题训练(附答案)

中考数学总复习《二次函数的实际应用》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________1.某公司购进一种化工原料若干千克,价格为每千克30元,物价部门规定其销售单价每千克不高于60元且不低于30元,经市场调查发现,日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80,当x=50时,y=100.(1)求y与x的函数解析式;(2)若该公司销售该原料日获利为w(元),销售单价为x(元),那么当销售单价为多少元时,该公司日获利最大?最大利润是多少元?2.已知某品牌床单进价为每件60元,每月的销量w(件)与售价x(元)的相关信息如下表(符合一次函数关系):售价(元/件)100110120130…月销售量(件)200180160140…(1)销售该品牌床单每件的利润是元(用含x的式子表示).(2)用含x的代数式表示月销量w.(3)设销售该品牌床单的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?3.某商场销售甲、乙两种产品,其中甲商品进价为20元.在销售过程中发现,甲商品每天的销售利润w1(单位:个)与其销售单价x(单位:元)有如下关系:w1=-x2+bx-1260,当x=30时,w1=330;乙商品每天的销售利润w2(单位:个)与其销售单价z(单位:元)有如下关系w2=-z2+102z+c,当z=50时,w2=440.其中x、z均为整数,并且销售单价均高于进价.(1)求b,c的值;(2)若乙商品销售单价为甲商品销售单价的1.5倍,当两种商品每天获得的利润相同时,甲、乙两种商品销售单价分别为多少;(3)若乙商品销售单价为甲商品销售单价的2倍,当这两种商品每天销售利润的和最大时,请直接写出此时甲的销售单价.4.某网店经营一种热销商品,每件进价为20元,出于营销考虑,要求每件商品的售价不低于20元且不高于28元,在销售过程中发现该商品每周的销售量(y件)与销售单价(x元)之间满足一次函数关系;当销售单价为22元时,销售量为36件;当销售单价为24元时,销售量为32件.(1)请求出y与x的函数关系式;(2)设该网店每周销售这种商品所获得的利润为w元,①写出w与x的函数关系式;②将该商品销售单价定为多少元时,才能使网店每周销售该商品所获利润最大?最大利润是多少?5.某网店销售一种文具袋,成本为30元/件,每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天的销量不低于240件,那么当销售单价为多少元时,每天获取的利润最大?最大利润是多少?6.某超市销售一种商品,成本价为20元/千克,经市场调查,每天销售量y(千克)与销售单价x(元/千克)之间的关系如图所示,规定每千克售价不能低于30元,且不高于80元.设每天的总利润为w元.(1)根据图象求出y与x之间的函数关系式;(2)请写出w与x之间的函数关系式,并写出自变量x的取值范围;(3)当销售单价定为多少元时,该超市每天的利润最大?最大利润是多少元?7.某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现.在进货价不变的情况下,若每千克涨价一元.日销售量将减少20千克.(1)现要保证每天盈利6000元,同时又要让顾客得到实惠,则每千克应涨价多少元?(2)若该商场单纯从经济角度看,那么每千克应涨价多少元,能使商场获利最多.8.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件。

最新九年级数学中考复习:实际问题与二次函数应用题训练(销售问题)含答案

最新九年级数学中考复习:实际问题与二次函数应用题训练(销售问题)含答案

2023年九年级数学中考复习:实际问题与二次函数应用题训练(销售问题)1.某商品进价30元,销售期间发现,当销售单价定为40元时,每天可售出600个,由于销售火爆,商家决定提价销售.经市场调研发现,销售单价每上涨1元,每天销量减少10个.(1)求该商品的销售单价是多少元时,商家每天获利10000元;(2)物价管理部门规定该商品的销售单价不低于40元,且不高于60元.将商品的销售单价定为多少元时,商家每天销售该商品获得的利润w 元最大?最大利润是多少元?2.某超市购进一批牛肉销售,经过还价,实际价格每千克比原来少2元,发现与原来买这批牛肉32千克的钱,现在可以买33千克:(1)现在实际购进这批牛肉每千克多少元?(2)若这批牛肉的销售量y (千克)与销售单价x (元/千克)满足10840y x =-+,那么这批牛肉的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入-进货金额)3.某商品交易会上,某商场销售一批纪念品,进价时每件为38元,按照每件78元销售,平均每天可售出20件,为了扩大销售,增加盈利,商场决定采取适当的降价措施,经调查发现,若每个纪念品降价2元,则平均每天多销售4件.(1)设每个纪念品降价x 元,对应每天所得的利润y (元),求y 与x 之间的函数关系式;(2)每个纪念品的售价为多少元时,每天可获得最大利润?最大利润是多少?4.某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.(1)若每个房间定价增加30元,则这个宾馆这一天的利润为多少元?(2)若宾馆某一天获利10640元,则房价定为多少元?(3)房价定为多少时,宾馆的利润最大?5.某电商准备销售甲,乙两种特色商品,已知每件甲商品的进价比每件乙商品的进价多20元,用5000元购进甲型商品的数量与用4500元购进乙商品的数量相等.甲,乙两种商品的销售单价分别为在其进价基础上增加60%和50%.(1)求甲、乙两种商品每件进价分别为多少元?(2)该电商平均每天卖出甲商品200件,乙商品100件,经调查发现,甲,乙两种商品销售单价都降低1元,这两种商品每天都可多销售2件,为了使每天获取更大的利润,该电商决定把甲,乙两种商品的销售单价都下降m元,在不考虑其他因素的条件下,当m 定为多少时,才能使商店每天销售甲,乙两种商品获取的总利润最大?6.受境外疫情的影响,让跨省旅游成为障碍,本地游成为“新宠”.素有“香格里拉”之称的黄林古村在春节期间更是受到游客的青睐.古村内某民宿有50个房间供游客居住.当每个房间的定价为210元时,每天都住满.市场调查表明每间房价在350元到520元之间(含350元,520元)浮动时,每提高10元,日均入住客房减少1间,但对有游客入住的房间,需对每个房间每天支出30元的各种费用.设每个房间每天的定价提高x元.(1)求房间每天的入住量y(间)关于x(元)的函数关系式;(2)求该民宿客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间每天的定价提高多少元时,w有最大值?(3)由于疫情影响,入住房间不能超过30个,当每个房间每天的定价多少元时,该民宿客房部每天的利润w最大,并求出最大值.7.外出佩戴医用口罩能有效预防新型冠状病毒.某公司生产医用口罩供应市场,每件制造成本为1.8元,试销过程中发现,每月销售量y (万件)与销售单价x (元)之间的关系满足下表.(1)在你学过的一次函数、反比例函数和二次函数等三种函数中,哪种函数能恰当地描述y 与x 的变化规律,并直接写出函数表达式;(2)当销售单价为多少元时,公司每月获得的利润为4.4万元?(3)如果公司每月的制造成本不超过5.4万元,那么当销售单价为多少元时,公司每月获得的利润最大?最大利润为多少万元?8.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y (千克)与售价x (元/千克)满足一次函数关系,对应关系如下表:(1)求y 与x 的函数关系式;(2)该产品每千克售价为多少元时,批发商获得的利润W (元)最大?此时的最大利润为多少元?(3)该批发商若想获得的利润不低于4000元,请直接写出售价应在什么范围内?9.随着电商时代发展, 某水果商以 “线上”与 “线下”相结合的方式销售我市瓯柑共1000箱, 已知“线上”销售的每箱利润为50元. “线下”销售的每箱利润y (元) 与销售量x 箱()200800x 之间的函数关系如图中的线段 AB .(1)求y 与x 之间的函数关系.(2)当“线下”的销售利润为28000元时,求x 的值.(3)实际“线下”销售时,每箱还要支出其它费用(010)m m <<, 若“线上”与“线下”售完这1000箱瓯柑所获得的最大总利润为56250元, 请求出m 的值.10.某环保器材公司销售一种新型产品,已知每件产品的进价为40元,经销过程中测出销售量y (万件)与销售单价x (元/件)存在如图所示的一次函数关系,每年销售该产品的总开支z (万元)(不含进价成本)与年销售y (万件)存在函数关系z =10y +42.5(1)求y 与x 之间的函数关系式;(2)试求出该公司销售该产品年获利w (万元)与销售单价x (元/件)的函数关系式(年获利=年销售总收入金额-年销售产品的总进价-年总开支金额);当销售单价x 为何值时,年获利最大?最大值是多少?(3)若公司希望该产品一年的销售获利不低于57.5万元,请根据函数图象的性质直接写出x 的取值范围.11.某水果种植基地,为有效指导种植和销售,对市场行情和水果种植情况进行了调查.调查发现这种水果每千克售价1y(元)与销售月份x(月)满足关系式1336 8y x=-+,而每千克成本2y(元)与销售月份x(月)满足的函数关系如图所示:(1)求出2y的函数解析式;(2)求出这种水果每千克的利润y(元)与销售月份x(月)之间的函数关系式;(3)“五一之前”,几月份出售这种水果每千克的利润最大?最大利润是多少?12.某商场销售一种小商品,进货价为8元/件.当售价为10元/件时,每天的销售量为100件.在销售过程中发现:销售单价每上涨0.1元,每天的销售量就减少1件.设销售单价为x(元/件)(x≥10),每天销售利润为y(元).(1)直接写出y与x的函数关系式;(2)若要使每天销售利润为270元,求此时的销售单价;(3)若每件该小商品的利润率不超过100%,且每天的进货总成本不超过800元,求该小商品每天销售利润y的取值范围.13.六月是水蜜桃大量上市的季节,某果农在销售时发现:若水蜜桃的售价为15元/千克,则日销售量为50千克,若售价每提高1元/千克,日销售量就减少2千克,现设水蜜桃售价为x元/千克(x≥15,且x为正整数).(1)若某日销售量为40千克,则该日水蜜桃的单价为多少元?(2)若政府将销售价格定为不超过30元/千克,设每日销售额为W元,求W关于x的函数表达式,并求W的最大值和最小值;(3)为更好地促进果农的种植积极性,市政府加大对果农的补贴,每日给果农补贴a元后(a为正整数),果农发现最大日收入(日收入=销售额+政府补贴)还是不超过910元,并且只有5种不同的单价使日收入不少于900元,请直接写出所有符合题意的a的值.14.某商品的进价为每件20元,售价为每件30元,每个月可卖出180件.如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上在x元(x为整数),每个月的销售利润为y元。

二次函数销售问题应用题单元测试题(含答案)

二次函数销售问题应用题单元测试题(含答案)

二次函数销售问题一、解答题(共16题;共135分)1.(2020·乌鲁木齐模拟)某商品现在的售价为每件60元,每星期可卖出300件. 市场调查反映:如调整价格,每降价1元,每星期可多卖出20件. 已知商品的进价为每件40元,如何定价才能使利润最大?这个最大利润是多少?2.(2020九上·北京月考)已知某商品的进价为每件40元.现在的售价是每件60元,每星期可卖出300件.市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件.如何定价才能使利润最大?利润最大是多少?3.(2019九上·西城期中)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出15件.设每件商品降价x元后,每星期售出商品的总销售额为y 元,请列出y与x的关系式,试求当商品售价为多少元时,该商品每星期的总销售额最高,最高为多少元?4.某百货商店服装柜在销售中发现,某品牌童装平均每天可售出20件,每件盈利40元,经市场调查发现,在进货不变的情况下,若每件童装每降价1元,日销售量将增加2件.(1)若想要这种童装销售利润每天达到1200元,同时又能让顾客得到更多的实惠,每件童装应降价多少元?(2)当每件童装降价多少元时,这种童装一天的销售利润最多?最多利润是多少?5.(2019九上·郑州期末)某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:(1)求p关于x的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.6.(2018九上·雅安期中)某农业合作社投资64000元共收获80吨的农产品,目前,该农产品可以以1200元/吨售出,如果储藏起来,每星期会损失2吨,且每星期需支付各种费用1600元,且同时每星期每吨价格将上涨200元.问储藏多少星期出售这批农产品可获利122000元?7.(2019九上·天津期中)由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?8.(2019九上·北京期中)某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天的销售量y(件)与销售单价x(元)之间的函数关系式是y=-10x+700.当销售单价为多少元时,每天获得的利润最大?并求出利润的最大值.9.(2017·盘锦)端午节前夕,三位同学到某超市调研一种进价为80元的粽子礼盒的销售情况,请根据小梅提供的信息,解答小慧和小杰提出的问题.(价格取正整数)10.(2017九上·萝北期中)已知某种产品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查发现,该产品每降价1元,每星期可多卖出20件,由于供货方的原因销量不得超过380件,设这种产品每件降价x元(x为整数),每星期的销售利润为w元.(1)求w与x之间的函数关系式,并写出自变量x的取值范围;(2)该产品销售价定为每件多少元时,每星期的销售利润最大?最大利润是多少元?(3)该产品销售价在什么范围时,每星期的销售利润不低于6000元,请直接写出结果.11.(2017·深圳模拟)我省某工艺厂为全运会设计了一款成本为每件20元的工艺品,投放市场试销后发现每天的销售量y(件)是售价x(元/件)的一次函数。

人教版九年级上册数学实际问题与一元二次方程—销售问题专题训练(含答案)

人教版九年级上册数学实际问题与一元二次方程—销售问题专题训练(含答案)

人教版九年级上册数学21.3 实际问题与一元二次方程—销售问题同步训练一、单选题1.某超市销售一种饮料,每瓶进价为6元.当每瓶售价为10元时,日均销售量为160瓶,经市场调查表明,每瓶售价每增加1元,日均销售量减少20瓶.若超市计划该饮料日均总利润为700元,且尽快减少库存,则每瓶该饮料售价为( ) A .11 B .12 C .13 D .14 2.某款品牌童装,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,该品牌采取了降价措施.在每件盈利不少于25元的前提下,经过一段时间的销售,发现销售单价每降低1元,平均每天可多售出2件.若要保证每天的销售利润为1050元,则每件童装应降价( )A .5元B .6元C .7元D .9元 3.某商店从厂家以每件21元的价格购进一批商品.若每件商品的售价定为x 元,则可卖出()35010x -件,若商店计划从这批商品中获取400元的利润(不计其他成本),求售价x .根据题意,下面所列方程正确的是( )A .()2135010400x -=B .(21)(35010)400x x --=C .()()2135010400x x --=D .()2135010400x +-= 4.小强为活动小组购买统一服装,经理给予如下优惠:如果一次性购买不超过10件,单价为80元:如果一次性购买超过10件,那么每多买一件,购买的所有服装的单价降低2元,但单价最终不低于50元.小强一次性购买这种服装花费1200元,则他购买了这种服装的件数是( )A .20件B .24件C .20件或30件D .30件 5.某超市购进一批商品,单价40元.经市场调查,销售定价为52元时,可售出180个,定价每增加1元,销售量减少10个,因受库存的影响,每批次进货个数不得超过180个,超市若将准备获利2000元,则定价为多少元?( )A .50B .60C .50或60D .100 6.某口罩经销商批发了一批口罩,进货单价为每盒50元,若按每盒60元出售,则每周可销售80盒.现准备提价销售,经市场调研发现:每盒每提价1元,每周销量就会减少2盒,为保护消费者利益,物价部门规定,销售时利润率不能超过50%,设该口罩售价为每盒(60)x x >元,现在预算销售这种口罩每周要获得1200元利润,则每盒口罩的售价应定为( )A .70元B .80元C .70元或80元D .75元 7.香水梨在甘肃白银境内种植历史悠久,明代就有记载.某水果店以每千克10元的进价进了一批香水梨,经市场调研发现:售价为每千克20元时,每天可销售40千克.售价每上涨1元,每天的销量将减少3千克.如果该水果店想平均每天获利408元,设这种香水梨的售价上涨了x 元,根据题意可列方程为( )A .()()20403408x x +-=B .()()2010403408x x +--=C .()()1040320408x x ---=⎡⎤⎣⎦D .()()204031040408x x +--⨯= 8.文博会期间,某公司调查一种工艺品的销售情况,下面是两位调查员和经理的对话. 小张:该工艺品的进价是每个22元;小李:当销售价为每个38元时,每天可售出160个;当销售价降低3元时,平均每天将能多售出120个.经理:为了实现平均每天3640元的销售利润,这种工艺品的销售价应降低多少元? 设这种工艺品的销售价每个应降低x 元,由题意可列方程为( )A .(38﹣x )(160+3x ×120)=3640 B .(38﹣x ﹣22)(160+120x )=3640C .(38﹣x ﹣22)(160+3x ×120)=3640D .(38﹣x ﹣22)(160+3x ×120)=3640二、填空题9.某种服装原售价为200元,由于换季连续两次降价处理,现按100元的售价销售.已知两次降价的百分率相同,设每次降价百分率为x ,则可列方程_______.10.某商品进价为3元,当售价为x 元时可销售商品(x +3)个,此时获利160元,则该商品售价为____________元.11.商场某种商品进价为120元/件,售价130元/件时,每天可销售70件;售价单价高于130元时,每涨价1元,日销售量就减少1件,据此,若销售单价为 __________元时,商场每天盈利达1500元.12.某果园有100棵苹果树,一棵苹果树平均结1000个苹果,现准备多种一些苹果树以提高产量,试验发现,每多种一棵苹果树,每棵苹果树的产量就会减少2个,如果要使产量增加15.2%,且所种苹果树要少于原有苹果树,那么应多种_____棵苹果树.13.某超市销售一种饮料,平均每天可售出100箱,每箱利润20元.为扩大销售,超市准备适当降价.据测算,每箱每降价4元,平均每天可多售出20箱.若要使每天销售这种饮料获利1280元,每箱应降价多少元?设每箱降价x元,可列方程___.14.2020年以来,受疫情影响,一些传统商家向线上转型发展,某商家通过直播带货,商品网上零售额得以逆势增长.某种服装,平均每天可销售20件,每件盈利40元.在每件降价幅度不超过15元的情况下,若每件降价1元,则每天可以多售5件.为了实现每天1440元的销售利润,每件应降价多少元?设每件应降价x元,则可列方程为_____________.15.某商店将进价为30元/件的文化衫以50元/件售出,每天可卖200件,在换季时期,预计单价每降低1元,每天可多卖10 件,则销售单价定为多少元时,商店可获利3000元?设销售单价定为x元/件,可列方程_____________.(方程不需化简)16.一个农业合作社以64000元的成本收获了某种农产品80吨,目前可以以1200元/吨的价格售出,如果储藏起来,每星期会损失2吨,且每星期需支付各种费用1600元,但同时每星期每吨的价格将上涨200元.设储藏x个星期再出售这批农产品,可获利122000元.根据题意,可列方程______.三、解答题17.超市销售某种商品,每件盈利50元,平均每天可达到30件.为尽快减少库存,现准备降价以促进销售,经调查发现:一件商品每降价1元平均每天可多售出2件.(1)当一件商品降价5元时,每天销售量可达到件,每天共盈利元;(2)在上述条件不变,销售正常情况下,每件商品降价多少元时超市每天盈利可达到2100元?(3)在上述条件不变,销售正常情况下,超市每天盈利最高可以达到k元,请你利用学过的△判别式,或利用暑假预习函数配方法,求出k的值?18.每年五六月是小龙虾成熟的季节,重庆“渝淳小龙虾”店推出一款新品“特色香辣小龙虾”按照以堂食和外卖两种方式售卖;一份“特色香辣小龙虾”的堂食单价比外卖单价高20元,3份外卖的总价比2份堂食的总价多68元;(1)求一份“特色香辣小龙虾”的堂食单价和外卖单价分别是多少元?(2)五月份第一周按照(1)中的单价共卖出200份“特色香辣小龙虾”,由于小龙虾成熟旺季到来,成本降低,因此“渝淳小龙虾”店决定从五月第二周降价销售,每份外卖单价降a 元,第二周的总销售量在第一周200份的基础上增加2a 份.每份堂食单价直接降价8元,且第二周堂食的销售量占第二周总销售量的14,其余均由外卖售出.最终这款“特色香辣小龙虾”第二周的总销售额为()2280012a +元,求a 的值.19.华贸商城销售某品牌电饭锅,每台进价为320元,标价为400元.(1)中秋节期间商城举行促销活动,经过两次降价后,每台售价为324元,若每次降价的百分率相同,求每次降价的百分率;(2)经市场调研发现:当每台售价为380元时,平均每天能售出6台,当每台售价每降5元时,平均每天就能多售出3台,若商城要想使该冰箱的销售利润平均每天达到720元,则每台冰箱的售价应为多少元?20.国家法定节假日期间,兴隆山景区为吸引游客组团来此旅游,特推出了如下门票收费标准:标准一:如果人数不超过30人,门票价格100元/人;标准二:如果人数超过30人,每超过1人,门票价格降低2元,但门票价格不低于80元/人.(1)若某单位组织33名员工去兴隆山景区旅游,则购买门票共需费用多少元?(2)某单位组织员工去兴隆山景区旅游,共支付门票费用3150元,试求该单位这次共有多少名员工去兴隆山景区旅游?答案第1页,共1页 参考答案:1.A2.A3.B4.A5.B6.A7.B8.D9.()22001100x -=10.1311.150或17012.20 13.(20−x )(100+4x ×20)=1280 14.(40)(205)1440(015)x x x -+=<≤15.(30)[20010(50)]3000x x -+-=16.()()1200200802160064000122000x x x +⨯---=17.(1)40,1800(2)每件商品降价20元,商场日盈利可达2100元(3)超市每天盈利最高可以达到2112.5元18.(1)一份“特色香辣小龙虾”的堂食单价为128元,外卖单价为108元(2)a 值为2019.(1)每次降价的百分率是10%.(2)每台冰箱的售价应为360元或350元.20.(1)3102元(2)35名。

九上数学每日一练:二次函数的实际应用-几何问题练习题及答案_2020年压轴题版

九上数学每日一练:二次函数的实际应用-几何问题练习题及答案_2020年压轴题版

考点: 二次函数的实际应用-几何问题;
答案解析
3. (2020川汇.九上期末) 如图,抛物线y=ax2+ x+c交x轴于A,B两点,交y轴于点C.直线y=﹣ +2经过点A,C.
(1) 求抛物线的解析式; (2) 点P在抛物线在第一象限内的图象上,过点P作x轴的垂线,垂足为D,交直线AC于点E,连接PC,设点P的横坐 标为m. ①当△PCE是等腰三角形时,求m的值;
(1) 求抛物线的解析式. (2) 点 是 轴正半轴上的一个动点,过点 作
①若点 在线段 上(不与点 , 重合),连接
轴,交直线 于点 ,交抛物线于点 .
,求
面积的最大值.
②设 的长为 ,是否存在 ,使以点 , , , 为顶点的四边形是平行四边形?若存在,求出 的值;若
不存在,请说明理由.
考点: 待定系数法求二次函数解析式;二次函数的实际应用-几何问题;
答案解析
2. (2020平.九上期末) 如图,直线 ,B.
与x轴交于点A(3,0),与y轴交于点B,抛物线
经过点A
(1) 求点B的坐标和抛物线的解析式; (2) 设点M(m,0)为线段OA上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N. ①求PN的最大值;
②若以B,P,N为顶点的三角形与△APM相似,请直接写出点M的坐标.
九上数学每日一练:二次函数的实际应用-几何问题练习题及答案_2020年压轴
题版
2020年 九 上 数 学 : 函 数 _二 次 函 数 _二 次 函 数 的 实 际 应 用 -几 何 问 题 练 习 题
1.
(2020新乡.九上期末) 如图,直线
与 轴交于点
交于 , 两点,点 是抛物线的顶点.

人教版九年级上册数学实际问题与二次函数——销售问题训练含答案

人教版九年级上册数学实际问题与二次函数——销售问题训练含答案

人教版九年级上册数学22.3实际问题与二次函数——销售问题训练一、单选题1.某商店购进某种商品的价格是2.5元/件,在一段时间里,单价是13.5元,销售量是500件,而单价每降低1元就可多售出200件,当销售价为x元/件时,获利润w元,则w与x 的函数关系为()A.22003200=-+w x x=-+-B.220037008000w x xC.2w x=--D.以上答案都不对2008002.某超市有一种商品,进价为2元,据市场调查,销售单价是13元时,平均每天销售量是50件,而销售价每降低1元,平均每天就可以多售出10件.若设降价后售价为x 元,每天利润为y元,则y与x之间的函数关系为()A.y=10x2﹣100x﹣160B.y=﹣10x2+200x﹣360C.y=x2﹣20x+36D.y=﹣10x2+310x﹣23403.某产品进货单价为9元,按10一件售出时,能售100件,如果这种商品每涨价1元,其销售量就减少10件,设每件产品涨x元,所获利润为y元,可得函数关系式为()A.21011010=-++B.2y x x=-+y x x10100C.2y x x1090100=-++10100110y x x=-++D.24.某商人将单价为8元的商品按每件10元出售,每天可销售100件,已知这种商品每提高2元,其销量就要减少10件,为了使每天所赚利润最多,该商人应将销售价(为偶数)提高()A.8元或10元B.12元C.8元D.10元5.某品牌钢笔进价8元,按10元1支出售时每天能卖出20支,市场调查发现如果每支每涨价1元,每天就少卖出2支,为了每天获得最大利润,其售价应定为()A.11元B.12元C.13元D.14元6.某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨一元,月销售量就减少10千克.设销售单价为每千克x元,月销售利润为y元,则y与x的函数关系式为()A.y=(x﹣40)(500﹣10x)B.y=(x﹣40)(10x﹣500)C.y=(x﹣40)[500﹣10(x﹣50)]D.y=(x﹣40)[500﹣10(50﹣x)]7.某商店经营皮鞋,所获利润y(元)与销售单价x(元)之间的关系为2242956=-++,y x x则获利最多为().A.3144B.3100C.144D.29568.某海滨浴场有100个遮阳伞,每个每天收费10元时,可全部租出,若每个每天提高2元,则减少10个伞租出,若每个每天收费再提高2元,则再减少10个伞租出,…,为了投资少而获利大,每个每天应提高()A.4元或6元B.4元C.6元D.8元二、填空题9.已知某商品每箱盈利13元,现每天可售出50箱,如果每箱商品每涨价1元,日销售量就减少2箱.则每箱涨价______ 元时,每天的总利润达到最大.10.为庆祝嫦娥五号登月成功,某工艺厂生产了一款纪念品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就多售出5件,但要求销售单价不得低于成本.则该工艺厂将每件的销售价定为________元时,可使每天所获销售利润最大.11.某商场将每件进价为80元的某种商品按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.设后来该商品每件降价x元,商场一天可获利润y元.则y与x之间的函数关系式是___.12.将进货单价为70元的某种商品按零售单价100元售出时,每天能卖出40个,若这种商品的零售单价在一定范围内每降价1元,其日销量就增加2个,为了获取最大的日利润,则应把零售单价定为_______元.13.某商场以每台2500元进口一批彩电,如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则少卖出50台,设每台定价为x元,利润为y元,写出y与x的函数关系式(化成一般形式)________.14.某商店销售一批头盔,售价为每顶60元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶40元,则该商店每月获得最大利润时,每顶头盔的售价为__________元.15.进入九月后,某电器商场为减少库存,对电风扇连续进行两次降价,若设平均每次降价的百分率是x,降价后的价格为y元,原价为a元,则y与x之间的函数关系式为_________________.16.已知某商品每箱盈利10元,现每天可售出50箱,如果每箱商品每涨价1元,日销售量就减少2箱.设每箱涨价x 元时(其中x 为正整数),每天的总利润为y 元,则y 与x 之间的关系式为_______.三、解答题17.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出5件.(1)若商场平均每天要盈利2400元,每件衬衫应降价多少元?(2)若该商场要每天盈利最大,每件衬衫应降价多少元?盈利最大是多少元?18.商场某种商品平均每天可销售80件,每件盈利60元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.设每件商品降价x 元.据此规律,请回答:(1)商场日销售量增加________件,每件商品盈利________元(用含x 的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到最大?最大利润是多少?19.九年级某班数学小组经过市场调查,整理出某种商品在第()190x x ≤≤天的销售量的相关信息如下表:已知该商品的进价为每件30元,设当天销售该商品的利润为y 元(1)求出y 与x 之间的函数关系式(2)问销售该商品第几天时,当天的销售利润最大?(3)该商品在销售过程中,共有多少天销售利润不低于4800元?请直接写出结果20.2022年中秋节,某超市销售一种月饼,成本每千克40元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:(1)求y与x之间的函数关系式;(2)物价局规定这种月饼售价每千克不高于65元.设这种月饼每天的利润为W(元),求W与x之间的函数关系式,并求出当售价为多少元时获得最大利润,最大利润是多少?答案第1页,共1页 参考答案:1.A2.B3.D4.A5.D6.C7.B8.C9.610.8011.2101002000y x x =-++12.9513.y =﹣5000x 2+3000x+8000014.5515.2(1)y a x =-16.2230500y x x =-++(x 为正整数)17.(1)每件衬衫应降价20元(2)每件衬衫降价18元时,商场所获得的利润最大为2420元18.(1)2x ;(60﹣x );(2)每件商品降价10元时,商场日盈利可达到最大5000元.19.(1)()()221802000150120120005090x x x y x x ⎧-++≤<⎪=⎨-+≤≤⎪⎩(2)45(3)4120.(1)2200y x =-+(2)()22701800W x =--+,售价为65元时获得最大利润,最大利润是1750元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九上数学每日一练:二次函数的实际应用-销售问题练习题及答案_2020年综合题版
答案解析答案解析答案解析答案解析2020年九上数学:函数_二次函数_二次函数的实际应用-销售问题练习题
1.
(2020北仑.九上期末) 网络销售是一种重要的销售方式。

某农贸公司新开设了一家网店,销售当地农产品,其中一种当地特产在网上试销售,其成本为每千克2
元.公司在试销售期间,调查发现,每天销售量y(kg)与销售单价x(元)满足如图所示的函数关系(其中2<x≤10)
(1) 若5<x≤10,求y 与x 之间的函数关系式;
(2) 销售单价x 为多少元时,每天的销售利润最大?最大利润是多少元?
考点: 一次函数的实际应用;二次函数的实际应用-销售问题;2.
(2020温州.九上期末) 总公司将一批衬衫由甲、乙两家分店共同销售,因地段不同,甲店一天可售出20件,每件盈利40元;乙店一天可售出32件,每件盈利30元,经调查发现,每件衬衫每降价1元,甲、乙两家店一天都可多售出2件,设甲店每件衬衫降价a 元时,一天可盈利y 元,乙店每件衬衫降价b 元时,一天可盈利y 元。

(1) 当a=5时,求y 的值。

(2) 求y 关于b 的函数表达式。

(3) 若总公司规定两家分店下降的价格必须相同,请求出每件衬衫下降多少元时,两家分店一天的盈利和最大,最大是多少元?
考点: 二次函数的实际应用-销售问题;3.
(2020慈溪.九上期中) 某茶叶经销商以每千克18元的价格购进一批宁波白茶鲜茶叶加工后出售, 已知加工过程中质量损耗了40%, 该商户对该茶叶试销期间
, 销售单价不低于成本单价,且每千克获利不得高于成本单价的60%,经试销发现,每天的销售量y (千克)与销售单价x (元/千克)符合一次函数 ,且x=35
时,y=45;x=42时,y=38.(1) 求一次函数 的表达式;
(2) 若该商户每天获得利润(不计加工费用)为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价每千克定为多少元时,商户每天可获得最大利润,最大利润是多少元?
(3) 若该商户每天获得利润不低于225元,试确定销售单价x 的范围.
考点: 一次函数的实际应用;二次函数的实际应用-销售问题;4.
(2020宽城.九上期末) 某商店销售一种儿童玩具,进价为每件30元,物价部门规定每件儿童玩具的销售价高于进价,但不能高于进价的1.6倍。

在销售过程中发现,这种儿童玩具每天的销售量y(件)与销售单价x(元)之间满足一次函数关系y=-10x +700。

设每天的销售利润为w (元)。

(1) 求w 与x 之间的函数关系式,并写出自变量x 的取值范围。

(2) 当销售单价为多少时,该商店销售这种儿童玩具每天获得的利润最大,最大利润是多少?
考点: 二次函数的实际应用-销售问题;5.
1212
答案解析(2020盐城.九上期末) 某网店以每件80元的进价购进某种商品,原来按每件100元的售价出售,一天可售出50件;后经市场调查,发现这种商品每件的售价每降低2元,其销售量可增加10件.
(1) 该网店销售该商品原来一天可获利润元.
(2) 设后来该商品每件售价降价
元,网店一天可获利润 元.
①若此网店为了尽可能增加该商品的销售量,且一天仍能获利1080元,则每件商品的售价应降价多少元?②求
与 之间的函数关系式,当该商品每件售价为多少元时,该网店一天所获利润最大?并求最大利润值.
考点: 二次函数的实际应用-销售问题;2020年九上数学:函数_二次函数_二次函数的实际应用-销售问题练习题答案1.
答案:
2.
答案:
3.答案:
4.答案:
5.答案:。

相关文档
最新文档