宁夏银川一中2020-2021学年高一上学期期中考试数学试题

合集下载

2019-2020学年宁夏银川一中高一(上)期中数学试卷(解析版)

2019-2020学年宁夏银川一中高一(上)期中数学试卷(解析版)

2019-2020学年宁夏银川一中高一(上)期中数学试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.已知A={1,3,5,7},B={2,3,4,5},则集合A∪B的元素个数是()A.8B.7C.6D.52.已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)3.函数y=的定义域是()A.[1,+∞)B.C.D.4.下列函数中,是偶函数的是()A.y=x3B.y=2|x|C.y=﹣lgx D.y=e x﹣e﹣x 5.若函数f(x)的图象是连续不断的,且f(0)>0,f(1)>0,f(2)<0,则加上下列哪个条件可确定f(x)有唯一零点()A.f(3)<0B.f(﹣1)>0C.函数在定义域内为增函数D.函数在定义域内为减函数6.若0<x<1,则之间的大小关系为()A.B.C.D.7.函数的单调递增区间为()A.(﹣∞,1)B.(2,+∞)C.(﹣∞,)D.(,+∞)8.随着我国经济的不断发展,2014年年底某偏远地区农民人均年收入为3000元,预计该地区今后农民的人均年收入将以每年6%的年平均增长率增长,那么2021年年底该地区的农民人均年收入为()A.3 000×1.06×7元B.3 000×1.067元C.3 000×1.06×8元D.3 000×1.068元9.函数f(x)=log2x+x﹣10的零点所在区间为()A.(0,7)B.(6,8)C.(8,10)D.(9,+∞)10.如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟漏完.已知圆柱中液面上升的速度是一个常量,H是圆锥形漏斗中液面下落的距离,则H与下落时间t(分)的函数关系表示的图象只可能是()A.B.C.D.11.函数的最大值是()A.B.C.D.12.设函数,若f(﹣4)=f(0),f(﹣2)=﹣2,则关于x 的方程f(x)=x的解的个数为()A.1个B.2个C.3个D.4个二、填空题:本大题4小题,每小题5分,共20分.请将答案填写在答题卷中的横线上.13.若a>0,a≠1,则函数y=a x﹣1+2的图象一定过点.14.已知幂函数y=f(x)的图象经过点(2,),则f(x)=.15.已知f(x)是定义在R上的奇函数,当x>0时,f(x)=2x﹣1,则f(﹣log23)=.16.已知函数,且对任意的x1,x2∈R,x1≠x2时,都有,则a的取值范围是.三、解答题:本大题有6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.全集U=R,若集合A={x|3≤x<10},B={x|(x﹣2)(x﹣7)≤0}.(1)A∪B,(∁U A)∩(∁U B);(2)若集合C={x|x>a},A⊆C,求a的取值范围.18.计算:(1);(2).19.已知函数f(x)=,(1)求函数f(x)的定义域;(2)若f(a)=f(b)=,求a+b的值.20.已知函数f(x)=2x﹣(1)判断函数的奇偶性(2)用单调性的定义证明函数f(x)=2x﹣在(0,+∞)上单调递增.21.已知函数f(x)=lg(1﹣x)﹣lg(1+x).(1)求函数的定义域;(2)若f(x)=lg(1+x),求x的值;(3)求证:当a,b∈(﹣1,1)时,f(a)+f(b)=f().22.已知函数是定义在R上的奇函数,其中g(x)为指数函数,且y=g(x)的图象过定点(2,9).(1)求函数f(x)的解析式;(2)若关于x的方程f(x)=a有解,求实数a的取值范围;(3)若对任意的t∈[0,5],不等式f(t2+2kt)+f(﹣2t2﹣4)>0恒成立,求实数k的取值范围.2019-2020学年宁夏银川一中高一(上)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.已知A={1,3,5,7},B={2,3,4,5},则集合A∪B的元素个数是()A.8B.7C.6D.5【解答】解:∵A={1,3,5,7},B={2,3,4,5},∴A∪B={1,2,3,4,5,7},∴A∪B中元素的个数为6,故选:C.2.已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)【解答】解:M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N={x|﹣1<x<1},故选:B.3.函数y=的定义域是()A.[1,+∞)B.C.D.【解答】解:要使函数有意义,则3x﹣2≥0得x≥,即函数的定义域为[,+∞),故选:B.4.下列函数中,是偶函数的是()A.y=x3B.y=2|x|C.y=﹣lgx D.y=e x﹣e﹣x【解答】解:y=x3和y=e x﹣e﹣x都是奇函数,y=﹣lgx是非奇非偶函数,y=2|x|是偶函数.故选:B.5.若函数f(x)的图象是连续不断的,且f(0)>0,f(1)>0,f(2)<0,则加上下列哪个条件可确定f(x)有唯一零点()A.f(3)<0B.f(﹣1)>0C.函数在定义域内为增函数D.函数在定义域内为减函数【解答】解:A如图,A错B如图,B错Cf(0)>0,f(1)>0,f(2)<0则函数不会是增函数.C错D由已知,函数在(12)内有一个零点,函数在定义域内为减函数,则零点唯一.D对故选:D.6.若0<x<1,则之间的大小关系为()A.B.C.D.【解答】解:由题意考察幂函数y=x n(0<n<1),利用幂函数的性质,∵0<n<1,∴幂函数y=x n在第一象限是增函数,又2>>0.2∴故选:D.7.函数的单调递增区间为()A.(﹣∞,1)B.(2,+∞)C.(﹣∞,)D.(,+∞)【解答】解:由题意,此复合函数,外层是一个递减的对数函数令t=x2﹣3x+2>0解得x>2或x<1由二次函数的性质知,t在(﹣∞,1)是减函数,在(2,+∞)上是增函数,由复合函数的单调性判断知函数的单调递增区间(﹣∞,1)故选:A.8.随着我国经济的不断发展,2014年年底某偏远地区农民人均年收入为3000元,预计该地区今后农民的人均年收入将以每年6%的年平均增长率增长,那么2021年年底该地区的农民人均年收入为()A.3 000×1.06×7元B.3 000×1.067元C.3 000×1.06×8元D.3 000×1.068元【解答】解:随着我国经济的不断发展,2014年年底某偏远地区农民人均年收入为3000元,预计该地区今后农民的人均年收入将以每年6%的年平均增长率增长,设经过x年,该地区的农民人均年收入为y元,依题意有y=3 000×1.06x,因为2014年年底到2021年年底经过了7年,故把x=7代入,即可求得y=3 000×1.067.2021年年底该地区的农民人均年收入为3 000×1.067元.故选:B.9.函数f(x)=log2x+x﹣10的零点所在区间为()A.(0,7)B.(6,8)C.(8,10)D.(9,+∞)【解答】解:∵f(6)=log2 6+6﹣10<0f(8)=log2 8+8﹣10>0故函数f(x)=log2x+x﹣10的零点必落在区间(6,8)故选:B.10.如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟漏完.已知圆柱中液面上升的速度是一个常量,H是圆锥形漏斗中液面下落的距离,则H与下落时间t(分)的函数关系表示的图象只可能是()A.B.C.D.【解答】解:由于所给的圆锥形漏斗上口大于下口,当时间取t时,漏斗中液面下落的高度不会达到漏斗高度的,对比四个选项的图象可得结果.故选:A.11.函数的最大值是()A.B.C.D.【解答】解:∵1﹣x(1﹣x)=,∴∈(0,].∴函数的最大值是.故选:A.12.设函数,若f(﹣4)=f(0),f(﹣2)=﹣2,则关于x 的方程f(x)=x的解的个数为()A.1个B.2个C.3个D.4个【解答】解:∵f(﹣4)=f(0),f(﹣2)=﹣2,∴f(x)在(﹣∞,0)上的对称轴为x=﹣2,最小值为﹣2,∴,解得b=4,c=2.∴f(x)=,作出f(x)的函数图象如图所示:由图象可知f(x)与直线y=x有三个交点,∴方程f(x)=x有三个解.故选:C.二、填空题:本大题4小题,每小题5分,共20分.请将答案填写在答题卷中的横线上.13.若a>0,a≠1,则函数y=a x﹣1+2的图象一定过点(1,3);.【解答】解:方法1:平移法∵y=a x过定点(0,1),∴将函数y=a x向右平移1个单位,再向上平移2个单位得到y=a x﹣1+2,此时函数过定点(1,3),方法2:解方程法由x﹣1=0,解得x=1,此时y=1+2=3,即函数y=a x﹣1+2的图象一定过点(1,3).故答案为:(1,3)14.已知幂函数y=f(x)的图象经过点(2,),则f(x)=.【解答】解:设幂函数的解析式为y=x a,∵幂函数y=f(x)的图象过点(2,),∴=2a,解得a=,∴f(x)=.故答案为:15.已知f(x)是定义在R上的奇函数,当x>0时,f(x)=2x﹣1,则f(﹣log23)=﹣2.【解答】解:∵f(x)是奇函数,∴f(﹣log23)=﹣f(log23)=﹣(2﹣1)=﹣(3﹣1)=﹣2,故答案为:﹣216.已知函数,且对任意的x1,x2∈R,x1≠x2时,都有,则a的取值范围是[﹣1,0).【解答】解:根据题意,f(x)满足对任意的x1,x2∈R,x1≠x2时,都有,则f(x)在R上为增函数,又由函数,则有,解可得:﹣1≤a<0,即a的取值范围为[﹣1,0);故答案为:[﹣1,0).三、解答题:本大题有6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.全集U=R,若集合A={x|3≤x<10},B={x|(x﹣2)(x﹣7)≤0}.(1)A∪B,(∁U A)∩(∁U B);(2)若集合C={x|x>a},A⊆C,求a的取值范围.【解答】解:(1)由B={x|(x﹣2)(x﹣7)≤0}.解得B={x|2≤x≤7}.∴A∪B={x|2≤x<10};(∁U A)∩(∁U B)=∁u(A∪B)={x|x<2或x≥10};(2)∵集合C={x|x>a},若A⊆C,则a<3,即a的取值范围是{a|a<3}.18.计算:(1);(2).【解答】解:(1)原式=1+==;(2)原式==.19.已知函数f(x)=,(1)求函数f(x)的定义域;(2)若f(a)=f(b)=,求a+b的值.【解答】解:(1)由得:x≥0∴函数f(x)的定义域为[0,+∞)…(2)依题意有,即,故,解得:a+b=1.20.已知函数f(x)=2x﹣(1)判断函数的奇偶性(2)用单调性的定义证明函数f(x)=2x﹣在(0,+∞)上单调递增.【解答】(1)解:定义域为{x|x≠0},关于原点对称,f(﹣x)=﹣2x+=﹣(2x﹣)=﹣f(x),则f(x)为奇函数;(2)证明:设0<m<n,则f(m)=2m﹣﹣(2n﹣)=2(m﹣n)+(﹣)=2(m﹣n)+=(m﹣n)•(2+),由于0<m<n,则m﹣n<0,mn>0,则f(m)﹣f(n)<0,即f(m)<f(n).则f(x)在(0,+∞)上单调递增.21.已知函数f(x)=lg(1﹣x)﹣lg(1+x).(1)求函数的定义域;(2)若f(x)=lg(1+x),求x的值;(3)求证:当a,b∈(﹣1,1)时,f(a)+f(b)=f().【解答】解:(1)由函数有意义可得:,解得﹣1<x<1.∴f(x)的定义域为(﹣1,1).(2)由f(x)=lg(1+x)可得lg=lg(1+x),∴=1+x,即x2+3x=0,又﹣1<x<1,∴x=0.(3)f(x)=lg(1﹣x)﹣lg(1+x)=lg,∴f(a)+f(b)=lg+lg=lg,又f()=lg=lg=lg,∴f(a)+f(b)=f().22.已知函数是定义在R上的奇函数,其中g(x)为指数函数,且y=g(x)的图象过定点(2,9).(1)求函数f(x)的解析式;(2)若关于x的方程f(x)=a有解,求实数a的取值范围;(3)若对任意的t∈[0,5],不等式f(t2+2kt)+f(﹣2t2﹣4)>0恒成立,求实数k的取值范围.【解答】解:(1)设g(x)=a x(a>0,且a≠1)),则a2=9,所以a=﹣3 (舍去)或a=3,所以g(x)=3x,f(x)=.又f(x)为奇函数,且定义域为R,所以f(0)=0,即=0,所以m=1,所以f(x)=.(2)设t=3x>0,则f(x)=a等价于=a,解得t=,由,解得a∈(﹣1,1).(3)因为f(x)=﹣1+,所以函数f(x)在R上单调递减.要使对任意的t∈[0,5],f(t2+2kt)+f(﹣2t2﹣4)>0恒成立,因为f(x)为奇函数,所以f(t2+2kt)>f(2t2+4)恒成立.又因为函数f(x)在R上单调递减,所以对任意的t∈[0,5],t2+2kt<2t2+4恒成立,即对任意的t∈[0,5],t2﹣2kt+4>0恒成立.当t=0时,4>0.此时,k∈R,当t∈(0,5],t﹣2k+>0,即2k<t+,因为t+≥4,所以k<2.综上,k<2.。

宁夏银川一中2018-2019学年高一上学期期中考试数学试卷 Word版含解析

宁夏银川一中2018-2019学年高一上学期期中考试数学试卷 Word版含解析

银川一中2018—2019学年度(上)高一期中考试数学试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B. C. D.【答案】A【解析】【分析】利用补集的定义求出集合B的补集,利用交集的定义求出.【详解】∵,,∴={﹣1,2}∵,∴故选:A.【点睛】求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解;在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2.函数的定义域是()A. B. C. D.【答案】B【解析】【分析】由对数式的真数大于0,分式的分母不为0联立不等式组求解.【详解】由解,得x>0且x≠1.∴函数f(x)=+lgx的定义域是(0,1)∪(1,+∞).故选:B.【点睛】常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y=x0的定义域是{x|x≠0}.(5)y=a x(a>0且a≠1),y=sin x,y=cos x的定义域均为R.(6)y=log a x(a>0且a≠1)的定义域为(0,+∞).3.函数在区间上的最小值是()A. B. C. -2 D. 2【答案】B【解析】【分析】直接利用函数的单调性,求出函数闭区间上的最小值即可.【详解】函数f(x)=()x在区间[﹣1,1]上是减函数,所以函数的最小值为:f(1)=.故选:B.【点睛】本题考查指数函数的单调性的应用,基本知识的考查.4.下列函数中,在区间上单调递减的函数是()A. B. C. D.【答案】D【解析】【分析】分析给定四个函数在区间(0,+∞)上的单调性,可得结论.【详解】函数y=log2x在区间(0,+∞)上单调递增,不符合题意;函数y=在区间(0,+∞)上单调递增,不符合题意;函数y=|x|在区间(0,+∞)上单调递增,不符合题意;函数y=在区间(0,+∞)上单调递减,符合题意;故选:D.【点睛】本题考查的知识点是函数的单调性,熟练掌握各种基本初等函数的单调性是解答本题的关键.5.已知函数,则()A. -1B. 0C. 1D. 2【答案】B【解析】【分析】利用分段函数,通过函数的周期性,转化求解函数值即可.【详解】函数f(x)=,则f(﹣3)=f(﹣3+2)=f(﹣1)=f(﹣1+2)=f(1)=log21=0.故选:B.【点睛】本题考查分段函数的应用,函数值的求法,考查计算能力.6.已知幂函数在上是增函数,则实数()A. 2B. -1C. -1或2D.【答案】A【解析】【分析】根据幂函数的定义与性质,列出方程组求出m的值.【详解】幂函数f(x)=(m2﹣m﹣1)x m在(0,+∞)上增函数,则,解得m=2.故选:A.【点睛】本题考查了幂函数的定义与性质的应用问题,是基础题.7.已知,则函数与函数的图象可能是()A. B. C. D.【答案】D【解析】,,的函数与函数互为反函数,二者的单调性一至,且图象关于直线对称,故选D.【方法点晴】本题通过对多个图象的选择考查指数函数、对数函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.8.设是函数的零点,且,则的值为()A. 0B. 1C. 2D. 3【答案】B【解析】因为函数是单调递增函数,,故,所以,故选B.9.函数的单调减区间是()A. B. C. D.【答案】C【解析】【分析】由题意可得﹣x2+4x+5≥0,解不等式结合二次函数的性质和复合函数的单调性可得答案.【详解】由﹣x2+4x+5≥0可解得﹣1≤x≤5,结合二次函数的性质和复合函数的单调性可得:函数y=的单调减区间是故选:C.【点睛】复合函数的单调性:对于复合函数y=f[g(x)],若t=g(x)在区间(a,b)上是单调函数,且y=f(t)在区间(g(a),g(b))或者(g(b),g(a))上是单调函数,若t=g(x)与y=f(t)的单调性相同(同时为增或减),则y=f[g(x)]为增函数;若t=g(x)与y=f(t)的单调性相反,则y =f[g(x)]为减函数.简称:同增异减.10.函数的零点个数为()A. 1B. 2C. 3D. 4【答案】C【解析】【分析】本题考查的是函数零点的个数判定问题.在解答时,可先结合函数的特点将问题转化为研究两个函数图象交点的问题.继而问题可获得解答.【详解】由题意可知:要研究函数f(x)的零点个数,只需研究函数y=,y=x2的图象交点个数即可.画出函数y=2x,y=x2的图象由图象可得有3个交点,如第一象限的A(-2,4),B(-4,16)及第一象限的点C.故选:C.【点睛】本题考查的是函数零点的个数判定问题.在解答的过程当中充分体现了函数与方程的思想、数形结合的思想以及问题转化的思想.值得同学们体会和反思.11.下列结论正确的是()A. B. C. D.【答案】D【解析】【分析】利用指数与对数函数单调性即可判断结论.【详解】A.∵<,∴log52<log32,因此不正确.B.∵0.93<1<30.9,因此不正确.C.∵log0.32<0<0.32,因此不正确.D.∵=﹣log32>﹣1,=﹣log23<﹣1,∴∵>.因此正确.故选:D.【点睛】本题考查了指数与对数函数单调性,考查了推理能力与计算能力,属于基础题.12.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,,已知函数,则函数的值域是()A. B. C. D.【答案】D【解析】,为奇函数,函数化简得出:,,,当时,,当时,,当时,,函数的值域为,故选D.【方法点睛】本题考查函数的值域、指数式的运算以及新定义问题,属于难题. 新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题定义高斯函数达到考查函数的值域、指数式的运算的目的.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数,则_________.【答案】【解析】【分析】令t=x-1,则x=t+1,代入可得f(t),即可得到f(x)的解析式【详解】由函数,令t=x-1,则x=t+1,即有f(t)=2(t+1)+1=2t+3,即f(x+1)=2x+5.故答案为:.【点睛】本题考查函数解析式的求法,注意运用换元法,考查运算能力,属于基础题.14.函数的图象恒过定点,且点在幂函数的图像上,则__________.【答案】9【解析】【分析】由log a1=0得2x﹣3=1,求出x的值以及y的值,即求出定点的坐标.再设出幂函数的表达式,利用点在幂函数的图象上,求出α的值,然后求出幂函数的表达式即可得出答案.【详解】∵log a1=0,∴当2x﹣3=1,即x=2时,y=4,∴点M的坐标是P(2,4).幂函数f(x)=xα的图象过点M(2,4),所以4=2α,解得α=2;所以幂函数为f(x)=x2则f(3)=9.故答案为:9.【点睛】本题考查对数函数的性质和特殊点,主要利用log a1=0,考查求幂函数的解析式,同时考查了计算能力,属于基础题.15.已知,则_________.【答案】2【解析】【分析】由可得代入目标,利用换底公式即可得到结果.【详解】∵∴,∴故答案为:2【点睛】本题考查对数的运算性质,考查了指数式和对数式的互化,考查了计算能力,属于基础题.16.定义在上的偶函数满足:对任意的(),有,且,则不等式的解集是__________.【答案】【解析】【分析】根据函数的奇偶性与单调性得到关于x的不等式组,解出即可.【详解】由题意:在区间(﹣∞,0]上,f(x)是减函数,又是偶函数,则在区间(0,+∞)上,f(x)是增函数.由<0⇒<0,则或,又f(2)=0,所以或,⇒x<﹣2或0<x<2.故不等式的解集是(﹣∞,﹣2)∪(0,2),故答案为:(﹣∞,﹣2)∪(0,2).【点睛】函数的单调性与奇偶性相结合,注意函数的单调性及奇偶性的定义,以及奇、偶函数图象的对称性.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.计算:(1);(2)已知,求的值.【答案】(1);(2)。

宁夏回族自治区银川一中2023-2024学年高一上学期期中考试数学试题

宁夏回族自治区银川一中2023-2024学年高一上学期期中考试数学试题

f
x
(2 3a)
a x
,
x
1
x
1,
x
1
满足对任意的实数
x1
x2 ,都有
f
x1
x1
f x2
x2
0成
立,则实数 a 的取值范围为( )
A.
2 3
,
B.
2 3
,
3 4
C.
2 3
,1
D.
3 4
,1
试卷第 1页Biblioteka 共 4页7.若两个正实数 x,y 满足 4x y 2xy ,且不等式 x y m2 m 有解,则实数 m 的取 4
条件,求实数 m 的取值范围.
六、应用题 19.某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本 y (万元)与年 产量 x(吨)之间的函数关系式可以近似地表示为 y x2 48x 8000 ,已知此生产线年
5 产量最大为 210 吨. (1)求年产量为多少吨时,总成本最低,并求最低成本 ;
f
x
解析式.
21.已知幂函数 f x x4mm2 ( m Z )的图像关于 y 轴对称,且 f 2 f 3 .
(1)求 m 的值及函数 f x 的解析式;
(2)若 f a 2 f 1 2a ,求实数 a 的取值范围.
22.设函数 f x x 2 2tx 2 ,其中 t R .
(2)若每吨产品平均出厂价为 40 万元,那么当年产量为多少吨时,可以获得最大利润 ? 最
大利润是多少 ?
试卷第 3页,共 4页
七、解答题
20.函数
f
x
ax x2
b 1
是定义在区间 1,1
上的增函数,且为奇函数.

【必考题】高一数学上期中试题(及答案)

【必考题】高一数学上期中试题(及答案)

【必考题】高一数学上期中试题(及答案)一、选择题1.已知函数()1ln 1xf x x -=+,则不等式()()130f x f x +-≥的解集为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .11,32⎛⎤ ⎥⎝⎦C .12,43⎡⎫⎪⎢⎣⎭D .12,23⎡⎫⎪⎢⎣⎭2.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-⋃+∞,, B .(1)(01)-∞-⋃,, C .(1)(1)-∞-⋃+∞,, D .(10)(01)-⋃,, 3.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④ D .①③4.1()xf x e x=-的零点所在的区间是( ) A .1(0,)2B .1(,1)2C .3(1,)2D .3(,2)25.设集合{1,2,3},{2,3,4}A B ==,则A B =A .{}123,4,,B .{}123,,C .{}234,,D .{}134,, 6.设x ∈R ,若函数f (x )为单调递增函数,且对任意实数x ,都有f (f (x )-e x )=e +1(e 是自然对数的底数),则f (ln1.5)的值等于( ) A .5.5B .4.5C .3.5D .2.57.已知函数2()log (23)(01)a f x x x a a =--+>≠,,若(0)0f <,则此函数的单调减区间是() A .(,1]-∞-B .[1)-+∞,C .[1,1)-D .(3,1]--8.定义在R 上的奇函数()f x 满足()1(2)f x f x +=-,且在()0,1上()3xf x =,则()3log 54f =( )A .32B .23-C .23D .32-9.函数()2log ,0,2,0,x x x f x x ⎧>=⎨≤⎩则函数()()()2384g x f x f x =-+的零点个数是( )A .5B .4C .3D .610.已知()()2,11,1x x f x f x x ⎧<⎪=⎨-≥⎪⎩,则()2log 7f =( )A .7B .72C .74D .7811.函数2y 34x x =--+的定义域为( )A .(41)--,B .(41)-,C .(11)-,D .(11]-, 12.已知函数()()()ln 1ln 1f x x x =+--,若实数a 满足()()120f a f a +->,则a 的取值范围是( ) A .()1,1-B .()0,1C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭二、填空题13.已知函数2()121()f x ax x ax a R =+++-∈的最小值为0,则实数a =_________.14.1232e 2(){log (1)2x x f x x x ,,-<=-≥,则f (f (2))的值为____________.15.已知1240x x a ++⋅>对一切(],1x ∞∈-上恒成立,则实数a 的取值范围是______. 16.已知()f x 是定义在[)(]2,00,2-⋃上的奇函数,当0x >,()f x 的图象如图所示,那么()f x 的值域是______.17.非空有限数集S 满足:若,a b S ∈,则必有ab S ∈.请写出一个..满足条件的二元数集S =________.18.已知函数42()(0)f x x ax bx c c =+++<,若函数是偶函数,且4((0))f f c c =+,则函数()f x 的零点共有________个.19.函数2()log 1f x x =-________.20.已知函数()266,34,x x f x x ⎧-+=⎨+⎩0x x ≥<,若互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是__________. 三、解答题21.已知函数f (x )是定义域为R 的奇函数,当x <0时,()111f x x =+-. (1)求f (2)的值;(2)用定义法判断y =f (x )在区间(-∞,0)上的单调性. (3)求0()x f x >时,的解析式 22.已知2256x ≤且21log 2x ≥,求函数22()log log 22x xf x =⋅的最大值和最小值. 23.已知函数()f x 对任意的实数m ,n 都有()()()1f m n f m f n +=+-,且当0x >时,有()1f x >.(1)求()0f ;(2)求证:()f x 在R 上为增函数;(3)若()12f =,且关于x 的不等式()()223f ax f x x -+-<对任意的[)1,x ∈+∞恒成立,求实数a 的取值范围. 24.计算下列各式的值:(Ⅰ)322log 3lg25lg4log (log 16)++- (Ⅱ)2102329273()( 6.9)()()482-----+25.函数是奇函数.求的解析式;当时,恒成立,求m 的取值范围.26.有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数301log lg 2100xv x =-,单位是min km ,其中x 表示候鸟每分钟耗氧量的单位数,0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:lg 20.30=, 1.23 3.74=, 1.43 4.66=)(1)若02x =,候鸟每分钟的耗氧量为8100个单位时,它的飞行速度是多少min km ? (2)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(3)若雄鸟的飞行速度为2.5min km ,雌鸟的飞行速度为1.5min km ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【解析】 【分析】根据题意可得函数()f x 的奇偶性以及单调性,据此原不等式转化为()()31f x f x ≥-,求解可得x 的取值范围,即可得出结论. 【详解】根据题意,函数()1ln 1xf x x-=+, 则有101xx->+,解可得11x -<<, 即函数的定义域为()1,1-,关于原点对称, 又由()()11lnln 11x xf x f x x x+--==-=--+, 即函数()f x 为奇函数, 设11xt x -=+,则y lnt =, 12111x t x x -==-++,在()1,1-上为减函数, 而y lnt =在()0,∞+上为增函数, 故()1ln1xf x x-=+在区间()1,1-上为减函数, ()()()()13013f x f x f x f x +-≥⇒≥-- ()()3131111311x x f x f x x x ≤-⎧⎪⇒≥-⇒-<<⎨⎪-<-<⎩,解可得:1223x ≤<,即不等式的解集为12,23⎡⎫⎪⎢⎣⎭; 故选:D . 【点睛】本题考查函数的奇偶性与单调性的综合应用,解题时不要忽略函数的定义域,属于中档题.2.D解析:D 【解析】由f (x )为奇函数可知,()()f x f x x--=()2f x x<0.而f (1)=0,则f (-1)=-f (1)=0. 当x >0时,f (x )<0=f (1); 当x <0时,f (x )>0=f (-1). 又∵f (x )在(0,+∞)上为增函数, ∴奇函数f (x )在(-∞,0)上为增函数. 所以0<x <1,或-1<x <0. 选D点睛:解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内3.C解析:C 【解析】 【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案. 【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .4.B解析:B 【解析】函数f (x )=e x ﹣1x 是(0,+∞)上的增函数,再根据f (12)2<0,f (1)=e ﹣1>0,可得f (12)f (1)<0,∴函数f (x )=e x ﹣1x 的零点所在的区间是(12,1),故选B .点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.5.A解析:A 【解析】 由题意{1,2,3,4}AB ,故选A.点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图.6.D解析:D 【解析】 【分析】利用换元法 将函数转化为f (t )=e+1,根据函数的对应关系求出t 的值,即可求出函数f (x )的表达式,即可得到结论 【详解】 设t=f (x )-e x ,则f (x )=e x +t ,则条件等价为f (t )=e+1, 令x=t ,则f (t )=e t +t=e+1, ∵函数f (x )为单调递增函数, ∴t=1, ∴f (x )=e x +1,即f (ln5)=e ln1.5+1=1.5+1=2.5, 故选:D . 【点睛】本题主要考查函数值的计算,利用换元法求出函数的解析式是解决本题的关键.7.D解析:D 【解析】 【分析】求得函数()f x 的定义域为(3,1)-,根据二次函数的性质,求得()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,再由(0)0f <,得到01a <<,利用复合函数的单调性,即可求解. 【详解】由题意,函数2()log (23)a f x x x =--+满足2230x x --+>,解得31x -<<,即函数()f x 的定义域为(3,1)-,又由函数()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,因为(0)0f <,即(0)log 30a f =<,所以01a <<,根据复合函数的单调性可得,函数()f x 的单调递减区间为(3,1]--, 故选D. 【点睛】本题主要考查了对数函数的图象与性质,以及复合函数的单调性的判定,着重考查了推理与运算能力,属于基础题.8.D解析:D 【解析】 【分析】由题意结合函数的性质整理计算即可求得最终结果. 【详解】由题意可得:()354f log =()3log 23f +, 则()354f log =()31log 21f -+,且()()331log 21log 21f f +=--, 由于()3log 211,0-∈-,故()()31log 2333log 211log 232f f --=--=-=-,据此可得:()()3312log 21log 213f f +=-=-,()354f log =32-.本题选择D 选项. 【点睛】本题主要考查函数的奇偶性,函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.9.A解析:A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数.【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0x x x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A . 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.10.C解析:C 【解析】 【分析】根据函数的周期性以及分段函数的表达式,结合对数的运算法则,代入即可得到结论. 【详解】2222log 4log 7log 83=<<=,20log 721∴<-<,()()2log 72227log 7log 7224f f -∴=-==. 故选:C . 【点睛】本题主要考查函数值的计算,根据分段函数的表达式以及函数的周期性进行转化是解决本题的关键.11.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<<故选C12.B解析:B 【解析】 【分析】求出函数()y f x =的定义域,分析函数()y f x =的单调性与奇偶性,将所求不等式变形为()()21f a f a >-,然后利用函数()y f x =的单调性与定义域可得出关于实数a 的不等式组,即可解得实数a 的取值范围. 【详解】对于函数()()()ln 1ln 1f x x x =+--,有1010x x +>⎧⎨->⎩,解得11x -<<, 则函数()y f x =的定义域为()1,1-,定义域关于原点对称,()()()()ln 1ln 1f x x x f x -=--+=-,所以,函数()y f x =为奇函数,由于函数()1ln 1y x =+在区间()1,1-上为增函数,函数()2ln 1y x =-在区间()1,1-上为减函数,所以,函数()()()ln 1ln 1f x x x =+--在()1,1-上为增函数, 由()()120f a f a +->得()()()1221f a f a f a >--=-,所以,11112121a a a a -<<⎧⎪-<-<⎨⎪>-⎩,解得01a <<.因此,实数a 的取值范围是()0,1. 故选:B. 【点睛】本题考查函数不等式的求解,解答的关键就是分析函数的单调性和奇偶性,考查计算能力,属于中等题.二、填空题13.【解析】【分析】设计算可得再结合图象即可求出答案【详解】解:设则则由于函数的最小值为0作出函数的大致图象结合图象得所以故答案为:【点睛】本题主要考查分段函数的图象与性质考查转化思想考查数形结合思想属解析:±1. 【解析】【分析】 设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,计算可得2(),()()()2(),()()g x g x h x f x h x g x h x ≥⎧=⎨<⎩,再结合图象即可求出答案. 【详解】解:设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,则22()()1g x x ax h x x ⎧=+⎨=-⎩, 则()()()()()f x g x h x g x h x =++-2(),()()2(),()()g x g x h x h x g x h x ≥⎧=⎨<⎩, 由于函数()f x 的最小值为0,作出函数()g x ,()h x 的大致图象,结合图象,210x -=,得1x =±, 所以1a =±, 故答案为:±1. 【点睛】本题主要考查分段函数的图象与性质,考查转化思想,考查数形结合思想,属于中档题.14.2【解析】【分析】先求f (2)再根据f (2)值所在区间求f (f (2))【详解】由题意f (2)=log3(22–1)=1故f (f (2))=f (1)=2×e1–1=2故答案为:2【点睛】本题考查分段函数解析:2 【解析】 【分析】先求f (2),再根据f (2)值所在区间求f (f (2)). 【详解】由题意,f (2)=log 3(22–1)=1,故f (f (2))=f (1)=2×e 1–1=2,故答案为:2. 【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.15.【解析】【分析】根据题意分离出参数a 后转化为求函数的最值即可通过换元后利用二次函数的性质可求得最大值【详解】可化为令由得则在上递减当时取得最大值为所以故答案为【点睛】本题考查二次函数的性质函数恒成立解析:3,4∞⎛⎫-+ ⎪⎝⎭【解析】 【分析】根据题意分离出参数a 后转化为求函数的最值即可,通过换元后利用二次函数的性质可求得最大值. 【详解】1240xxa ++⋅>可化为212224xx x x a --+>-=--,令2x t -=,由(],1x ∈-∞,得1,2t ⎡⎫∈+∞⎪⎢⎣⎭, 则2a t t >--,2213()24t t t --=-++在1,2⎡⎫+∞⎪⎢⎣⎭上递减,当12t =时2t t --取得最大值为34-,所以34a >-. 故答案为3,4⎛⎫-+∞ ⎪⎝⎭.【点睛】本题考查二次函数的性质、函数恒成立问题,考查转化思想,考查学生解决问题的能力.属中档题.16.【解析】【分析】先根据函数的奇偶性作出函数在y 轴左侧的图象欲求的值域分两类讨论:;结合图象即可解决问题【详解】是定义在上的奇函数作出图象关于原点对称作出其在y 轴左侧的图象如图由图可知:的值域是故答案 解析:][()2,33,2⋃--【解析】 【分析】先根据函数的奇偶性作出函数在y 轴左侧的图象,欲求()f x 的值域,分两类讨论:0x >①;0.x <②结合图象即可解决问题.【详解】()f x 是定义在(][2,00,2-⋃上的奇函数,∴作出图象关于原点对称作出其在y 轴左侧的图象,如图.由图可知:()f x 的值域是][()2,33,2⋃--. 故答案为][()2,33,2⋃--. 【点睛】本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力.17.{01}或{-11}【解析】【分析】因中有两个元素故可利用中的元素对乘法封闭求出这两个元素【详解】设根据题意有所以必有两个相等元素若则故又或所以(舎)或或此时若则此时故此时若则此时故此时综上或填或【解析:{0,1}或{-1,1}, 【解析】 【分析】因S 中有两个元素,故可利用S 中的元素对乘法封闭求出这两个元素. 【详解】设{}(),S a b a b =<,根据题意有22,,a ab b S ∈,所以22,,a b ab 必有两个相等元素.若22a b =,则=-a b ,故2ab a =-,又2a a =或2a b a ==-,所以0a =(舎)或1a =或1a =-,此时{}1,1S =-.若 2a ab =,则0a =,此时2b b =,故1b = ,此时{}0,1S =. 若2b ab =,则0b =,此时2a a =,故1a =,此时{}0,1S =. 综上,{}0,1S =或{}1,1S =-,填{}0,1或{}1,1-. 【点睛】集合中元素除了确定性、互异性、无序性外,还有若干运算的封闭性,比如整数集,对加法、减法和乘法运算封闭,但对除法运算不封闭(两个整数的商不一定是整数),又如有理数集,对加法、减法、乘法和除法运算封闭,但对开方运算不封闭.一般地,若知道集合对某种运算封闭,我们可利用该运算探究集合中的若干元素.18.2【解析】因为是偶函数则解得又所以故令所以故有2个零点点睛:本题涉及函数零点方程图像等概念和知识综合性较强属于中档题一般讨论函数零点个数问题都要转化为方程根的个数问题或两个函数图像交点的个数问题本题解析:2 【解析】因为()42(0)f x x ax bx c c =+++<是偶函数,则()()f x f x -=,解得0b =,又()()4240()f f f c c ac c c c ==++=+,所以0a =,故4()f x x c =+,令4()0f x x c =+=,40x c =->,所以x =2个零点.点睛:本题涉及函数零点,方程,图像等概念和知识,综合性较强,属于中档题.一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑方程来解决,转化为方程根的个数,同时注意偶函数性质在本题中的应用.19.2+∞)【解析】分析:根据偶次根式下被开方数非负列不等式解对数不等式得函数定义域详解:要使函数有意义则解得即函数的定义域为点睛:求给定函数的定义域往往需转化为解不等式(组)的问题解析:[2,+∞) 【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[2,)+∞.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.20.【解析】【分析】画出分段函数的图像由图像结合对称性即可得出【详解】函数的图像如下图所示不妨设则关于直线对称所以且满足则故的取值范围是【点睛】解决本题的关键是要会画分段函数的图像由图像结合对称性经过计解析:11(,6)3【解析】 【分析】画出分段函数的图像,由图像结合对称性即可得出。

2020-2021学年宁夏银川一中高一(上)期末数学试卷(gac)

2020-2021学年宁夏银川一中高一(上)期末数学试卷(gac)

2020-2021学年宁夏银川一中高一(上)期末数学试卷(GAC)一.选择题(本大题共50小题,第小题2分,共100分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)如图,小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能是()A.B.C.D.2.(2分)如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,圆形阴影的大小的变化情况是()A.越来越小B.越来越大C.大小不变D.先变小后变大3.(2分)如图中不可能围成正方体的是()A.B.C.D.4.(2分)一个正方体内接于一个球,过球心作一个截面,则截面的可能图形为()A.①③B.②④C.①②③D.②③④5.(2分)下列几何体中,正视图、侧视图、俯视图都相同的几何体的序号是()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)6.(2分)如图中三视图表示的几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱7.(2分)如图,在棱长为4的正方体ABCDA1B1C1D1中,P是A1B1上一点,且PB1=A1B1,则四棱锥P﹣BCC1B1的体积为()A.B.C.4D.168.(2分)两个平面重合的条件是它们的公共部分中有()A.三个点B.一个点和一条直线C.无数个点D.两条相交直线9.(2分)一条直线和这条直线外不共线的三点,最多可确定()A.三个平面B.四个平面C.五个平面D.六个平面10.(2分)如图是正方体的平面展开图,则在这个正方体中的AB与CD的位置关系为()A.平行B.相交成60°角C.异面成60°角D.异面且垂直11.(2分)分别在两个平面内的两条直线间的位置关系是()A.异面B.平行C.相交D.以上都有可能12.(2分)如图所示,在三棱锥P﹣ABC的六条棱所在的直线中,异面直线共有()A.2对B.3对C.4对D.6对13.(2分)直线l与平面α不平行,则()A.l与α相交B.l⊂αC.l与α相交或l⊂αD.以上结论都不对平行于同一个平面14.(2分)平行于同一个平面的两条直线的位置关系是()A.平行或相交或异面B.相交C.异面D.平行15.(2分)已知直线a,b都与平面α相交,则a()A.平行B.相交C.异面D.以上都有可能16.(2分)如图所示的三棱柱ABC﹣A1B1C1中,过A1B1的平面与平面ABC交于直线DE,则DE与AB的位置关系是()A.异面B.平行C.相交D.以上均有可能17.(2分)空间四边形ABCD中,E、F分别是AB和BC上的一点,若AE:EB=CF:FB =1:3()A.平行B.相交C.AC在平面DEF内D.不能确定18.(2分)平面α与△ABC的两边AB,AC分别交于点D,E,且AD:DB=AE:EC,则BC与α的位置关系是()A.异面B.相交C.平行或相交D.平行19.(2分)已知长方体ABCD﹣A1B1C1D1中,E为AA1的中点,F为BB1的中点,与EF平行的长方体的面有()A.1个B.2个C.3个D.4个20.(2分)如图,四棱锥S﹣ABCD的所有棱长都等于2,E是SA的中点,D,E三点的平面与SB交于点F,则四边形DEFC的周长为()A.2+B.3+C.3+2D.2+221.(2分)α、β是两个不重合的平面,在下列条件下,可判定α∥β的是()A.α、β都平行于直线l、mB.α内有三个不共线的点到β的距离相等C.l、m是α内的两条直线且l∥β,m∥βD.l、m是两条异面直线且l∥α,m∥α,l∥β,m∥β22.(2分)已知△ABC,直线l,且l⊥AB,则下列关系一定成立的是()A.l⊥AC B.l与AC异面C.l∥AC D.以上三种情况皆有可能23.(2分)在正方体EFGH﹣E1F1G1H1中,下列四对截面彼此平行的是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1G C.平面F1H1E与平面FHE1D.平面E1HG1与平面EH1G 24.(2分)有下列命题:①圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;②在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;③圆柱的任意两条母线所在的直线是平行的.其中正确的有()A.0个B.1个C.2个D.3个25.(2分)若直线a不平行于平面α,则下列结论成立的是()A.α内的所有直线都与直线a异面B.α内可能存在与a平行的直线C.α内的直线都与a相交D.直线a与平面α没有公共点26.(2分)直线a∥平面α,P∈α,那么过P且平行于a的直线()A.只有一条,不在平面α内B.有无数条,不一定在平面α内C.只有一条,且在平面α内D.有无数条,一定在平面α内27.(2分)下列说法正确的是()A.经过直线外一点有且只有一个平面与已知直线平行B.经过两条平行线中的一条有且只有一个平面与另一条直线平行C.经过平面外一点有且只有一条直线与已知平面平行D.经过平面外一点有且只有一个平面与已知平面平行28.(2分)直线l⊥平面α,直线m⊂α,则()A.l⊥m B.l可能和m平行C.l和m相交D.l和m不相交29.(2分)如图所示,正方形O'A'B'C'的边长为1,它是水平放置的一个平面图形的直观图()A.B.C.8D.430.(2分)已知P A⊥矩形ABCD所在平面,如图所示,图中互相垂直的平面有()A.1对B.2对C.3对D.5对31.(2分)直线a与b垂直,直线b与平面α垂直,则a与α的位置关系是()A.a⊥αB.a⊂α或a∥αC.a⊂αD.a∥α32.(2分)若平面α⊥平面β,平面β⊥平面γ,则()A.α∥γB.α⊥γC.α与γ相交但不垂直D.以上都有可能33.(2分)直线l过(1,0)和(1,2)两点,则其倾斜角和斜率分别是()A.45°,1B.135°,﹣1C.90°,不存在D.180°,不存在34.(2分)直线l经过点A(2,﹣1)和点B(﹣1,5),其斜率为()A.﹣2B.2C.﹣3D.335.(2分)l1经过点A(m,1),B(﹣3,4),l2经过点C(1,m),D(﹣1,m+1),当直线l1与l2平行时,m的值为()A.﹣3B.3C.D.36.(2分)已知直线l的方程为x﹣y+b=0(b∈R),则直线l的倾斜角为()A.30°B.45°C.60°D.与b有关37.(2分)若a>0,b<0,则直线y=ax+b必不经过()A.第一象限B.第二象限C.第三象限D.第四象限38.(2分)过两点(﹣1,1)和(3,9)的直线在x轴上的截距是()A.﹣B.﹣C.D.239.(2分)下列各组中的两条直线平行的有()(1)2x+y﹣11=0,x+3y﹣18=0(2)2x﹣3y﹣4=0,4x﹣6y﹣8=0(3)3x﹣4y﹣7=0,12x﹣16y﹣7=0A.0组B.1组C.2.组D.3组40.(2分)若直线l的斜率为,且不过第一象限,则其方程有可能是()A.3x+4y+7=0B.4x+3y﹣42=0C.4x+3y+7=0D.3x+4y﹣42=0 41.(2分)过点(2,5),(2,﹣6)两点的直线方程是()A.x=2B.y=2C.x+y=5D.x+y=﹣6 42.(2分)已知A(﹣2,﹣1),B(2,5),则|AB|等于()A.4B.C.6D.43.(2分)原点O到直线x+y﹣4=0上的点M的距离|OM|的最小值为()A.B.C.D.244.(2分)P,Q分别为直线3x+4y﹣12=0与6x+8y+6=0上任一点,则|PQ|的最小值为()A.B.3C.D.645.(2分)圆(x﹣1)2+y2=1的圆心到直线的距离是()A.B.C.1D.46.(2分)经过点(0,2),且与直线l1:y=﹣3x﹣5平行的直线l2的方程是()A.3x﹣y+2=0B.3x+y+2=0C.3x+y﹣2=0D.x+3y﹣2=0 47.(2分)直线3x+4y+12=0与圆(x﹣1)2+(y+1)2=9的位置关系是()A.相交且过圆心B.相切C.相离D.相交但不过圆心48.(2分)如图,直线l1、l2、l3的斜率分别为k1、k2、k3,则必有()A.k1<k3<k2B.k3<k1<k2C.k1<k2<k3D.k3<k2<k1 49.(2分)在平面直角坐标系xOy中,直线3x+4y﹣5=0与圆x2+y2=4相交于A、B两点,则弦AB的长等于()A.3B.2C.D.150.(2分)过点A(2,1)和B(m,3)的直线的斜率为1()A.6B.5C.4D.32020-2021学年宁夏银川一中高一(上)期末数学试卷(GAC)参考答案与试题解析一.选择题(本大题共50小题,第小题2分,共100分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)如图,小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能是()A.B.C.D.【分析】直接利用矩形和底面的放置情况判断A、B、C、D的结果.【解答】解:对于A:无论怎样放置矩形,不可能出现两个腰,故A错误;对于B:当矩形与底面垂直时,可能出现投影是一条直线;对于C:当矩形与底面平行时,出现的还是一个矩形;对于D:当矩形的一个角接触底面是投影可能是一个平行四边形,故D正确.故选:A.【点评】本题考查的知识要点:几何图形和投影的关系,主要考查学生的实际问题的应用能力,属于基础题.2.(2分)如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,圆形阴影的大小的变化情况是()A.越来越小B.越来越大C.大小不变D.先变小后变大【分析】根据中心投影的定义进行判断即可.【解答】解:根据题意白炽灯照射后形成的投影是中心投影,中心投影的特点的灯光下的影子与物体与光影的距离有关,距离越大影子越小,故选:A.【点评】本题主要考查中心投影的应用,结合中心投影的特点是解决本题的关键,是基础题.3.(2分)如图中不可能围成正方体的是()A.B.C.D.【分析】根据题意利用折叠的方法,逐一判断四个选项是否能折成正方体即可.【解答】解:根据题意,利用折叠的方法,B也可以折成正方体,C也可以折成正方体,D有重合的面,不能直接折成正方体.故选:D.【点评】本题考查了正方体表面展开图的应用问题,是基础题.4.(2分)一个正方体内接于一个球,过球心作一个截面,则截面的可能图形为()A.①③B.②④C.①②③D.②③④【分析】当截面不平行于任何侧面也不过对角线时可得①,当截面为正方体的对角面时可得②,当截面平行于正方体的一个侧面时可得③.【解答】解:当截面不平行于任何侧面也不过对角线时可得①,当截面为正方体的对角面时可得②,当截面平行于正方体的一个侧面时可得③,但无论如何都不能得到截面④.故选:C.【点评】本题考查了正方体及外接球的结构特征应用问题,也考查了空间想象能力,是基础题.5.(2分)下列几何体中,正视图、侧视图、俯视图都相同的几何体的序号是()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【分析】根据三视图的作法,判断正方体、圆锥、圆柱、球的三视图中,满足题意的几何体即可.【解答】解:(1)的三视图中正视图、左视图,满足题意、正视图是相同的;(4)的三视图都是圆;故选:D.【点评】本题是基础题,考查三视图的作法,注意简单几何体的三视图的特征,常考题型.6.(2分)如图中三视图表示的几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱【分析】直接利用三视图之间的转换求出结果.【解答】解:根据几何体的三视图转换为几何体的直观图为:该几何体为底面为等腰梯形的直四棱柱.如图所示:故选:D.【点评】本题考查的知识要点:三视图和几何体的直观图之间的转换,主要考查学生的空间想象能力,属于基础题.7.(2分)如图,在棱长为4的正方体ABCDA1B1C1D1中,P是A1B1上一点,且PB1=A1B1,则四棱锥P﹣BCC1B1的体积为()A.B.C.4D.16【分析】由已知得PB1⊥平面BCC1B1,PB1==1,=4×4=16,由此能求出四棱锥PBCC1B1的体积.【解答】解:∵在棱长为4的正方体ABCDA1B3C1D1中,P是A5B1上一点,且PB1=A1B8,∴PB1⊥平面BCC1B6,PB1==1,=4×5=16,∴四棱锥PBCC1B1的体积:V===.故选:B.【点评】本题考查四棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.8.(2分)两个平面重合的条件是它们的公共部分中有()A.三个点B.一个点和一条直线C.无数个点D.两条相交直线【分析】利用两个平面重合的性质直接判断.【解答】解:对于A,若三个点共线,故A错误;对于B,若一点在一条直线相,故B错误;对于C,若无数个点共线,故C错误;对于D,两个平面重合的条件是它们的公共部分中有两条相交线.故选:D.【点评】本题考查两个平面重合的条件的判断,考查平面的基本性质及其推论等基础知识,考查空间想象能力,是基础题.9.(2分)一条直线和这条直线外不共线的三点,最多可确定()A.三个平面B.四个平面C.五个平面D.六个平面【分析】根据不共线的三点确定一个平面即可得出结论.【解答】解:设直线为a,直线a外不共线的三点为A,B,C,则A,B,C三点确定一个平面;直线a与B确定一个平面,故最多可确定4个平面.故选:B.【点评】本题考查了平面的性质,属于基础题.10.(2分)如图是正方体的平面展开图,则在这个正方体中的AB与CD的位置关系为()A.平行B.相交成60°角C.异面成60°角D.异面且垂直【分析】以CD所在平面为底面,将正方体的平面展开图还原成直观图,因为CE∥AB,所以∠DCE即为直线AB,CD所成的角,在△CDE中求解即可.【解答】解:如图,直线AB.因为CE∥AB,所以∠DCE即为直线AB,CD所成的角,因为△CDE为等边三角形,故∠DCE=60°故选:C.【点评】本题以图形的折叠为载体,考查平面图形向空间图形的转化,考查折叠问题、异面直线的判断及异面直线所成的角,考查空间想象能力和运算能力.11.(2分)分别在两个平面内的两条直线间的位置关系是()A.异面B.平行C.相交D.以上都有可能【分析】根据两个平面平行和相交,以及两条直线的交点情况进行判断.【解答】解:根据直线位置关系的定义知,当两个平面平行时,即两条直线没有公共点;当两个平面相交且两条直线与交线相交于一点时,则它们相交.故选:D.【点评】本题考查了空间中直线与直线的位置关系,主要根据定义进行判断,考查了空间想象能力.12.(2分)如图所示,在三棱锥P﹣ABC的六条棱所在的直线中,异面直线共有()A.2对B.3对C.4对D.6对【分析】画出三棱锥,找出它的棱所在直线的异面直线即可.【解答】解:如图所示,三棱锥P﹣ABC中,棱PB与AC是异面直线;共3对.故选:B.【点评】本题考查了空间中的异面直线的判定问题,解题时应结合图形进行解答,是基础题.13.(2分)直线l与平面α不平行,则()A.l与α相交B.l⊂αC.l与α相交或l⊂αD.以上结论都不对平行于同一个平面【分析】由直线与平面之间的位置关系即可求解.【解答】解:因为空间中直线和平面的位置关系有三种,即直线和平面平行,因直线l与平面α不平行,所以直线l与平面α的位置关系是:直线l与平面α相交或l⊂α.故选:C.【点评】本题考查了空间中的直线与平面的位置关系,属于基础题.14.(2分)平行于同一个平面的两条直线的位置关系是()A.平行或相交或异面B.相交C.异面D.平行【分析】以正方体为载体,列举出平行于同一个平面的两条直线的位置关系,能求出结果.【解答】解:如图,正方体ABCD﹣A1B1C5D1中,E、F分别是棱BB1、CC7的中点,A1D1∥平面ABCD,B6C1∥平面ABCD,A1D5∥B1C1,由此得到平行于同一平面的两条直线可能平行;A3D1∥平面ABCD,A1B7∥平面ABCD,A1D1∩A5B1=A1,由此得到平行于同一平面的两条直线可能相交;A8D1∥平面ABCD,EF∥平面ABCD,A1D8与EF是异面直线,由此得到平行于同一平面的两条直线可能异面.综上:平行于同一个平面的两条直线的位置关系是平行或相交或异面.故选:A.【点评】本题考查平行于同一平面的两条直线的位置关系的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题.15.(2分)已知直线a,b都与平面α相交,则a()A.平行B.相交C.异面D.以上都有可能【分析】以正方体为载体,列举所有情况,由此能求出a,b的位置关系.【解答】解:如图,在正方体ABCD﹣A1B1C5D1中,AA1∩平面ABCD=A,BB4∩平面ABCD=B,AA1∥BB1;AA4∩平面ABCD=A,AB1∩平面ABCD=A,AA1与AB8相交;AA1∩平面ABCD=A,CD1∩平面ABCD=C,AA8与CD1异面.∴直线a,b都与平面α相交,b的位置关系是相交.故选:D.【点评】本题考查两直线的位置关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.16.(2分)如图所示的三棱柱ABC﹣A1B1C1中,过A1B1的平面与平面ABC交于直线DE,则DE与AB的位置关系是()A.异面B.平行C.相交D.以上均有可能【分析】由AB∥A1B1,得A1B1∥平面ABC,从而DE∥A1B1,由此能证明DE∥AB.【解答】解:∵三棱柱ABC﹣A1B1C2中,AB∥A1B1,AB⊂平面ABC,A7B1⊄平面ABC,∴A1B8∥平面ABC,∵过A1B1的平面与平面ABC交于直线DE,∴DE∥A3B1,∴DE∥AB.故选:B.【点评】本题考查两直线位置关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.17.(2分)空间四边形ABCD中,E、F分别是AB和BC上的一点,若AE:EB=CF:FB =1:3()A.平行B.相交C.AC在平面DEF内D.不能确定【分析】根据比例式得到EF∥AC,继而得到线面平行,问题得以解决.【解答】解:∵AE:EB=CF:FB=1:3,∴EF∥AC,∵EF⊂平面DEF,AC⊄平面DEF,∴AC∥平面DEF,故选:A.【点评】本题考查空间中直线与干线之间的位置关系,解题的关键是掌握空间中直线与直线之间位置关系的判断方法,属于基础题.18.(2分)平面α与△ABC的两边AB,AC分别交于点D,E,且AD:DB=AE:EC,则BC与α的位置关系是()A.异面B.相交C.平行或相交D.平行【分析】根据线段的比例关系推断出DE∥BC,进而根据线面平行的判定定理证明出BC ∥平面α.【解答】证明:∵AD:DB=AE:EC,∴DE∥BC,∵DE⊂平面α,BC⊄平面α,∴BC∥平面α.故选:D.【点评】本题主要考查了线面平行的判定定理的应用.证明的关键是找到线线平行.19.(2分)已知长方体ABCD﹣A1B1C1D1中,E为AA1的中点,F为BB1的中点,与EF平行的长方体的面有()A.1个B.2个C.3个D.4个【分析】利用空间中线线、线面、面面间的位置关系求解.【解答】解:∵长方体ABCD﹣A1B1C8D1中,E为AA1的中点,F为BB8的中点,∴EF∥CD,EF∥AB1B1,∴由直线与平面平行的判定定理得:与EF平行的长方体的面有平面CDD6C1,平面ABCD,平面A1B8C1D1,共4个.故选:C.【点评】本题考查与直线平行的平面个数的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.20.(2分)如图,四棱锥S﹣ABCD的所有棱长都等于2,E是SA的中点,D,E三点的平面与SB交于点F,则四边形DEFC的周长为()A.2+B.3+C.3+2D.2+2【分析】判断四边形ABCD是菱形,四边形DEFC是等腰梯形,由此求出它的周长大小.【解答】解:四棱锥S﹣ABCD中,AB=BC=CD=DA=2,所以四边形ABCD是菱形,所以AB∥CD;又AB⊂平面SAB,CD⊄平面SAB,所以CD∥平面SAB;又平面CDEF∩平面SAB=EF,所以CD∥EF,所以EF∥AB;因为E是SA的中点,所以F是SB的中点,所以EF=AB=1;△SBC中,SB=BC=SC=2BC=;同理DE=,所以四边形DEFC的周长为CD+DE+EF+FC=2++5+.故选:C.【点评】本题考查了空间立体几何中的线面关系于应用问题,也考查了运算求解能力,是基础题.21.(2分)α、β是两个不重合的平面,在下列条件下,可判定α∥β的是()A.α、β都平行于直线l、mB.α内有三个不共线的点到β的距离相等C.l、m是α内的两条直线且l∥β,m∥βD.l、m是两条异面直线且l∥α,m∥α,l∥β,m∥β【分析】A、B、C列举反例:当α∩β=a,l∥m∥a;当α∩β=a,且在α内同侧有两点,另一侧一个点,三点到β的距离相等;当l与m平行;先判断α内存在两条相交直线与平面β平行,再根据面面平行的判定,即可得到结论.【解答】解:对于A,当α∩β=a,不能推出α∥β;对于B,当α∩β=a,另一侧一个点,不能推出α∥β;对于C,当l与m平行时;对于D,∵l,且l∥α,l∥β,∴α内存在两条相交直线与平面β平行,可得α∥β,故选:D.【点评】本题考查面面平行的判定,解题时,不正确的结论列举反例,正确的结论要给出充分的理由.22.(2分)已知△ABC,直线l,且l⊥AB,则下列关系一定成立的是()A.l⊥AC B.l与AC异面C.l∥AC D.以上三种情况皆有可能【分析】由l⊥AB,l⊥BC,得l⊥平面ABC,从而l⊥AC,l与AC相交或异面.【解答】解:∵l⊥AB,l⊥BC,AB、BC⊂平面ABC,∴l⊥平面ABC,∵AC⊂平面ABC,∴l⊥AC,C错误;l与AC相交或异面,故B错误.故选:A.【点评】本题考查命题真假的判断,考查线面垂直的判定定理等基础知识,考查空间想象能力,是中档题.23.(2分)在正方体EFGH﹣E1F1G1H1中,下列四对截面彼此平行的是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1E与平面FHE1D.平面E1HG1与平面EH1G【分析】根据面面平行的判定定理直接求解.【解答】解:对于A,∵E1G1∥EG,EH6∥FG1,E1G8∩FG1=G1,EG∩EH2=E,∴根据面面平行的判定定理得:面E1FG1与平面EGH8彼此平行,故A正确;对于B,∵HG1与H1G相交,∴平面FHG2与平面F1H1G相交,故B错误;对于C,∵HE2与H1E相交,∴平面F1H2E与平面FHE1相交,故C错误;对于D,∵HG1与H5G相交,∴平面E1HG1与平面EH2G相交,故D错误.故选:A.【点评】本题考查面面平行的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.24.(2分)有下列命题:①圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;②在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;③圆柱的任意两条母线所在的直线是平行的.其中正确的有()A.0个B.1个C.2个D.3个【分析】直接利用圆锥和圆台的定义的应用判断①②③的结果.【解答】解:对于①,圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;②在圆台上、下底面圆周上各取一点,错误;③圆柱的任意两条母线所在的直线是平行的,正确.故选:C.【点评】本题考查的知识要点:圆锥和圆台的定义和性质,主要考查学生的转换能力及思维能力,属于基础题.25.(2分)若直线a不平行于平面α,则下列结论成立的是()A.α内的所有直线都与直线a异面B.α内可能存在与a平行的直线C.α内的直线都与a相交D.直线a与平面α没有公共点【分析】利用空间中线线、线面、面面间的位置关系求解.【解答】解:在A中,直线a有可能在α内;在B中,直线a与α不平行,当直线a在平面α内时,在α内存在与a平行的直线,故B正确;在C中,直线a有可能在α内,故C正确;在D中,直线a有可能与α相交,故D错误.故选:B.【点评】本题考查命题真假的判断,是中档题,解题时要注意空间思维能力的培养.26.(2分)直线a∥平面α,P∈α,那么过P且平行于a的直线()A.只有一条,不在平面α内B.有无数条,不一定在平面α内C.只有一条,且在平面α内D.有无数条,一定在平面α内【分析】直接利用直线与平面平行的性质定理,判断出正确结果.【解答】解:过a与P作一平面β,平面α与平面β的交线为b,因为直线a∥平面α,所以a∥b,过点作已知直线的平行线有且只有一条,所以选项C正确.故选:C.【点评】本题是基础题,考查直线与平面平行的性质定理的应用,考查基本知识的灵活运用.27.(2分)下列说法正确的是()A.经过直线外一点有且只有一个平面与已知直线平行B.经过两条平行线中的一条有且只有一个平面与另一条直线平行C.经过平面外一点有且只有一条直线与已知平面平行D.经过平面外一点有且只有一个平面与已知平面平行【分析】直接利用直线和直线的位置关系,直线和平面的位置关系及平面与平面的位置关系的应用逐个选项判断即可.【解答】解:对于A,经过直线外一点有无数个平面与已知直线平行;对于B,经过两条平行线中的一条有无数个平面与另一条直线平行;对于C,经过平面外一点有无数条直线与已知平面平行;对于D,由面面平行的判定定理得经过平面外一点有且只有一个平面与已知平面平行.故选:D.【点评】本题主要考查空间中线线、线面、面面间的位置关系等基础知识,考查逻辑推理能力、空间想象能力,属于基础题.28.(2分)直线l⊥平面α,直线m⊂α,则()A.l⊥m B.l可能和m平行C.l和m相交D.l和m不相交【分析】由l⊥平面α知,l垂直于平面内任何一条直线,则l⊥m.【解答】解:∵l⊥平面α,直线m⊂α.故选:A.【点评】本题考查了空间线面位置关系,利用了线面垂直的定义证明线线垂直,这是线线垂直和线面垂直相互转化常用的依据.29.(2分)如图所示,正方形O'A'B'C'的边长为1,它是水平放置的一个平面图形的直观图()A.B.C.8D.4【分析】由斜二测画法的规则知与x轴平行或重合的线段与x'轴平行或重合,其长度不变;与y轴平行或重合的线段与y'轴平行或重合,其长度变成原来的一半,作出四边形OABC的图形,由此能求出四边形OABC的周长.【解答】解:由斜二测画法的规则知与x轴平行或重合的线段与x'轴平行或重合,其长度不变与y轴平行或重合的线段与y'轴平行或重合,其长度变成原来的一半,正方形的对角线在O′B′的长度为=,∴如图,在平面图中四边形OABC中,对角线OB与y轴重合,且其长度变为原来的2倍,∴四边形ABCD中,OA=BC=1=3,∴四边形OABC的周长为:5+3+1+4=8.故选:C.【点评】本题考查四边形的周长的求法,考查斜二测画法中线段长度的变化等基础知识,考查运算求解能力,是中档题.30.(2分)已知P A⊥矩形ABCD所在平面,如图所示,图中互相垂直的平面有()A.1对B.2对C.3对D.5对【分析】推导出AD⊥平面P AB,从而平面P AD⊥平面P AB,平面ABCD⊥平面P AB;推导出BC⊥平面P AB,从而平面PBC⊥平面P AB;推导出AB⊥平面P AD,从而平面ABCD ⊥平面P AD;推导出CD⊥平面P AD,从而平面PCD⊥平面P AD.【解答】解:∵P A⊥矩形ABCD所在平面,∴P A⊥AD,AB⊥AD,又P A∩AB=A,P A,∴AD⊥平面P AB,∵AD⊂平面P AD,∴平面P AD⊥平面P AB,∵AD⊂平面ABCD,∴平面ABCD⊥平面P AB,∵BC∥AD,∴BC⊥平面P AB,∵BC⊂平面PBC,∴平面PBC⊥平面P AB,∵P A⊥矩形ABCD所在平面,∴P A⊥AB,AD⊥AB,∵P A∩AD=A,P A,∴AB⊥平面P AD,∵AB⊂平面ABCD,∴平面ABCD⊥平面P AD,∵CD∥AB,∴CD⊥平面P AD,∵CD⊂平面PCD,∴平面PCD⊥平面P AD,综上,图中互相垂直的平面有5对.故选:D.【点评】本题考查互相垂直的平面的对数的求法,考查线面垂直、面面垂直的判定定理等基础知识,是中档题.31.(2分)直线a与b垂直,直线b与平面α垂直,则a与α的位置关系是()A.a⊥αB.a⊂α或a∥αC.a⊂αD.a∥α【分析】利用线面垂直的性质定理和线面平行的判定定理直接求解.【解答】解:∵直线a与b垂直,直线b与平面α垂直,∴a与α的位置关系是a∥α或a⊂α.故选:B.【点评】本题考查直线与平面的位置关系的判断,考查线面垂直的性质定理和线面平行的判定定理等基础知识,是中档题.32.(2分)若平面α⊥平面β,平面β⊥平面γ,则()A.α∥γB.α⊥γC.α与γ相交但不垂直D.以上都有可能【分析】根据已知条件,可以想象α,γ的关系,容易得到A,B,C三种情况都有,所以选D.【解答】解:α⊥β,β⊥γ,α⊥λ,这三种情况都有可能(1)α∥γ:(2)α⊥γ:(3)α与γ相交但不垂直:故选:D.【点评】考查面面垂直的概念,以及空间想象能力,以及考查同时和一个平面垂直的两平面的位置关系.33.(2分)直线l过(1,0)和(1,2)两点,则其倾斜角和斜率分别是()A.45°,1B.135°,﹣1C.90°,不存在D.180°,不存在【分析】由题意利用直线的倾斜角和斜率的定义,得出结论.【解答】解:∵直线l过(1,0)和(7,则直线l的斜率不存在,则其倾斜角为90°,故选:C.【点评】本题主要考查直线的倾斜角和斜率,属于基础题.34.(2分)直线l经过点A(2,﹣1)和点B(﹣1,5),其斜率为()A.﹣2B.2C.﹣3D.3【分析】直接利用直线的斜率公式求出直线l的斜率.【解答】解:若直线l经过点A(2,﹣1),3)=﹣2,故选:A.【点评】本题主要考查直线的斜率公式的应用,属于基础题.35.(2分)l1经过点A(m,1),B(﹣3,4),l2经过点C(1,m),D(﹣1,m+1),当直线l1与l2平行时,m的值为()A.﹣3B.3C.D.【分析】利用平行的充要条件结合两点间斜率公式列出关于m的关系,求解即可.。

宁夏回族自治区银川一中高一上学期数学期中考试试题

宁夏回族自治区银川一中高一上学期数学期中考试试题

20XX宁夏银川一中高一第一学期期中考试数学试题选择题:1.全集(/ = {1,23,4,5,6},集合M={2,3,5" TV = {4,5}那么%(M(JN)的非空真子集有()A. 0个B. 1个C. 2个D. 3个2.设全集U = R. A =卜y = J2.T}, B = {巾=2\E时,那么(q4)flB=()A. {x|x<0}B. |x|O < x < 1}C. [x\\ <x < 2|D. {x|x>2}3.卜.列各组函数中表示同一函数的是()A. /(A)= X 与 &(工)=(右)2B. /(.V)=|A|与g(.T)=陌C. /(.v) = xH与g⑴=":螺儿八少胃与心=E ("】)4.设a = log022, 0 = logg3, c = 2'”,d = 0.2。

那么这四个数的大小关系是()A. a <b<c<dB.d <c< a <b Q h<a<c<d D.b<a<d <C5.箱函数尸『及直线尸尤尸i,肝i将平面直角坐标系的第一象限分成八个“卦限”:①、②、③、④、⑤、⑥、⑦、⑧(如右图所示),那么雅函数y = /的图象经过的“卦限”是()A. <3>®B. @®C. dxg)D. ©(§)6.根据表格中的数据,可以判定方程W-x-2 = 0的一个根所在的区何为()X-101230.371 2. 727.3920. 09x+212345A. (-L0)B. (0,1)C. (1,2)D. (2.3)7.以下函数为偶函数且在[0,七对上为增函数的是( )A. y = x rB. y = x2C. y = 2* D・y = -x28.己知函数/(^) = 10^(^+2%-3),假设/(2)>(),那么此函数的单调递增区间是()A. (I,-boo)kj(-<o,-3)B. (1,-HO)C. (-^o,-l)D. (-co,-3)2r r<29.函数fix)=' ,那么(/(5))的值为()log2(x-l),x> 2A. 1 B・ 2 C. 3 1). 410.函数/(x) = J〃Lp+〃Lr+l的定义域为R,那么实数m的取值范围是( )A. 〔0, 4]B. [0, 4)C.〔4, +oo)D. (0, 4)H.己知函数/(x) = log2(A-2-ax-«)ft[域为R,那么v的取债范困是( )A・(-4,0) B. [-4,0] C. (-oo,-4]U[(),+x) D. (-8,-4)(J (0,做)12.设定义在R上的奇函数f(x)满足.对任«x p x2e (O.+oo).且可云沔都有,/(A))-/(X2)<0且『(2)=o,那么不等式3/(T)-2/(x) wo 的解集为() x2一由5xA. (一8. — 2] U (0.2]B. [-2.0]U[2, +^)C. <-«t -2]U[2, +<«) D・[-2,0)U(0,2]二、填空题:13.假设函数尸(*+1)3 — a)为偶函数,那么万等于___________ 。

2020-2021学年高一数学新教材(必修一)上学期期中测试卷01(沪教版)(全解全析).pdf

2020-2021学年高一数学新教材(必修一)上学期期中测试卷01(沪教版)(全解全析).pdf
6
当 (x2 1) (x 4)…1时,解得 x… 3 或 x„ 2 ,
g(x) x 4 , (x… 3 或 x„ 2) ,
函数
y
g
x
x2 1, x 4,
2 x 3 x… 3或x„ 2 的图象如图所示:
由图象得: 2„ k 1 ,
函数 y g(x) 与 y k 的图象有 3 个交点,
价形式:函数 y f (x) g(x) 的零点 函数 y f (x) g(x) 在 x 轴的交点 方程 f (x) g(x) 0 的 根 函数 y f (x) 与 y g(x) 的交点.
14.A
【分析】根据分段函数的概念,求得 f 1 的值.
【详解】
f 1 11 0
依题意
.
故参考答案为 2x6
【点睛】本题主要考查函数的奇偶性和对称性的应用,考查函数的解析式的求法,意在考查学生对这些知识 的理解掌握水平和分析推理能力.
3
5. (0, )
【解析】
【分析】
1 t 1 0

3 时,
f
t
1 3
sin
2
t
1 3
1 2
,解三角不等式即可,当
0
t
1 3
时,
f
t
1 3
f (x)
即函数
x2 1 (4 x) k 的图象与 x 轴恰有三个大众点;
故参考答案为: 2 k 1 .
【点睛】本题主要考查根据函数的解析式作出函数的图象,体现了化归与转化、数形结合的数学思想,根据
7
定义求出 g(x) 的表达式是解决本题的关键,属于中档题.
9. (2,3) (3, 4) (4, )
g x x2 f (x) 2x2

宁夏回族自治区银川一中2024-2025学年高一上学期期中考试 生物(含答案)

宁夏回族自治区银川一中2024-2025学年高一上学期期中考试 生物(含答案)

银川一中2024/2025学年度(上)高一期中考试生物试卷一、单选题(60分,共35题。

1-20题每题1.5分,21-35题每题2分)1. 下列关于组成细胞化合物的叙述,正确的是()A. 结合水越多,细胞抵抗干旱和寒冷等不良环境的能力就越强B. 大肠杆菌和酵母菌的DNA中含有尿嘧啶和腺嘌呤C. 蛋白质、糖类、脂肪、核酸都能为细胞的生命活动提供能量D. 单糖和二糖都可直接被细胞吸收2. 不同生物含有的核酸种类不同。

真核生物同时含有DNA和RNA,病毒体内含有DNA或RNA,下列各种生物的细胞中关于碱基、核苷酸种类的描述正确的是( )A.口腔上皮细胞B.洋葱叶肉细胞C.脊髓灰质炎病毒D.豌豆根毛细胞碱基5种5种5种8种核苷酸5种8种8种8种A. AB. BC. CD. D3. 人体内脂肪的生理功能包括()①缓冲、减压和保护内脏②良好的储能物质③生物膜的重要成分④对生命活动具有调节作用⑤促进人体肠道对钙磷的吸收⑥保温作用A. ②③⑥B. ①②⑥C. ③④⑤D. ①②③④⑤⑥4. 物质甲的分子式为C12H22O11,乙的分子式为C57H110O6,这两种物质都是生物体内的能源物质。

在相同条件下,质量相等的甲、乙两种物质被彻底分解时,甲物质比乙物质()A. 耗氧少,产生能量少B. 耗氧多,产生能量多C. 耗氧多,产生能量少D. 耗氧少,产生能量多5. 下列有关核酸分布的叙述,正确的是( )A. SARS病毒中的RNA主要分布于细胞质中B. 原核细胞的DNA主要存在于细胞核中C. 绿色植物根细胞内的DNA存在于细胞核、线粒体和叶绿体中D. 人体口腔上皮细胞中的RNA主要分布在细胞质中6. 下列有关细胞壁的说法,错误的是( )A. 细胞壁对植物细胞有支持和保护作用B. 植物细胞壁主要成分为纤维素和果胶C. 植物细胞中的高尔基体与细胞壁的形成有关D. 细菌、蓝藻和病毒都具有细胞壁7. 如图中①~④表示某细胞的部分细胞器,下列有关叙述错误的是( )A. ①是有氧呼吸的主要场所B. 由图中②可知该细胞一定是动物细胞C. 动物和植物细胞中的③功能不相同D. ④不具有膜结构,它在原核和真核细胞中都存在8. 如图是细胞核的结构模式图,下列有关说法错误的是( )A. ①具有双层膜,属于生物膜系统B. ②主要由DNA和蛋白质组成,能被碱性染料染成深色C. ③与DNA的合成以及核糖体的形成有关D. ④可以实现核质之间的物质交换和信息交流9. 下列关于生物膜与生物膜系统的叙述,错误的是( )A. 原核细胞不具有生物膜系统B. 生物膜是对生物体内所有膜结构的统称C. 生物膜可为多种酶提供大量的附着位点D. 细胞膜、核膜和细胞器膜等结构,共同构成细胞的生物膜系统10. 下列真核细胞结构与主要成分,对应有误的是( )A. 细胞膜:脂质、蛋白质B. 染色体:RNA、蛋白质C. 核糖体:蛋白质、RNAD. 细胞骨架:蛋白质纤维11. 下列关于细胞核的叙述,正确的是( )A. 不是所有的真核细胞都具有细胞核B. 细胞核内易被碱性染料染成深色的物质是裸露的DNA分子C. 核孔可以让各种分子自由通过D. 细胞核是遗传信息库,是细胞代谢的主要场所12. 白沙茶叶历史源远流长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

银川一中2020/2021学年度(上)高一期中考试
数 学 试 卷
一、选择题(每小题5分,共60分)
1.已知集合{}5,3,1=A ,{}5,4,2=B ,则=⋃B A ( ) A .{
}5,4,3,2,1 B .{}5,4,2
C .{}5,3
D .{}5
2.函数()()
2
1ln -+=
x x x f 的定义域是( )
A .()()+∞⋃-,22,1
B .[)()+∞⋃-,22,1
C .()2,1-
D .()+∞-,1
3.已知函数()⎪⎩⎪⎨⎧≥-<+=1
,1
,223x ax x x x x f ,若()()2-0=f f ,实数=a ( )
A .2
B .3
C .4
D .5
4.已知定义在R 上的函数)(x f 满足()()2+=x f x f ,且121=⎪⎭

⎝⎛f ,则()=5.10f ( ) A .-1
B .-0.5
C .0.5
D .1
5.函数()3
2221+-⎪⎭
⎫ ⎝⎛=x x x f 的单调减区间为( ) A .()3,1- B .()1,∞-
C .()+∞,1
D .R
6.不等式()1013
<<>--a a a
x x 中x 的取值范围是( )
A .()()∞+⋃∞,,
22- B .()∞+,2 C .()2-,∞ D .()2,2- 7.已知()x f y =是定义在R 上的奇函数,当0>x 时,()x
x x f -+=22,则()=-1f ( )
A .
2
5 B .
2
3 C .2
3-
D .2
5-
8.已知函数()x f 在),0[+∞上是增函数,则()()()1,5log ,3log 22f r f n f m ===的大小关系正确的是( ) A .m >n >r
B .n >m >r
C .m >r >n
D .r >m >n
9.函数|
|21)(x x f ⎪⎭

⎝⎛=的图象大致是( )
A B C D
10.若函数()()⎩
⎨⎧>+--≤+-=1,63121
,22x a x a x ax x x f 是在R 上的增函数,则实数a 的取值范围是( )
A .⎥⎦

⎝⎛121,
B .⎪⎭
⎫ ⎝⎛∞+,2
1 C .[]2,1
D .[)∞+,
1 11.定义在R 上的偶函数f (x )满足:对任意的[)()2121,,0,x x x x ≠+∞∈,有
()()01
212<--x x x f x f ,且0)2(=f ,则不等式()0<x xf 的解集是( )
A .()2,2-
B .()()+∞⋃-,20,2
C .()()2,02--⋃∞,
D .()()+∞⋃-∞-,22,
12.设函数|13|ln |13|ln )(--+=x x x f ,则f (x )( )
A .是偶函数,且在)31,31(-单调递增
B .是偶函数,且在)31
,(--∞单调递增
C .是奇函数,且在)31,31(-单调递减
D .是奇函数,且在)3
1,(--∞单调递减 二、填空题(每小题5分,共20分)
13.已知集合{}1>=x x A ,集合{}
30<<=x x B ,则=⋂B A .. 14.已知函数)10(22
≠>+=-a a a
y x 且恒过定点(m ,n ),则m +n =______.
15.已知函数f (x )=ax 3-bx +3,若4)(=a f ,则=-)(a f ___________.
16.在不考虑空气阻力的条件下,火箭的最大速度vm /s 和燃料的质量Mkg 、火箭(除燃料外)的质
量mkg 的函数关系是)1ln(2000m
M
v +=,当燃料质量是火箭质量的______倍时,火箭的最大速度可达12000m /s .
三、解答题(共70分)
17.(本题10分,每小题5分)
计算:
();
3
log 3335
258log 9
32log 4log 1-+- ()().
328337.841222
3
20
21
-⎪⎭
⎫ ⎝⎛+⎪⎭⎫ ⎝⎛---⎪
⎭⎫ ⎝⎛
18.(本题12分)
已知函数)1(1
1
2)(≠-+=
x x x x f . (1)利用定义证明函数f (x )在()1,∞-上的单调性;
(2)若f (x )在区间[]0,a 上的最大值与最小值之差为2,求a 的值.
19.(本题12
分)
设)1,0)(3(log )1(log )(≠>-++=a a x x x f a a 且,且2)1(=f . (1)求a 的值及f (x )的定义域; (2)求f (x )在区间⎥⎦

⎢⎣⎡230,上的最大值.
20.(本题12分)
已知定义在R 上的奇函数f (x),当0>x 时,()x x x f 22
+-=
(1)求函数f (x )在R 上的解析式; (2)在坐标系中作出f (x )的图象;
(3)若函数f (x )在区间[]21
--a ,上单调递增, 求实数a 的取值范围.
21.(本题12分)
已知函数)10()(≠>=a a a x f x
且.
(1)若函数f (x )在[]1,2-上的最大值为2,求a 的值; (2)若10<<a ,求使得1)1(log 2>-x f 成立的x 的取值范围.
22.(本题12分)
已知a ∈R ,函数()f x =21log ()a x
+. (1)当1a =时,解不等式()f x >1;
(2)若关于x 的方程()f x +2
2log ()x =0的解集中恰有一个元素,求a 的值;
(3)设a >0,若对任意t ∈1[,1]2
,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围.
银川一中2020/2021学年度(上)高一期中数学试卷答案
一、选择题
1-5:AABDC 6-10:CDBDC 11-12:BD 1 2 3 4 5 6 7 8 9 10 11 12 A
A
B
D
C
C
D
B
D
C
B
D
二、填空题
13.()3,1 14.5 15.2 16.
17.【答案】解:原式
.…………………5分 解:原式
.…………………10分
18.【答案】解:设,121〈〈x x …………………1分 则
=)1)(1()
(32
112---x x x x . …………………3分
又,121〈〈x x ∴x 1-1<0,x 2-1<0, x 2-x 1>0. …………………5分
,故

上的单调递减. …………………6分
由可知

上的单调递减,………………8分
故当时,函数取得最大值

时,函数取得最小值
, (10)
分 因此

. …………………12分
19.【答案】解:,
, …………2分
解得, …………………3分
由,得. …………………5分 函数
的定义域为
. …………………6分
…………………8分
当时,是增函数;当时,是减函数. …………………10分
所以函数

上的最大值是. …………………12分
20.【答案】解:设

,则,
又为奇函数,所以
,于是

,…………………2分
所以.…………………4分
画出函数
的图象,如图所示:
…………………8分
(3)要使
在上单调递增,结合的图象知,…………………10分
所以
,故实数a 的取值范围是
.…………………12分 21.【答案】解:

时,

上单调递减,
,解得
,…………………3分
当时,
在上单调递增,,解得
,…………6分
综上所述
或…………………7分


,………………9分
即,解得…………………12分
22.试题解析: (1)由21log 11x ⎛⎫
+>
⎪⎝⎭
,得112x +>,解得{}|01x x <<.………4分
(2)()2221log log 0a x x ⎛⎫
++=
⎪⎝⎭
有且仅有一解, 等价于211a x x ⎛⎫
+=
⎪⎝⎭
有且仅有一解,等价于210ax x +-=有且仅有一解.
当0a =时,1x =,符合题意; 当0a ≠时,140a ∆=+=,14a =-.综上,0a =或1
4
-.…………………8分 (3)当120x x <<时,
12
11a a x x +>+,221211log log a a x x ⎛⎫⎛⎫
+>+ ⎪ ⎪⎝⎭⎝⎭
, 所以()f x 在()0,+∞上单调递减.
……
……………12分。

相关文档
最新文档