上海市初三中考数学模拟试卷

合集下载

2023年上海市青浦区九年级中考二模数学试卷(含答案解析)

2023年上海市青浦区九年级中考二模数学试卷(含答案解析)

2023年上海市青浦区九年级中考二模数学试卷学校:___________姓名:___________班级:___________考号:___________二、填空题平面直角坐标系xOy 内,点P 在第二象限的概率为____.12.若一个正多边形的每一个外角都等于36°,那么这个正多边形的中心角为__________度.13.已知点2()1,M -和点N 都在抛物线22y x x c =-+上,如果MN x ∥轴,那么点N 的坐标为____.14.已知点G 为ABC 的重心,AB a=,AC b = ,那么= AG __.(用a 、b 表示)15.如图,图中反映轿车剩余油量q (升)与行驶路径s (千米)的函数关系,那么q 与s 的函数解析式为____.16.水平放置的圆柱形油槽的圆形截面如图2所示,如果该截面油的最大深度为2分米,油面宽度为8分米,那么该圆柱形油槽的内半径为____分米.17.如图3,在平面直角坐标系xOy 内,已知点(3,1)G -,(1,3)A -,(4,0)B -,如果C 是以线段AB 为直径的圆,那么点G 与C 的最短距离为____.三、解答题18.如图,在Rt ABC △中,90610C BC AB ∠=︒==,,,点D 是边AB 的中点,点M 在边AC 上,将ADM △沿DM 所在的直线翻折,点A 落在点E 处,如果EC AB ,那么CE =____.111 (1)求边AB的长;(2)已知点D在AB边上,且13ADBD=,连接22.某中学初三年级在“阳光体育”活动中,参加各项球类运动的数据信息制作成了扇形统计图,如图所示.已知参加乒乓球运动的人数有题.(1)求参加篮球和足球运动的总人数;(2)学校为本次活动购买了一些体育器材,数每人一只配备的,购买篮球的费用是单价比足球的单价便宜10元多少人?23.如图,在平行四边形ABCDBD于点F,且2AB BF BD=⋅(1)求证:点F 在边AB 的垂直平分线上;(2)求证:AD AE BE BD = .24.如图,已知抛物线214y x bx c =-++为点A .(1)求抛物线的解析式及点A 的坐标;(2)将该抛物线向右平移m 个单位(0m >求m 的值;(3)在(2)的条件下,设新抛物线的顶点为于点F ,求点C 到直线GF 的距离.25.如图,半圆O 的直径10AB =点D 是弧AC 上一点.(1)若点D 是弧AB 的中点,求tan DOC ∠(2)连接BD 交半径OC 于点E ,交CH 于点①用含m 的代数式表示线段CF 的长;②分别以点O 为圆心OE 为半径、点C m 取值范围.参考答案:故选:C .【点睛】本题考查了菱形的判定方法,熟知菱形的判定方法是解题的关键.6.D【分析】根据所给函数的性质逐一判断即可.【详解】解:A.对于y x =-,当x =-二、四象限;当0x >时,y 随x 的增大而减小.故选项B.对于4y x =+,当2x =-时,2y =三象限;当0x >时,y 随x 的增大而增大.故选项1【点睛】本题考查了中线的性质,15.1508q s =-+【分析】根据图象,通过待定系数法,即可解答.【详解】解:根据图象,可得函数与坐标轴的交点为设函数解析式为q ks b =+,将()050,,()4000,代入函数解析式得:解得1850k b ⎧=-⎪⎨⎪=⎩,故q 与s 的函数解析式为18q =-故答案为:1508q s =-+.【点睛】本题考查了待定系数法求一次函数,熟练运用待定系数法是解题的关键.【点睛】本题考查了垂径定理,勾股定理,掌握垂径定理是解题的关键.17.2【分析】首先根据题意画图,可求得直线据两点间距离公式,即可求解.【详解】解:根据题意画图如下:=设直线AB的解析式为y kx【详解】解:如图,过点D 作EC 的垂线段,交EC 于点F ,过点90610BC AB ︒==,,,226810+=,是边AB 的中点,152AD BD AB ===,ADM 沿DM 所在的直线翻折,点A 落在点E 处,5DA DC ==,在Rt ACH 中,45C ∠=︒.∴45HAC C ∠=∠=︒,即AH CH =.在Rt ABH △中,1tan 2AH B BH ==.∴2BH AH =.设AH x =,那么CH x =,2BH x =.∵AH BC ⊥,∴90DGC AHC ∠=∠=︒.∴DG AH ∥,即BD BG AB BH =.由13AD BD =得34BD AB =.∵8BH =,∴34BG BH =,即6BG =.∴6BG CG ==,即DG 是线段BC 的垂直平分线.∴BD CD =,∴BCD B ∠=∠.原抛物线21(2)44y x =--+向右平移132∴1742G ⎛⎫ ⎪⎝⎭,,2502F ⎛⎫ ⎪⎝⎭,,1702P ⎛⎫ ⎪⎝⎭,.4GP PF ==,∴GPF 是等腰直角三角形,GFP ∠在Rt MOF △中,OMF OFM ∠=∠=∴192CM OM OC =-=.∵点D 是弧AB 的中点,AB 是直径,∴OD AB ⊥.∴90CHB DOB ∠=∠=︒,∴OD CH ∥,∴DOC OCH ∠=∠.过点O 作OM BC ⊥,垂足为点M .由垂径定理,在Rt BOM △中,34BM OM OB ==,,在Rt BCH △中,sin CH BC OBC =⋅∠=)HG OC ∥交BD 于点G .,,HGB OEB GHB EOB =∠∠=∠,HGB OEB ∽1855BH BO ==,1825m =.HG OC∥,,CEF HGF ECF FHG =∠∠=∠,CEF HGF ∽CE GH=,51825CF m CF m -=-.6001201257m m-=-.o OE m ==,6001201257c m r CF m -==-,d OC =当两圆内切时,60012051257m m m --=.【点睛】本题属于圆综合题,考查了圆与圆的位置关系,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找相似三角形解决问题,需要利用参数解决问题,属于中考压轴题.答案第17页,共17页。

上海市2023届中考金山区九年级二模考试数学试卷(附答案)

上海市2023届中考金山区九年级二模考试数学试卷(附答案)

上海市2023届中考金山区九年级二模考试试卷数 学(满分150分,考试时间100分钟)考生注意:1. 本试卷含三个大题,共25题;2. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【请将结果直接填入答题纸的相应位置上】1.6-的相反数为……………………………………………………………………( ). (A )61; (B )6; (C )6±;(D )61-. 2.单项式28ab -的系数是……………………………………………………………( ). (A )8-;(B )2; (C )3;(D )8.3.下表是世界卫生组织统计的5种新冠疫苗对新冠病毒防御的有效率的数据统计表,那么这5种疫苗对新冠防御的有效率的中位数是…………………………………………( ).(A )75.9%;(B )79.2%;4.已知函数kx y =(0≠k ,k 为常数)的函数值y 随x 值的增大而减小,那么这个函数图像可能经过的点是…………………………………………………………( ). (A )(0.5,1); (B )(2,1); (C )(2-,4); (D )(2-,2-). 5.下列图形中,是中心对称图形且旋转240°后能与自身重合的图形是……( ). (A )等边三角形;(B )正方形; (C )正八边形; (D )正十二边形.6. 把球放在长方体纸盒内,球的一部分露出盒外,其截面 如图所示,已知EF=CD=8,那么球的半径长是…………( ).(A )4;(B )5; (C )6; (D )8.二、填空题(本大题共12题,每题4分,满分48分)7.计算72x x ⋅= . 8.已知1)(-=x x f ,那么=)5(f .疫苗名称 克尔来福 阿斯利康 莫德纳辉瑞 卫星V 有效率79.2%75.9%%0.95%0.9592.3%(第6题图)9. 因式分解:a a -3= .10.分式方程01112=-+-xx x 的解是 .11. 不等式组32,12x x x x -<⎧⎪⎨≤+⎪⎩的解集是 .12. 抛物线1212+-=x y 在y 轴的右侧呈 趋势(填“上升”或者“下降”). 13.已知关于x 的方程032=++m x x 有两个相等的实数根,那么m 的值等于 . 14.一个不透明的袋中装有除颜色外大小形状都相同的三种球,其中红球、黄球、黑球的个数之比为2:3:5.从袋子中任意摸出1个球,结果是红球的概率为 .15. 小明和小亮的家分别位于新华书店东、西两边,他们相约同时从家出发到新华书店购书,小明骑车、小亮步行, 小明、小亮离新华书店的距离1y (米)、2y (米)与时间x (分钟)之间的关系如图所示,在途中,当小明、小亮离书店的距离相同时,那么他们所用的时间是 分钟.16. 如图,已知E D 、分别是ABC ∆的边AB 、AC 上的点,且BC DE //,联结BE ,如果a AC =,b BC =,当32=AB AD 时,那么=BE .(用含a 、b 的式子表示)17. 如图,已知AD 、BE 是ABC ∆的中线,AD 和BE 交于点G ,当ADC AEG ∠=∠时,那么ADAC的值等于 .18.已知ABC ∆中,︒=∠90BAC ,3=AB ,43tan =C ,点DE 在线段AC 上,如果点E 关于直线AD 对称的点F 恰好落在线段BC 上,那么CE 的最大值为 .三、解答题:(本大题共7题,满分78分)19.(本题满分10分)(第16题图) (第15题图)CB计算:()23272132023311-+-⎪⎪⎭⎫ ⎝⎛++--π .20.(本题满分10分)解方程组:⎩⎨⎧=+-=+425222y xy x y x21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,已知在ABC ∆中,6==AC AB ,BC=4,点E 、F 分别是AB 、AC 的中点,过点C 作CD//AB 交EF 的延长线于点D ,联结AD . (1)求∠B 的正弦值; (2)求线段AD 的长.22.(本题满分10分,第(1)小题5分,第(2)小题5分) 空气质量指数(Air Quality Index ,缩写AQI )是定量描述空气质量状况的非线性无量纲指数.其数值越大、级别和类别越高,说明空气污染状况越严重,对人体的健康危害也就越大, 适用于表示某地区的短期空气质量状况和变化趋势.(空气污染指数为0~50是优;空气污染指数为50~100是良好;空气污染指数为100~150是轻度污染;空气污染指数为 150~200是中度污染;空气污染指数为200~250是重度污染.)右图表示的是某地区2022年11月份30天日均AQI 指数的频率分布直方图. 空气质量指数(AQI )0~5050~100100~150150~200200~250.天数 ab333 频率cd0.10.10.1(注:每组数据可含最高值,不含最低值)(1)请你根据上述频率分布直方图及表格完成下面的填空:这个地区11月份空气为轻度污染的天数是 天 .=a ;=b ;=c ;=d .(2)为了进一步改善生活环境和空气质量,提高人民的生活质量,当地政府计划从2023年开始增加绿化面积.已知2022年底该地区的绿化面积为20万亩,如果到2024年底,该地区的绿化面积比2022年的绿化面积增加了50%,假设这两年绿化面积的年增长率相同,求这两年中绿化面积每年的增长率(精确到0.01).(参考数据:449.26236.25732.13414.12≈≈≈≈,,,)23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,已知ABC ∆是等边三角形,过点A 作BC DE //(BC DE <),且EA DA =,联结CE BD 、.(1)求证:四边形DBCE 是等腰梯形; (2)点F 在腰CE 上,联结BF 交AC 于点G , 若BF GF CF ⋅=2,求证:DE CG 21=.24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分) 在平面直角坐标系xoy 中,已知抛物线c bx x y ++=221经过点()0,2-A 和点()8,6B ,直线AB 与y 轴交于点C ,与抛物线的对称轴直线l 交于点D . (1)求抛物线的表达式及对称轴;(2)如果该抛物线平移后经过点C ,其顶点P 在原抛物线上,且点P 在直线l 的右侧,求点P 的坐标; (3)点E 在直线l 上,若31tan =∠ABE ,求点E 的坐标.C(第23题图)25.(本题满分14分,第(1)小题满分4分,(2)第①小题5分,第②小题5分)如图,已知在ABC ∆中,AC AB =,点D 是边BC 中点,在边AB 上取一点E ,使得DB DE =,延长ED 交AC 延长线于点F . (1)求证:CDF A ∠=∠; (2)设AC 的中点为点O ,① 如果CD 为经过D C A 、、三点的圆的一条弦,当弦CD 恰好是正十边形的一条边时, 求AC CF :的值;② ⊙M 经过C 、D 两点,联结OM 、MF ,当︒=∠90OFM ,10=AC ,43tan =A 时,求⊙M 的半径长.(第25题图)C备用图参考答案一.选择题(共6小题)1.B .2.A .3.D .4.C .5.D .6.B . 二.填空题(共11小题)7.9x . 8.2. 9.)1)(1(-+a a a . 10.1-=x . 11.12<≤-x . 12.下降. 13.94. 14.50%. 15.5. 16.a b 31-. 17.332. 18. 6.1. 三.解答题19.解:原式=323131-+--+ ( 8分)=1-. (2分)20.解:, 由②得2=-y x 或2-=-y x (2分)得方程组⎩⎨⎧=-=+252y x y x 和⎩⎨⎧-=-=+252y x y x (2分) 解得⎩⎨⎧==1311y x ,⎪⎪⎩⎪⎪⎨⎧==373122y x (4分) 所以原方程组的解是⎩⎨⎧==1311y x ,⎪⎪⎩⎪⎪⎨⎧==373122y x (2分) 21.解:(1)作AH ⊥BC ,垂足为H ∵AB=AC ,BC =4 ∴122BH BC ==∵AB=6∴AH == 在t 3AH R ABH B AB ∆=中,sin = (2)设AH 交ED 于点G∵AH ⊥BC ∴∠AHC=90° ∵E 、F 分别是AB 、AC 的中点∴EF 为ABC ∆的中位线 ∴EF//BC ∴∠AGD=∠AHC=90° ∵CD//AB ∴四边形BEDC 是平行四边形 ∴ED=BC=4∵EG//BH ∴12AG EG AE BH AB ===∴EG=1 , AG =∴GD=ED-EG=4-1=3 在t R AGD AD =∆==中,22.解:(1)3;12;9;0.4;0.3 (1+1+1+1+1+1分) (2)设这两年中绿化面积每年的增长率为x . (1分) (1分)(1分)(1分)(1分) (2分) (1分)由题意可列方程:()()%501201202+⨯=+x (2分)整理得:2312=+)(x 解得126-=x ≈0.22=22% (负值已舍) (1分) 答:这两年中绿化面积每年的增长率约为22%. (1分)23.(1)证明:∵DE//BC ,DE <BC ∴四边形DBCE 是梯形 (1分) ∵△ABC 是边三角形 ∴AB=AC ,∠ABC=∠ACB (1分)∵DE//BC ∴∠DAB=∠ABC ,∠EAC=∠ACB ∴∠DAB=∠EAC (1分) 又∵DA=EA ∴△DAB ≌△EAC (1分) ∴DB=EC (1分) ∴四边形DBCE 是等腰梯形 (1分) (2)∵BF GF CF ⋅=2 ∴CFBFGF CF =又∵∠CFB=∠GFC ∴△CFB ∽△GFC ∴∠FCG=∠FBC (1分)∵△DAB ≌△EAC ∴∠DBA=∠FCG (1分) ∴∠DBA=∠FBC (1分) ∵△ABC 是边三角形 ∴AB=BC ∵∠DAB=∠ABC ,∠ABC=∠ACB ∴∠DAB=∠ACB (1分) ∴△DAB ≌△GCB (1分) ∴GC=AD=DE 21(1分) 24.(1)将点()0,2-A 和点()8,6B 代入c bx x y ++=221得方程组⎩⎨⎧=++=+-8618022c b c b (1分) 解得⎩⎨⎧-=-=41c b (1分)所以4212--=x x y (1分) 其对称轴为直线1=x (1分)(2)设平移后抛物线的表达式为n mx x y ++=221 (1分)∵()0,2-A 和点()8,6B∴直线AB 的表达式为2+=x y 与y 轴交于点C (0,2) (1分)因为平移后的抛物线经过点C ,所以代入可得n =2 此时求得平移后的抛物线顶点P (m -,2212+-m ) (1分) 因为点P 在原抛物线上,所以代入原抛物线表达式中得42122122-+=+-m m m 解得:31-=m ,22=m∵点P 在对称轴1=x 的右侧,所以3-=m ∴ P (3,5.2-) (1分) (3)如图所示,作E 1G ⊥AB ,垂足为G设直线AB 与直线x =1交于F ,点F (1,3)∴25=FB (1分)由31tan 1=∠ABE ,∠E 1GF=45°,可设E 1G=t ,则FG=t ,BG=3t 则4t =25,解得245=t ∴251=F E∴),(21111E (1分) 同理可得),(212-E (2分) 综上所述:),(21111E ,),(212-E . 25.(1)证明:∵AB=AC ∴∠B=∠BCA (1分) ∵DE=DB ∴∠BED=∠B (1分) ∴△ABC ∽△DBE ∴∠BDE=∠A (1分) ∵∠BDE=∠CDF ∴∠A=∠CDF (1分) (2)① 联结OD∵ O 是AC 中点,D 是BC 中点 ∴AB OD //,AB OD 21=,AC OC OA 21== ∵AB=AC ∴ OA=OC=OD∴ 经过A 、D 、C 三点的圆是以O 为圆心,OA 长为半径的圆. (1分) ∵ 弦CD 恰好是正十边形的一条边 ∴∠ DOC=36° (1分) ∴∠ DCF=72°,∠CDF=∠BAC=∠DOC=36°∴∠ F=36°=∠CDF ,∠DOF=∠F ∴ CF=CD=DB=DE ,DO=DF∵∠CDF=∠DOF ,∠F=∠F ∴△ DCF ∽△ODF ∴OF DFOD DC =(1分) 设CD=m ,圆O 的半径为r ,则DC=m ,OF=m+r ,OD=DF=r∴mr rr m +=令k rm=,则有012=-+k k ,解得215-=k (负值已舍) (1分) ∴415212-===k r m AC CF (1分)② ∵⊙O 、 ⊙M 都经过C 、D 两点, ∴ OM 垂直平分CD (1分)过点B 作B H ⊥AC ,垂足为H ∵AC=10,∴ AB=AC=10在Rt △ABH 中,43tan ==AH BH A可得BH=6,AH=8在Rt △BHC 中,HC=AC-AH=2,可得3tan ==∠HC BHBCH ,102=BC∴3tan tan =∠=∠BCH FCG (1分) ∵∠GDF=∠A ∴43tan =∠GDF 设CG=m ,则FG=3m ,则有DG=4m ,则有CD=3m∵D 为BC 中点, ∴10=CD∴310==m CG∴310=CF (1分)∴325=OF ∴925=MF (1分)∴619531092522=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=MC (1分)。

【3套试卷】上海市中考第一次模拟考试数学试题含答案

【3套试卷】上海市中考第一次模拟考试数学试题含答案

中考模拟考试数学试题含答案一.选择题(共10小题)1.﹣的相反数是()A.9 B.﹣9 C.D.﹣2.下列运算正确的是()A.﹣3(x﹣4)=﹣3x+12 B.(﹣3x)2=6x2C.3x+x2=3x D.x8÷x2=x43.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.4.如图的几何体的左视图是()A.B.C.D.5.如图,若等边△ABC的内切圆⊙O的半径是2,则△ABC的面积是()A.4B.6C.8D.12 6.下列关于抛物线y=(x+2)2+6的说法,正确的是()A.抛物线开口向下B.抛物线的顶点坐标为(2,6)C.抛物线的对称轴是直线x=6D.抛物线经过点(0,10)7.方程=0的解为()A.﹣2 B.2 C.5 D.无解8.如图,菱形ABCD的对角线AC=6,BD=8,AE⊥BC于点E,则AE的长是()A.5 B.C.D.9.已知直线y=x+1与反比例函数y=的图象的一个交点为P(a,2),则ak的值为()A.2 B.C.﹣2 D.﹣10.如图,在△ABC中,点D、E分别为AB、AC边上的点,连接DE,且DE∥BC,点F为BC 边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=二.填空题(共10小题)11.数据0.0007用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.分解因式5a3b﹣10a2b+5ab=.14.计算:=.15.不等式组的整数解是.16.一个扇形的弧长是20πcm,面积是240πcm2,则这个扇形的圆心角是度.17.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.18.△ABC的面积为,AB=3,BC=10,AH⊥BC于点H,点E为BC中点,则HE=.19.如图,在平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,AD+CD =20,则平行四边形ABCD的面积为.20.如图,△ABC中,∠ACB=90°,∠B=60°,AB=4,D为AB中点,CE平分∠ACB,∠DEC=30°,则CE=.三.解答题(共7小题)21.先化简再求值,其中x=3tan30°﹣4cos60°.22.如图,在小正方形的边长均为1的方格纸中有线段AB,BC,点A,B,C均在小正方形的顶点上.(1)在图1中画出凸四边形ABCD,使四边形ABCD是轴对称图形,点D在小正方形的顶点上;(2)在图2中画出凸四边形ABCE,点E在小正方形的顶点上,∠AEC=90°,EC>EA;直接写出四边形ABCE的周长.23.某中学围绕“哈尔滨市周边五大名山,即:香炉山、凤凰山、金龙山、帽儿山、二龙山,你最喜欢那一座山?(每名学生必选且只选一座山)的问题在全校范围内随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图的不完整的统计图:(1)求本次调查的样本容量;(2)求本次调查中,最喜欢凤凰山的学生人数,并补全条形统计图;(3)若该中学共有学生1200人,请你估计该中学最喜欢香炉山的学生约有多少人?24.已知:如图,在Rt△ABC中,∠ACB=90°,点D、E分别是AB、AC的中点,点F在BC 延长线上,连接EF,且∠CEF=∠BAC.(1)如图1,求证:四边形CDEF是平行四边形;(2)如图2,连接AF、BE,在不添加任何辅助线的情况下,请直接写出图2中所有与△AED面积相等的三角形.25.王叔叔决定在承包的荒山上种苹果树,第一次用1000元购进了一批树苗,第二次又用了1000元购进该种树苗,但这次每棵树苗的进价是第一次进价的2倍,购进数量比第一次少了100棵.(1)求第一次每棵树苗的进价是多少元?(2)一年后,树苗的成活率为85%,每棵果树平均产苹果30斤,王叔叔将两批果树所产苹果按同一价格全部销售完毕后获利不低于89800元,求每斤苹果的售价至少是多少元?26.如图,△ABC中,AB=AC,AD⊥BC于D,E是AC边上一点,⊙O过B、D、E三点,分别交AC、AB于点F、G,连接EG、BF分别与AD交于点M、N;(1)求证:∠AMG=∠BND;(2)若点E为AC的中点,求证:BF=BC;(3)在(2)的条件下,作EH⊥EG交AD于点H,若EH=EG=4,过点G作GK⊥BF 于点K,点P在线段GK上,点Q在线段BK上,连接BP、GQ,若∠KGQ=2∠GBP,GQ=15,求GP的长度.27.如图,直线y=x+6与x轴、y轴交于A、B两点,点C在第四象限,BC⊥AB,且BC =AB;(1)如图1,求点C的坐标;(2)如图2,D是BC的中点,过D作AC的垂线EF交AC于E,交直线AB于F,连接CF,点P为射线AD上一动点,求PF2﹣PC2的值;(3)如图3,在(2)的条件下,在第二象限过点A作线段AM⊥AB于点A,在线段AB 上取一点N,连接MN,使MN=BN,在第三象限取一点Q,使∠NMQ=90°,连接QC,若QC∥AB,且QC=6AM,设点P的横坐标为t,△PMQ的面积为s,求s与t的函数关系式.参考答案与试题解析一.选择题(共10小题)1.﹣的相反数是()A.9 B.﹣9 C.D.﹣【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:C.2.下列运算正确的是()A.﹣3(x﹣4)=﹣3x+12 B.(﹣3x)2=6x2C.3x+x2=3x D.x8÷x2=x4【分析】分别根据去括号法则、积的乘方法则、合并同类项法则以及同底数幂相除法则逐一判断即可.【解答】解:A.﹣3(x﹣4)=﹣3x+12,故本选项符合题意;B.(﹣3x)2=9x2,故本选项不合题意;C.3x与x2不是同类项,故不能合并,故本选项不合题意;D.x8÷x2=x6,故本选项不合题意.故选:A.3.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,也是轴对称图形,故本选项错误;B、是中心对称图形,但不是轴对称图形,故本选项正确;C、不是中心对称图形,但是轴对称图形,故本选项错误;D、不是中心对称图形,但是轴对称图形,故本选项错误.故选:B.4.如图的几何体的左视图是()A.B.C.D.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答】解:从左边看去,左边是3个正方形,右边是2个正方形.故选:A.5.如图,若等边△ABC的内切圆⊙O的半径是2,则△ABC的面积是()A.4B.6C.8D.12【分析】连接OB,OD,根据⊙O是等边△ABC的内切圆,求出∠OBD=30°,求出OB=2OD =4,根据勾股定理求出BD,同理求出CD,得到BC,求出AD,即可得出答案.【解答】解:连接OB,OD,OA,∵⊙O是等边△ABC的内切圆,∴∠OBD=30°,∠BDO=90°,∴OB=2OD=4,由勾股定理得:BD==2,同理CD=2,∴BC=BD+CD=4,∵△ABC是等边三角形,A,O,D三点共线,∴AD=6,∴S△ABC=BC•AD=12.6.下列关于抛物线y=(x+2)2+6的说法,正确的是()A.抛物线开口向下B.抛物线的顶点坐标为(2,6)C.抛物线的对称轴是直线x=6D.抛物线经过点(0,10)【分析】根据抛物线的解析式可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:∵y=(x+2)2+6=x2+4x+10,∴a=1,该抛物线的开口向上,故选项A错误,抛物线的顶点坐标是(﹣2,6),故选项B错误,抛物线的对称轴是直线x=﹣2,故选项C错误,当x=0时,y=10,故选项D正确,故选:D.7.方程=0的解为()A.﹣2 B.2 C.5 D.无解【分析】根据解分式方程的步骤依次计算可得.【解答】解:两边都乘以x﹣5,得:2﹣x+3=0,解得:x=5,检验:当x=5时,x﹣5=0,所以方程无解.故选:D.8.如图,菱形ABCD的对角线AC=6,BD=8,AE⊥BC于点E,则AE的长是()A.5 B.C.D.【分析】根据菱形的性质得出BO、CO的长,在Rt△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【解答】解:∵四边形ABCD是菱形,∴CO=AC=3,BO=BD=4,AO⊥BO,∴BC==5,∴S菱形ABCD=AC•BD=×6×8=24,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=.故选:C.9.已知直线y=x+1与反比例函数y=的图象的一个交点为P(a,2),则ak的值为()A.2 B.C.﹣2 D.﹣【分析】根据图象上的点满足函数解析式,可求得a,从而求得点P的坐标,根据待定系数法,可得k值,进而求得ak的值.【解答】解:一次函数y=x+1的图象过点(a,2),∴a+1=2,∴a=1∵y=的图象过点(1,2)∴2=,解得k=2,∴ak=2.故选:A.10.如图,在△ABC中,点D、E分别为AB、AC边上的点,连接DE,且DE∥BC,点F为BC 边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=【分析】根据平行线分线段成比例定理即可判断;【解答】解:∵DE∥BC,∴=,∴=,故选:C.二.填空题(共10小题)11.数据0.0007用科学记数法表示为7×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4.故答案为:7×10﹣4.12.在函数y=中,自变量x的取值范围是x≠6 .【分析】根据分式的意义即分母不等于0,可以求出x的范围.【解答】解:依题意得x﹣6≠0,∴x≠6.故答案为:x≠6.13.分解因式5a3b﹣10a2b+5ab=5ab(a﹣1)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=5ab(a2﹣2a+1)=5ab(a﹣1)2,故答案为:5ab(a﹣1)214.计算:=.【分析】直接化简二次根式进而计算得出答案.【解答】解:原式=2﹣18×=﹣.故答案为:﹣.15.不等式组的整数解是0 .【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:解不等式①得:x>﹣1,解不等式②得:x≤0,∴不等式组的解集为﹣1<x≤0,∴不等式组的整数解为0,故答案为0.16.一个扇形的弧长是20πcm,面积是240πcm2,则这个扇形的圆心角是150 度.【分析】根据扇形的面积公式求出半径,然后根据弧长公式求出圆心角即可.【解答】解:扇形的面积公式=lr=240πcm2,解得:r=24cm,又∵l==20πcm,∴n=150°.故答案为:150.17.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的概率==.故答案为.18.△ABC的面积为,AB=3,BC=10,AH⊥BC于点H,点E为BC中点,则HE=.【分析】根据题意画出图形,由勾股定理求出BH的长,则HE可求出.【解答】解:如图1,当AH在△ABC内时,∵△ABC的面积为,BC=10,∴.∴.∴=.∴.如图2,当AH在△ABC外时,同理可得AH=,BH=,∴.故答案为:或.19.如图,在平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,AD+CD =20,则平行四边形ABCD的面积为48 .【分析】已知平行四边形的高AE、AF,设BC=AD=x,则CD=20﹣x,根据“等面积法”列方程,求BC,从而求出平行四边形的面积.【解答】解:设BC=AD=x,则CD=20﹣x,根据“等面积法”得4x=6(20﹣x),解得x=12,∴平行四边形ABCD的面积=4x=4×12=48.故答案为:48.20.如图,△ABC中,∠ACB=90°,∠B=60°,AB=4,D为AB中点,CE平分∠ACB,∠DEC=30°,则CE=2.【分析】连接CD,作CH⊥DE于H,由直角三角形的性质可得CD=BD=AD=2,∠A=30°,可得HD=HC=,由直角三角形的性质可得CE=2HC=2.【解答】解:连接CD,作CH⊥DE于H∵∠ACB=90°,∠B=60°,AB=4,D为AB中点,∴CD=BD=AD=2,∠A=30°∴∠ACD=∠A=30°,∵CE平分∠ACB∴∠ACE=45°∴∠DCE=15°∴∠HDC=∠DEC+∠DCE=45°,且CH⊥DE∴∠HCD=∠HDC=45°,且CD=2∴HD=HC=∵∠DEC=30°,CH⊥DE∴CE=2CH=2故答案为:2三.解答题(共7小题)21.先化简再求值,其中x=3tan30°﹣4cos60°.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=,∵x=3×﹣4×=﹣2,∴原式=.22.如图,在小正方形的边长均为1的方格纸中有线段AB,BC,点A,B,C均在小正方形的顶点上.(1)在图1中画出凸四边形ABCD,使四边形ABCD是轴对称图形,点D在小正方形的顶点上;(2)在图2中画出凸四边形ABCE,点E在小正方形的顶点上,∠AEC=90°,EC>EA;直接写出四边形ABCE的周长6+4.【分析】(1)根据轴对称图形的性质作出只有一条对称轴的图形即可求解;(2)作出四边形ABCE即为所求四边形ABCE,进而利用周长解答即可.【解答】解:(1)如图1所示:凸四边形ABCD即为所求;(2)如图2所示,凸四边形ABCE即为所求,四边形ABCE的周长=6+4.故答案为:6+4.23.某中学围绕“哈尔滨市周边五大名山,即:香炉山、凤凰山、金龙山、帽儿山、二龙山,你最喜欢那一座山?(每名学生必选且只选一座山)的问题在全校范围内随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图的不完整的统计图:(1)求本次调查的样本容量;(2)求本次调查中,最喜欢凤凰山的学生人数,并补全条形统计图;(3)若该中学共有学生1200人,请你估计该中学最喜欢香炉山的学生约有多少人?【分析】(1)由帽儿山的人数及其所占百分比可得总人数;(2)根据各部分人数之和等于总人数可得凤凰山的人数;(3)利用样本估计总体思想求解可得.【解答】解:(1)20÷25%=80(名),答:本次抽样调查共抽取了80名学生.(2)最喜欢凤凰山的学生人数为80﹣24﹣8﹣20﹣12=16(名),补全条形统计图(3)1200×=360(名),由样本估计总体得该中学最喜欢香炉山的学生约有360名.24.已知:如图,在Rt△ABC中,∠ACB=90°,点D、E分别是AB、AC的中点,点F在BC 延长线上,连接EF,且∠CEF=∠BAC.(1)如图1,求证:四边形CDEF是平行四边形;(2)如图2,连接AF、BE,在不添加任何辅助线的情况下,请直接写出图2中所有与△AED面积相等的三角形.【分析】(1)利用三角形中位线定理证明DE∥CF,再证明EF∥CD即可;(2)利用等高模型即可解决问题;【解答】(1)证明:∵点D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,∵∠ACB=90°,AD=DB,∴CD=AD=DB,∴∠A=∠DCA,∵∠CEF=∠A,∴∠CEF=∠ECD,∴EF∥CD,∴四边形CDEF是平行四边形.(2)如图2中,与△AED面积相等的三角形有:△AEF,△ECF,△EDC,△EDB.理由:∵四边形CDEF是平行四边形,∴△EFC与△DEC的面积相等,∵AE=ED,DE∥BC,∴△ADE与△EDC,△EDC与△EDB的面积相等,∴与△AED面积相等的三角形有:△AEF,△ECF,△EDC,△EDB.25.王叔叔决定在承包的荒山上种苹果树,第一次用1000元购进了一批树苗,第二次又用了1000元购进该种树苗,但这次每棵树苗的进价是第一次进价的2倍,购进数量比第一次少了100棵.(1)求第一次每棵树苗的进价是多少元?(2)一年后,树苗的成活率为85%,每棵果树平均产苹果30斤,王叔叔将两批果树所产苹果按同一价格全部销售完毕后获利不低于89800元,求每斤苹果的售价至少是多少元?【分析】(1)首先设第一次每棵树苗的进价是x元,则第二次每棵树苗的进价是2x元,依题意得等量关系:第一购进树苗的棵数﹣第二次购进树苗的棵树=100,由等量关系列出方程即可;(2)设每斤苹果的售价是a元,依题意得等量关系:两次购进树苗的总棵树×成活率为85%×每棵果树平均产苹果30斤﹣两次购进树苗的成本≥89800元,根据不等关系代入相应的数值,列出不等式.【解答】解:(1)设第一次每棵树苗的进价是x元,依题意得:﹣=100,解得:x=5,经检验x=5是原分式方程的解,∴第一次每棵树苗的进价是5元.(2)设每斤苹果的售价是a元,依题意得:(+)×85%×30a﹣1000×2≥89800,解得:a≥12,答:每斤苹果的售价至少是12元.26.如图,△ABC中,AB=AC,AD⊥BC于D,E是AC边上一点,⊙O过B、D、E三点,分别交AC、AB于点F、G,连接EG、BF分别与AD交于点M、N;(1)求证:∠AMG=∠BND;(2)若点E为AC的中点,求证:BF=BC;(3)在(2)的条件下,作EH⊥EG交AD于点H,若EH=EG=4,过点G作GK⊥BF 于点K,点P在线段GK上,点Q在线段BK上,连接BP、GQ,若∠KGQ=2∠GBP,GQ=15,求GP的长度.【分析】(1)由等腰三角形的性质和圆的内接四边形的性质可得结论;(2)可证出BD=CD,可得∠FBC=∠BAC,证出∠BFC=∠ABC=∠C,结论得证;(3)取AB中点P,连接MH、GH、DE,可得平行四边形BDEM、等边△MHE,可得出∠GAH =∠GHA=15°,求出GA=GH=•EH=,求出AE=,可求出AB和BG长,Rt△BGK中,可得∠GBK=45°,求出GK=BK=,Rt△QGK中勾股定理可得QK=,延长BK到T使KT=PK,连接GK则△BKP≌△GKT,得出∠KGT=∠KBP,可得QG=QT=15,则PK可求出,GP=GK﹣PK=.【解答】(1)证明:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵四边形BFEG内接于⊙O,∴∠BGE+∠BFE=180°∵∠BGE+∠AGE=180°,∴∠BFE=∠AGE,∵△AGM中,∠BAD+∠AGE+∠AMG=180°,△ANF中,∠CAD+∠BFE+∠ANF=180°,∴∠AMG=∠ANF,∵∠ANF=∠BND,∴∠AMG=∠BND;(2)证明:如图,连接DE,∵AB=AC,AD⊥BC,∴BD=CD,∵AE=CE,∴DE是△ABC的中位线,∴DE∥AB,∴∠DEC=∠BAC,∵∠DEC=∠FBC,∴∠FBC=∠BAC,∵AB=AC,∴∠ABC=∠C,∴∠BFC=∠ABC=∠C,∴BF=BC;(3)解:如图,取AB中点M,连接MH、GH、DE,∵AE=CE,∴四边形BDEM是平行四边形,∴ME∥BD,∴∠GME=∠ABC,∵∠ABC=∠C,∠C=∠EDC=∠BGE,∴∠MGE=∠GME,∴GE=ME,∵MH=ME,EH=EG,∴△MHE是等边三角形,∵AD垂直平分BC,∴AH垂直平分ME,∴∠GAH=∠GHA=15°,∴GA=CH=•EH==,∴在△AGE中,AE=,∴AB=AC=,∴BG=AB﹣AG=,∵Rt△BGK中,可得∠GBK=45°,∴GK=BK=,∴Rt△QGK中,QK==,延长BK到T使KT=PK,连接GK,∵∠BKP=∠GKT,∴△BKP≌△GKT(SAS),∴∠KGT=∠KBP,∴∠BPK=∠GTK,∵∠QGT=∠KGQ+∠KGT=∠KGQ+∠PBK,∠KGQ=2∠GBP,∴∠QGT=2∠GBP+∠PBK,∵∠PBK=45°﹣∠GBP,∴∠QGT=45°+∠PBG=∠BPK,∴∠QGT=∠GTK,∴QG=QT=15,∴PK=KT=QT﹣QK=,∴GP=GK﹣PK=12=.27.如图,直线y=x+6与x轴、y轴交于A、B两点,点C在第四象限,BC⊥AB,且BC =AB;(1)如图1,求点C的坐标;(2)如图2,D是BC的中点,过D作AC的垂线EF交AC于E,交直线AB于F,连接CF,点P为射线AD上一动点,求PF2﹣PC2的值;(3)如图3,在(2)的条件下,在第二象限过点A作线段AM⊥AB于点A,在线段AB 上取一点N,连接MN,使MN=BN,在第三象限取一点Q,使∠NMQ=90°,连接QC,若QC∥AB,且QC=6AM,设点P的横坐标为t,△PMQ的面积为s,求s与t的函数关系式.【分析】(1)过C作CH⊥y轴于H,则∠BCH+∠CBH=90°,证明△BHC≌△AOB(AAS)即可解决问题.(2)(2)如图2中,设射线AD交CF于G.证明△ABD≌△CBF(SAS),利用勾股定理解决问题即可.(3)如图3中,连接BM,BQ,过B作BK⊥QM延长线于点K,延长MA交QC于点T,可得正方形ABCT.证明△BKM≌△BAM(ASA),推出BA=BK=BC,MK=MA,证明Rt△BKQ≌Rt△BCQ(HL),推出QK=QC,设AM=a,则QK=QC=6a,在Rt△QMT中,MQ=5a,MT=a+10,QT=6a﹣10,勾股定理可得a=,由tan∠MNA=tan∠QMT=tan∠BAO=,推出QT=10,MQ=,MT=,作PS⊥MQ于点S,根据,计算即可.【解答】解:(1)如图1中,在y=x+6中,令y=0,得x=﹣8;令x=0,得y=6 ∴A(﹣8,0),B(0,6),∴OA=8,OB=6,过C作CH⊥y轴于H,则∠BCH+∠CBH=90°,∵BC⊥AB,∴∠ABO+∠CBH=90°,∴∠BCH=∠ABO,又∠BHC=∠AOB=90°,BC=AB,∴△BHC≌△AOB(AAS),∴HC=OB=6,BH=OA=8,OH=8﹣6=2,∴C(6,﹣2).(2)如图2中,设射线AD交CF于G.∵BC⊥AB,BC=AB,∴∠BAC=45°∵EF⊥AC,∴∠AFE=45°∴△BDF是等腰直角三角形,∴BD=BF,又∠ABD=∠CBF=90°,AB=CB∴△ABD≌△CBF(SAS),∴∠BAD=∠BCF,∵∠BDA=∠CDG,∴∠CGD=∠ABD=90°,即AD⊥CF,∵OA=8,OB=6,∴AB==10,∴BC=10,∴BF=BD=5,∴PF2﹣PC2=(PG2+FG2)﹣(PG2+CG2)=FG2﹣CG2=(DF2﹣DG2)﹣(DC2﹣DG2)=DF2﹣DC2=DF2﹣BD2=BF2=25(3)如图3中,连接BM,BQ,过B作BK⊥QM延长线于点K,延长MA交QC于点T,可得正方形ABCT.∵MN=BN,∴∠NMB=∠NBM,∵BK⊥QK,NM⊥QK,∴BK∥MN,∴∠KBM=∠BMN,∴∠KBM=∠MBA,∵MB=MB,∠K=∠BAM=90°∴△BKM≌△BAM(ASA),∴BA=BK=BC,MK=MA,∴Rt△BKQ≌Rt△BCQ(HL),∴QK=QC,设AM=a,则QK=QC=6a,在Rt△QMT中,MQ=5a,MT=a+10,QT=6a﹣10,勾股定理可得a=,∵tan∠MNA=tan∠QMT=tan∠BAO=,∴QT=10,MQ=,MT=∴MN∥x轴,MQ∥y轴,作PS⊥MQ于点S,∴,设MQ与x轴交于点I,Rt△MAI中,AI=2,作AL⊥PS于点L,得矩形ALSI,∴PS=PL+LS=t+10,∴,∴.中考第一次模拟考试数学试卷含答案一、选择题(每题3分,共计30分)1.下列数据为三角形的三边,其中不是直角三角形三边的是()A.B.1.5,2,2.5C.D.4,5,62.平行四边形具有而一般四边形不具有的性质是()A.外角和等于360°B.对角线互相平分C.内角和为360°D.有两条对角线3.菱形的周长等于高的8倍,则此菱形的较大内角是()A.60°B.90°C.120°D.150°4.一个三角形的三条中位线的长为6、7、8,则此三角形的周长为()A.40B.41C.42D.435.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),可以计算出两圆孔中心A和B的距离为()mm.A.120B.135C.30D.1506.如图,平行四边形ABCD中,对角线AC、BD交于点O,线段MN、PQ、EF经过点O,BC=10,BC边上的高为6,则阴影部分的面积为()A.15B..20C..30D..607.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有▱ADCE中,DE最小的值是()A.2B.3C.4D.58.矩形COED在平面直角坐标系中的位置如图所示,若点D的坐标是(1,3),则CE的长是(A.3B.2C.D.49.下列命题正确的是()A.对角线相等的四边形是矩形B.有一组对角相等,一组对边相等的四边形是平行四边形C.四个角相等的四边形是矩形D.矩形的对角线互相垂直且平分10.如图,矩形ABCD中,BH⊥AC,DE∥BH交CB的延长线于点E,交AB于点G,P是DE上一点,∠BPD=∠BCD,且G为PF的中点.则①AF=CH;②AC=3FH;③BE =BG;④若AE=,则FG=3,以上结论正确的个数是()A.1B.2C.3D.4二、填空题(每题3分,共计30分)11.在△ABC中,∠C=90°,若AC=5,AB=12,则BC的长为.12.平行四边形ABCD中,AB=6,AC=8,则BD的取值范围是.13.菱形周长是20,对角线长的比为3:4,则菱形的面积为.14.有一个水池,水面是一个边长为14尺的正方形,在水池的正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,则这根芦苇长尺.15.如图,在四边形ABCD中,∠B=90°,AB=2,BC=CD=1,AD=,则四边形的面积为.16.如图,将△ABC沿它的中位线MN折叠后,点A落在点A′处,若∠A=24°,∠B=120°,则∠A′NC的度数为.17.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠ACD=4∠BCD,E是AB的中点,∠ECD是度.18.一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A =60°,∠CBD=45°,E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为cm.19.已知,在矩形ABCD中,AB=7,BC=24,点P为BC上一点,连接AP.将△ABP沿AP折叠,点B的对应点是点G,连接CG,当△PCG为直角三角形时,CG的长为.20.如图,在△ABC中,∠ABC=90°,AB=BC,点D、E分别在AC、AB边上,点F在CB的延长线上,∠BED=∠CAF,AD=CF,BE=2AE.若AF=,则线段CD的长为.三、解答题(21题、22题每题7分,23题、24题每题8分,25题、26题、27题每题10分,共计60分)21.(7分)先化简,再求代数式÷()的值,其中a=.22.(7分)正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画出图形.(1)画一个周长为20,面积为24的矩形;(2)画一个周长,面积为16的矩形.23.(8分)如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE =AF.求证:四边形ADEF是平行四边形.24.(8分)在△ABC中,AD⊥BC于点D,点E为AC边的中点,过点A作AF∥BC,交DE的延长线于点F,连接CF.(1)如图1,求证:四边形ADCF是矩形;(2)如图2,当AB=AC时,取AB的中点G,连接DG、EG,在不添加任何辅助线和字母的条件下,请直接写出图中所有的平行四边形(不包括矩形ADCF).25.(10分)某水果商贩用了300元购进一批水果,上市后销售非常好,商贩又用了700元购进第二批这种水果,所购水果数量是第一批购进数量的2倍,但每箱进价多了5元.(1)求该商贩第一批购进水果每箱多少元;(2)由于储存不当,第二批购进的水果中有10%腐坏,不能卖售,该商贩将两批水果按同一价格全部销售完毕后获利不低于400元,求每箱水果的售价至少是多少元.26.(10分)在四边形ABCD中,AD∥BC,AD+BC=BD,AC与BD交于点F.(1)如图1,求证:△BCF为等腰三角形;(2)如图2,若∠BAC=45°,且AF:CF=1:,求证:∠DBC=2∠ABD;(3)如图3,若∠BAC=60°,点E在AD上,∠ACE=∠ABD,AD=2,CE=5,求BD的长.27.(10分)如图,在平面直角坐标系中,A(﹣4,0),B(0,2),C(6,0),直线AB与直线CD相交于点D,且∠BAO=∠BED,点D在∠BOC的角平分线上.(1)求点D的坐标.(2)点R从点C出发,以每秒个单位长度的速度沿射线CD匀速运动,设△ORD的面积为S,点R的运动时间为t,求S与t的关系式,并直接写出t的取值范围.(3)若在DE上取一点H,满足HF⊥DE且AD=DF,在射线AE上取一点Q,并连结FQ使得AH=QH=QF,求DH的长.2018-2019学年黑龙江省哈尔滨工大附中九年级(下)月考数学试卷(3月份)(五四学制)参考答案与试题解析一、选择题(每题3分,共计30分)1.【解答】解:A、∵()2+12=()2,∴能够成直角三角形,故本选项错误;B、∵22+1.52=2.52,∴能够成直角三角形,故本选项错误;C、∵12+(2)2=32∴能够成直角三角形,故本选项错误;D、∵52+42≠62,∴不能够成直角三角形,故本选项正确.故选:D.2.【解答】解:∵平行四边形具有的性质:对边平行且相等,对角相等,邻角互补,对角线互相平分;一般四边形具有:外角和等于360°,内角和为360°,有两条对角线.∴平行四边形具有而一般四边形不具有的性质是:对角线互相平分.故选:B.3.【解答】解:设菱形的边长为a,高为h,则依题意,4a=8h,即a=2h,延长最大角的一边,让其邻边和高构造直角三角形,∵有一直角边是斜边的一半,∴菱形的较大内角的外角为30°,∴菱形的较大内角是150°.故选D.4.【解答】解:∵一个三角形的三条中位线的长为6、7、8,∴这个三角形的三边的长分别为:12,14,16,∴这个三角形的周长=12+14+16=42,故选:C.5.【解答】解:如图,在Rt△ABC中,∵AC=150﹣60=90,BC=180﹣60=120,∴AB==150(mm),∴两圆孔中心A和B的距离为150mm.故选:D.6.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,∠MAO=∠NCO,∠AOM=∠CON,∴△AOM≌△CON(ASA),同理可得,△DOP≌△BOQ,△EOB≌△DOF,∴图中阴影部分的面积就是△BCD的面积为:×6×10=30.故选:C.7.【解答】解:∵在Rt△ABC中,∠B=90°,∴BC⊥AB.∵四边形ADCE是平行四边形,∴OD=OE,OA=OC.∴当OD取最小值时,DE线段最短,此时OD⊥BC.∴OD∥AB.又点O是AC的中点,∴OD是△ABC的中位线,∴OD=AB=1.5,∴ED=2OD=3.故选:B.8.【解答】解:∵点D的坐标是(1,3),∴DO==,∵四边形OEDC是矩形,∴EC=DO=.故选:C.9.【解答】解:A、对角线相等的平行四边形是矩形,是假命题;B、有一组对角相等,一组对边相等的四边形不一定是平行四边形,是假命题;C、四个角相等的四边形是矩形,是真命题;D、矩形的对角线互相相等且平分,是假命题;故选:C.10.【解答】解:①∵四边形ABCD为矩形,∴AD=BC,AD∥BC,∠BCD=∠ABC=90°,∴∠DAF=∠BCH,∵BH⊥AC,∴∠BHC=∠BHA=90°,∴△AFD≌△CHB(AAS),∴AF=CH.故①正确;②由①知,∠PFH=∠BHF=90°,∵∠BPD=∠BCD=90°,∴∠BPD=∠PFH=∠BHF=90°,∴四边形PBHF为矩形,∴PB=FH,PB∥FH,∵∠AFG=∠BPG=90°,FG=PG,∠AGF=∠BGP,∴△AFG≌△BPG(ASA),∴BP=AF,∴AF=FH,由①知,AF=CH,∴AF=FH=CH,∴AC=3FH,故②正确;③假设BE=BG,∵∠EBG=90°,∴∠E=∠BGE=45°,在Rt△EFC中,∠FCB=90°﹣45°=45°,∴∠BAC=45°,∴BA=BC,∴矩形ABCD必为正方形,不符合题意,故③错误;④∵DE∥BH,∴∠PEB=∠HBC,由②知,四边形PBFH为矩形,PB=FH=CH,∴∠EPB=∠BHC=90°,∴△EPB≌△BHC(AAS),∴EB=BC,∵∠ABC=90°,∴AB垂直平分EC,∴AC=AE=6,由②知,AF=FH=HC,∴AF=FH=HC=AC=2,∴AH=4,∵∠BHC=∠AHB=90°,∴∠BAH+∠ABH=90°,∠ABH+∠HBC=90°,∴∠BAH=∠HBC,∴△ABH∽△BCH,∴=,即=,∴BH=4,∵DE∥BH,∴△AFG∽△AHB,∴=,即=,∴CF=2,故④错误,故选:B.二、填空题(每题3分,共计30分)11.【解答】解:由勾股定理得,BC==,故答案为:.12.【解答】解:∵四边形ABCD是平行四边形,AC=8,AB=6,∴OA=OC=AC=4,在△AOB中,∵AB﹣OA<OB<AB+OA,∴2<OB<10,∵BD=2OB,∴BD的取值范围是4<BD<20,故答案为:4<BD<20.13.【解答】解:设较短对角线的一半是3x,较长对角线的一半是4x,(3x)2+(4x)2=52,x=1.较短的对角线长为:2•3x=6,较长的对角线长为:2•4x=8.∴菱形的面积为:=24.故答案为:24.14.【解答】解:依题意画出图形,设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,因为B'E=14尺,所以B'C=7尺在Rt△AB'C中,∵CB′2+AC2=AB′2∴72+(x﹣1)2=x2,解得x=25,∴这根芦苇长25尺,故答案为25.15.【解答】解:连接AC,在Rt△ABC中,AC==,AC2+CD2=5+1=6,AD2=6,则AC2+CD2=AD2,∴△ACD为直角三角形,∴四边形ABCD的面积=×1×2+×1×=1+,故答案为:1+.16.【解答】解:由折叠的性质得:∠A=∠A′=24°,∵∠B=120°,∴∠C=180°﹣∠A﹣∠B=36°,∵MN是三角形的中位线,∴MN∥BC,∠A′NM=∠C=36°,∠CNM=180°﹣∠C=144°,∴∠A′NC=∠CNM﹣∠A′NM=144°﹣36°=108°,故答案为:108°.17.【解答】解:∵∠ACB=90°,∠ACD=4∠BCD,∴∠BCD=90°×=18°,∠ACD=90°×=72°,∵CD⊥AB,∴∠B=90°﹣18°=72°,∵E是AB的中点,∠ACB=90°,∴CE=BE,∴∠BCE=∠B=72°,∴∠ECD=∠BCE﹣∠BCD=72°﹣18°=54°.故答案是:54.18.【解答】解:过点A作AG⊥DC于G.∵∠CDB=∠CBD=45°,∠ADB=90°,∴∠ADG=45°.∴AG==2.∵∠ABD=30°,∴BD=AD=4.∵∠CBD=45°,∴CB==2.∵AG⊥CG,EF⊥CG,CB⊥CG,∴AG∥EF∥BC.又∵E是AB的中点,∴F为CG的中点,∴EF=(AG+BC)=(2+2)=+.故答案为:(+).19.【解答】解:①如图1,当∠PGC=90°时,根据折叠的对称性可知AG=AB=7,∠AGP=∠B=90°,所以A、G、C三点共线.在Rt△ABC中,利用勾股定理求得AC=25,∴CG=25﹣7=18.②如图2,当∠GPC=90°时,此时G点落在AD上,四边形ABPG是正方形.所以BP=AB=PG=7,则PC=24﹣7=17.在Rt△PGC中,利用勾股定理求得CG==13.综上所述可知CG=18或13.故答案为:18或13.20.【解答】解:如图,过点E作EM⊥AC交于M∵AB⊥AC,AB=AC∴∠BAC=45°∴AM=EM∵∠BED=∠ADE+∠EAM=∠CAF∴∠F AB=∠ADE∴△ABF∽△DME∴=∴=,又∵AD=AM+MD,CF=BC+BF=BA+BF∴EM=BF∴MD=AB设EM=x,AE=x,AB=MD=3x在△ABF中,由勾股定理得,得x=1∴AB=3,AC=6,AD=1+3∴CD=AC﹣AD=6﹣(1+3)=5﹣3三、解答题(21题、22题每题7分,23题、24题每题8分,25题、26题、27题每题10分,共计60分)21.【解答】解:原式=÷(﹣)=÷=•=,当a=+1时,原式===.22.【解答】解:(1)如图1中,矩形ABCD即为所求.(2)如图2中,矩形ABCD即为所求.23.【解答】证明:∵BD是△ABC的角平分线,∴∠ABD=∠DBE,∵DE∥AB,∴∠ABD=∠BDE,∴∠DBE=∠BDE,∴BE=DE;∵BE=AF,∴AF=DE;∴四边形ADEF是平行四边形;24.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠EDC,∵E是AC中点,∴AE=EC,在△AEF和△CED中,,∴△AEF≌△CED,∴EF=DE,∵AE=EC,∴四边形ADCF是平行四边形,∵AD⊥BC,∴∠ADC=90°,∴四边形ADCF是矩形.(2)∵线段DG、线段GE、线段DE都是△ABC的中位线,又AF∥BC,∴AB∥DE,DG∥AC,EG∥BC,。

精选上海市初三中考数学一模模拟试卷【含答案】

精选上海市初三中考数学一模模拟试卷【含答案】

精选上海市初三中考数学一模模拟试卷【含答案】一、选择题(每小题3分,共30分) 1.实数2019的相反数是( ) A .2019B .-2019C .12019D .−120192.下面几个平面图形中为左侧给出圆锥俯视图的是( )A .B .C .D .3.将6120 000用科学记数法表示应为( ) A .0.612×107B .6.12×106C .61.2×105D .612×1044.函数中,自变量x 的取值范围是( ) A .x >5B .x <5C .x≥5D .x≤55.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .6.下列运算正确的是( ) A .a2+a3=a5 B .(2a3)2=2a6 C .a3•a4=a12 D .a5÷a3=a2 7.有一组数据:1,2,3,6,这组数据的方差是( )A .2.5B .3C .3.5D .48.两个相似多边形的周长比是2:3,其中较小多边形的面积为4cm2,则较大多边形的面积为( ) A .9cm2B .16cm2C .56cm2D .24cm29.某件商品原价为1000元,连续两次都降价x%后该件商品售价为640元,则下列所列方程正确的是( ) A .1000(1-x%)2=640B .1000(1-x%)2=360C.1000(1-2x%)=640 D.1000(1-2x%)=36010.下列关于二次函数y=2(x-3)2-1的说法,正确的是()A.对称轴是直线x=-3B.当x=3时,y有最小值是-1C.顶点坐标是(3,1)D.当x>3时,y随x的增大而减小二、填空题(每小题4分,共16分)11.一元二次方程x2+3x=0的解是12.如图,AB∥CD,射线CF交AB于E,∠C=50°,则∠AEF的度数为130°.13.一次函数y=kx+b的图象如图所示,若y>0,则x的取值范围是14.如图,在矩形ABCD中,按以下步骤作图:①分别以点A和点C为圆心,大于12AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=3,CE=5,则该矩形的周长为.三、解答题(共54分)15.(1)计算:10 120192|3tan3022018π-︒⎛⎫⎛⎫--++⎪ ⎪⎝⎭⎝⎭;(2)解不等式组:3122(1)5x x x ->⎧⎨+<+⎩16.解方程:22111xx x +=-- 17.某商场为了方便顾客使用购物车,将自动扶梯由坡角30°的坡面改为坡度为1:3的坡面.如图,BD 表示水平面,AD 表示电梯的铅直高度,如果改动后电梯的坡面AC 长为米,求改动后电梯水平宽度增加部分BC 的长.(结果保留整数,≈1.4≈1.7)18.某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调査.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调査得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)(1)这次调查中,样本容量为 80 ,请补全条形统计图;(2)小明在上学的路上要经过2个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到三种信号灯的可能性相同,求小明在两个路口都遇到绿灯的概率.(请用“画树状图”或“列表”的方法写出分析过程)19.如图,一次函数y=k1x+b (k1≠0)与反比例函数y=kx (k2≠0)的图象交于A (-1,-4)和点B (4,m )(1)求这两个函数的解析式;(2)已知直线AB 交y 轴于点C ,点P (n ,0)在x 轴的负半轴上,若△BCP 为等腰三角形,求n 的值.20.如图1,以Rt△ABC的直角边BC为直径作⊙O,交斜边AB于点D,作弦DF交BC于点E.(1)求证:∠A=∠F;(2)如图2,连接CF,若∠FCB=2∠CBA,求证:DF=DB;(3)如图3,在(2)的条件下,H为线段CF上一点,且12FHHC=,连接BH,恰有BH⊥DF,若AD=1,求△BFE的面积.一、填空题(每小题4分,共20分)21.已知,则x2+2x=22.点P(2,17)为二次函数y=ax2+4ax+5图象上一点,其对称轴为l,则点P关于l的对称点的坐标为23.如图所示的图案(阴影部分)是这样设计的:在△ABC中,AB=AC=2cm,∠ABC=30°,以A为圆心,以AB为半径作弧BEC,以BC为直径作半圆BFC,则图案(阴影部分)的面积是.(结果保留π)24.将背面完全相同,正面分别写有1、2、3、4、5的五张卡片背面朝上混合后,从中随机抽取一张,将其正面数字记为m,使关于x的方程3111mxx x-=--有正整数解的概率为.25.如图,点P 在第一象限,点A 、C 分别为函数y=kx (x >0)图象上两点,射线PA 交x 轴的负半轴于点B ,且P0过点C ,12PA AB,PC=CO ,若△PAC 的面积为2534,则k= .二、解答题(共30分) 26.某种蔬菜每千克售价y1(元)与销售月份x 之间的关系如图1所示,每千克成本y2(元)与销售月份x 之间的关系如图2所示,其中图1中的点在同一条线段上,图2中的点在同一条抛物线上,且抛物线的最低点的坐标为(6,1).(1)求出y1与x 之间满足的函数表达式,并直接写出x 的取值范围; (2)求出y2与x 之间满足的函数表达式;(3)设这种蔬菜每千克收益为w 元,试问在哪个月份出售这种蔬菜,w 将取得最大值?并求出此最大值.(收益=售价-成本)27.(1)模型探究:如图1,D 、E 、F 分别为△ABC 三边BC 、AB 、AC 上的点,且∠B=∠C=∠EDF=a .△BDE 与△CFD 相似吗?请说明理由; (2)模型应用:△ABC 为等边三角形,其边长为8,E 为AB 边上一点,F 为射线AC 上一点,将△AEF 沿EF 翻折,使A 点落在射线CB 上的点D 处,且BD=2.①如图2,当点D 在线段BC 上时,求AEAF 的值;②如图3,当点D 落在线段CB 的延长线上时,求△BDE 与△CFD 的周长之比.28.如图1,以点A(-1,2)、C(1,0)为顶点作Rt△ABC,且∠ACB=90°,tanA=3,点B位于第三象限(1)求点B的坐标;(2)以A为顶点,且过点C的抛物线y=ax2+bx+c(a≠0)是否经过点B,并说明理由;(3)在(2)的条件下(如图2),AB交x轴于点D,点E为直线AB上方抛物线上一动点,过点E作EF⊥BC于F,直线FF分别交y轴、AB于点G、H,若以点B、G、H为顶点的三角形与△ADC相似,求点E的坐标.参考答案及试题解析1. 【分析】直接利用相反数的定义进而得出答案.【解答】解:实数2019的相反数是:-2009.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2. 【分析】直接利用相反数的定义进而得出答案.【解答】解:实数2019的相反数是:-2009.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.3. 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:6120000=6.12×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 【分析】根据二次根式的性质,被开方数大于或等于0,列不等式求范围.【解答】解:根据题意得:x-5≥0解得:x≥5故选:C.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5. 【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故A错误;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,又是中心对称图形,故D正确.故选:D.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6. 【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、(2a3)2=4a6,故此选项错误;C、a3•a4=a7,故此选项错误;D、a5÷a3=a2,故此选项正确.故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算,正确化简各数是解题关键.7. 【分析】先求平均数,再代入公式S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],计算即可.【解答】解:x=(1+2+3+6)÷4=3,S2=14[(1-3)2+(2-3)2+(3-3)2+(6-3)2]=3.5.故选:C.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…xn的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8. 【分析】根据相似多边形周长之比等于相似比,面积之比等于相似比的平方求出面积比,计算即可.【解答】解:∵两个相似多边形的周长比是2:3,∴两个相似多边形的相似比是2:3,∴两个相似多边形的面积比是4:9,∵较小多边形的面积为4cm2,∴较大多边形的面积为9cm2,故选:A.【点评】本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.9. 【分析】等量关系为:原价×(1-下降率)2=640,把相关数值代入即可.【解答】解:∵第一次降价后的价格为1000×(1-x%),第二次降价后的价格为1000×(1-x%)×(1-x%)=1000×(1-x%)2,∴方程为1000(1-x%)2=640.故选:A.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.10. 【分析】根据二次函数的性质对各选项分析判断后利用排除法求解.【解答】解:由二次函数y=2(x-3)2-1可知:开口向上,顶点坐标为(3,-1),当x=3时有最小值是-1;对称轴为x=3,当x≥3时,y随x的增大而增大,当x<3时,y随x的增大而减小,故A、C、D错误,B正确,故选:B.【点评】本题考查了二次函数的性质,主要利用了开口方向,顶点坐标,对称轴以及二次函数的增减性.11. 【分析】提公因式后直接解答即可.【解答】解:提公因式得,x(x+3)=0,解得x1=0,x2=-3.故答案为0,-3.【点评】本题考查了解一元二次方程--因式分解法,要根据方程特点选择合适的方法.12. 【分析】根据平行线的性质由AB∥CD得到∠FEB=∠C=50°,然后根据邻补角的定义得到∠AEF=180°-∠BEF=180°-50°=130°.【解答】解:∵AB∥CD,∴∠FEB=∠C=50°,∴∠AEF=180°-∠BEF=180°-50°=130°.故答案为:130°.【点评】本题考查了平行线的性质以及邻补角的定义.解决问题的关键是掌握:两直线平行,同位角角相等.13. 【分析】直接利用一次函数图象与x轴的交点得出y>0时x的取值范围.【解答】解:如图所示:y>0,则x的取值范围是:x<-2.故答案为:x<-2.【点评】此题主要考查了一次函数的性质,正确利用数形结合分析是解题关键.14. 【分析】连接EA,如图,利用基本作图得到MN垂直平分AC,根据线段垂直平分线的性质得到EA=EC=5,然后利用勾股定理计算出AD,从而得到矩形的周长.【解答】解:连接EA,如图,由作法得MN垂直平分AC,∴EA=EC=5,在Rt△ADE中,,所以该矩形的周长=4×2+8×2=24.故答案为24.【点评】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了矩形的性质.15. 【分析】(1)根据实数的混合计算解答即可;(2)分别解出两不等式的解集,再求其公共解.【解答】解:(1)原式=2(231 ---+=1(2)()312215 xx x-+⎧⎨+⎩>①<②解①得:x>1解②得:x<3∴不等式组的解集为:1<x<3【点评】此题考查解一元一次不等式组,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16. 【分析】依据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论求解可得.【解答】解:方程两边都乘以(x+1)(x-1),得:2+(x+1)(x-1)=x(x+1),解得:x=1,检验:x=1时,(x+1)(x-1)=0,则x=1是分式方程的增根,所以分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17. 【分析】根据题意可得:AD:CD=1:3,然后根据AD、CD的长度,然后在△ABD中求出BD的长度,最后BC=CD-BD即可求解.【解答】解:由题意得,AD :CD=1:3, 设AD=x ,CD=3x ,则AC ===, 解得:x=6,则AD=6,CD=18, 在△ABD 中, ∵∠ABD=30°,∴则≈8(m ).答:改动后电梯水平宽度增加部分BC 的长约为8米.【点评】本题考查了坡度和坡角的知识,解答本题的关键是根据题意构造直角三角形,利用三角函数的知识求解. 18. 【分析】(1)根据自行车的人数和所占的百分比求出总人数,再用总人数乘以步行所占的百分比求出步行的人数,从而补全统计图;(2)画树状图列出所有等可能结果和小明在两个路口都遇到绿灯的情况数,然后根据概率公式计算可得. 【解答】解:(1)被抽到的学生中,骑自行车上学的学生有24人,占整个被抽到学生总数的30%,∴抽取学生的总数为24÷30%=80(人), 则样本容量为80;步行的人数有80×20%=16(人),补图如下:故答案为:80;(2)画树状图如下:由树状图知,共有9种等可能结果,其中两个路口都遇到绿灯的结果数为1,所以两个路口都遇到绿灯的概率为19.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比. 19. 【分析】(1)先将点A 坐标代入反比例函数解析式中求出k2,进而求出点B 坐标,最后将点A ,B 坐标代入一次函数解析式中,即可得出结论;(2)利用两点间的距离公式表示出BC2=32,CP2=n2+9,BP2=(n-4)2+1,再分三种情况利用两腰相等建立方程求解即可得出结论.【解答】解:(1)∵点A (-1,4)在反比例函数y=2k x (k2≠0)的图象上,∴k2=-1×(-4)=4,∴反比例函数解析式为y=4x ,将点B (4,m )代入反比例函数y=4x 中,得m=1,∴B (4,1), 将点A (-1,-4),B (4,1)代入一次函数y=k1x+b 中,得11441k b k b -⎨+⎩+-⎧==, ∴113k b ⎩-⎧⎨==, ∴一次函数的解析式为y=x-3;(2)由(1)知,直线AB 解析式为y=x-3, ∴C (0,-3), ∵B (4,1),P (n ,0),∴BC2=32,CP2=n2+9,BP2=(n-4)2+1, ∵△BCP 为等腰三角形, ∴①当BC=CP 时, ∴32=n2+9,∴②当BC=BP 时,32=(n-4)2+1, ∴③当CP=BP 时,n2+9=(n-4)2+1, ∴n=1(舍), 即:满足条件的n 为.【点评】此题是反比例函数综合题,主要考查了待定系数法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.20. 【分析】(1)连接CD,由BC为直径可知CD⊥AB,根据同角余角相等可知∠A=∠BCD,根据BD BD=,可得∠F=∠BCD,从而证明结论.(2)连接OD、OF,易得∠OBD=∠ODB,由∠BDF=∠FCB=2∠CBA可得∠FDO=∠ODB,进而可证△BOD≌△FOD,即可得到DF=DB.(3)取CH中点M,连接OM,所以OM是△BHC的中位线,OM∥BH,又BH⊥DF,由垂径定理可知FN=DN,设FH=x,则FC=3x,OD=OC=OB=2x,设∠CBA=α,则∠CBD=∠DCA=α,由勾股定理可知x,继而得出tanα,由AD=1,即可计算CD、BD、BF、BG、EF长,再求三角形面积即可.【解答】(1)证明:连接CD,∵BC为直径,∴∠CDB=90°,∴∠A+∠DCA=90°,∵∠C=90°,∴∠BCD=∠A,∵BD BD=,∴∠F=∠BCD,∴∠F=∠A.(2)连接OD、OF,∵OB=OD=OF ,∴∠OBD=∠ODB ;∠ODF=∠OFD , ∵BF BF =,∴∠BDF=∠FCB=2∠CBA ,∴∠OBD=∠ODB=∠ODF=∠OFD , 又∵OD=OD ,∴△BOD ≌△FOD (AAS ), ∴DF=DB .(3)取CH 中点M ,连接OM ,交FD 于N 点,设∠CBA=α,则∠CBD=∠DCA=α,∵HM=MC ,BO=CO ,∴ON ∥BH ,OM=12BH ,∵BH ⊥FD , ∴FN=DN , ∵CD CD =,∴∠DBO=∠DFC ,由(2)得∠OBD=∠ODF , 在△ODN 和△MFN 中,DFC ODF FN DNONM MNF ∠∠∠⎧⎪⎪⎩∠⎨===,△ODN ≌△MFN (ASA ), ∴FM=OD ,设FH=x ,则FC=3x ,OD=OC=OB=2x ,∴在Rt △BFC中,BF =, ∵BH ⊥FD ,∠BFH=90°,∴∠FBH=∠CFD=α,∴tan α==,∴1tan tan DA CD DADCA α===∠∴7tan CD BD FD CBD ====∠,∴BC === ∴x=2, ∴BF=2, ∴BG=,∵OD ∥FC ,∴32FC EF OD ED ==, ∴EF=FD ×35=215,S △BEF=12125=. 【点评】本题是一道有关圆的几何综合题,难度较大,主要考查了圆周角定理,三角形中位线定理、全等三角形性质及判定,相似三角形的判断和性质,解直角三角形等知识点;解题关键是添加辅助线构造直角三角形,利用角相等解三角形.21. 【分析】根据完全平方公式即可求出答案.【解答】解:∵,∴,∴(x+1)2=3,∴x2+2x+1=3,∴x2+2x=2,故答案为:2【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.22. 【分析】首先根据二次函数的解析式求得其对称轴,然后写出该点关于对称轴的对称点的坐标即可.【解答】解:二次函数y=ax2+4ax+5的对称轴为x=-42aa=-2,∴点点P(2,17)关于l的对称点的坐标为(-6,17),故答案为:(-6,17).【点评】本题考查了二次函数的性质,解题的关键是求得二次函数的对称轴,难度不大.23. 【分析】由图可知:图案的面积=半圆CBF的面积+△ABC的面积-扇形ABC的面积,可根据各自的面积计算方法求出图案的面积.【解答】解:∵S扇形ACB=120443603ππ⨯=,S半圆CBF= 2131,1222ABCSππ⨯==⨯=所以图案面积=S半圆CBF+S△ABC-S扇形ACB=234cm236πππ⎛+=+⎝,故答案为:6π【点评】本题主要考查了扇形和三角形的面积计算方法.不规则图形的面积通常转化为规则图形的面积的和差.24. 【分析】解方程3111mxx x-=--得41xm=+,当m=1时,该方程有正整数解,据此依据概率公式求解可得.【解答】解:解方程3111mxx x-=--,得:41xm=+,当m=1时,该方程有正整数解,所以使关于x的方程3111mxx x-=--有正整数解的概率为15,故答案为:1 5.【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.25. 【分析】作PQ⊥x轴于Q,AM⊥x轴于M,CN⊥x轴于N,根据平行线分线段成比例定理表示出A、C、P的坐标,然后S△PAC=S梯形APQM-S梯形AMNC-S梯形PQNC,列式计算即可.【解答】解:作PQ⊥x轴于Q,AM⊥x轴于M,CN⊥x轴于N,∴PQ∥AM∥CN,∴21,32 AM AB CN OCPQ PB PQ OP====,设PQ=n,∴21,32 AM n CN n==,∵点A、C分别为函数y=kx(x>0)图象上两点,∴3221,,,232k kA n C nn n⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,∴ON=2k n,∴OQ=2ON=4k n,∴P(4kn,n),∵S△PAC=S梯形APQM-S梯形AMNC-S梯形PQNC,∴12431212311235 23223222224 k k k k k n n n n n nn n n n n⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+--+--+⋅=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,整理得,7k=35, 解得k=5. 故答案为5.【点评】本题考查了反比例图象上点的坐标特征,图象上点的坐标适合解析式. 26. 【分析】(1)利用待定系数法求y1与x 之间满足的函数表达式,并根据图1写出自变量x 的取值范围;(2)利用顶点式求y2与x 之间满足的函数表达式;(3)根据收益=售价-成本,列出函数解析式,利用配方法求出最大值. 【解答】解:(1)设y1=kx+b , ∵直线经过(3,5)、(6,3),3563k b k b ⎨+⎩+⎧==,解得:273k b -⎧⎪⎨⎪⎩==, ∴y1=-23x+7(3≤x≤6,且x 为整中学数学一模模拟试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中,比﹣1大的数是( ) A .B .﹣2C .﹣3D .02.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为( ) A .44×108B .4.4×109C .4.4×108D .4.4×10103.(3分)如图所示的几何体的主视图是( )A .B .C .D .4.(3分)下列各运算中,计算正确的是( ) A .2a •3a =6a B .(3a 2)3=27a 6C .a 4÷a 2=2aD .(a +b )2=a 2+ab +b 25.(3分)如图,在菱形ABCD中,AB=4,按以下步骤作图:①分别以点C和点D为圆心,大于CD的长为半径画弧,两弧交于点M,N;②作直线MN,且MN恰好经过点A,与CD 交于点E,连接BE,则BE的值为()A.B.2C.3D.46.(3分)在某中学理科竞赛中,张敏同学的数学、物理、化学得分(单位:分)分别为84,88,92,若依次按照4:3:3的比例确定理科成绩,则张敏的成绩是()A.84分B.87.6分C.88分D.88.5分7.(3分)如图,平行四边形ABCD的对角线AC平分∠BAD,若AC=12,BD=16,则对边之间的距离为()A.B.C.D.8.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、BD、OD、OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()A.120°B.105°C.100°D.110°9.(3分)如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=1,FD=2,则G点的坐标为()A.(,)B.(,)C.(,)D.(,)10.(3分)如图①,在矩形ABCD中,AB>AD,对角线AC、BD相交于点O,动点P由点A 出发,沿AB→BC→CD向点D运动,设点P的运动路径为x,△AOP的面积为y,图②是y 关于x的函数关系图象,则AB边的长为()A.3 B.4 C.5 D.6二、填空题(每小题3分,共15分)11.(3分)=.12.(3分)二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,则a=.13.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是.14.(3分)如图,在正方形ABCD中,AB=4,分别以B、C为圆心,AB长为半径画弧,则图中阴影部分的面积为.15.(3分)如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为.三、解答题(75分)16.(8分)先化简,再求值:,其中x=4|cos30°|+317.(9分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B 级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?18.(9分)如图,在Rt△ABC中,∠BAC=90°,∠C=30°,以边上AC上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F.(1)求证:BD是⊙O的切线.(2)若AB=,E是半圆上一动点,连接AE,AD,DE.填空:①当的长度是时,四边形ABDE是菱形;②当的长度是时,△ADE是直角三角形.19.(9分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.20.(9分)如图①,②分别是某款篮球架的实物图和示意图,已知支架AB的长为2.3m,支架AB与地面的夹角∠BAC=70°,BE的长为1.5m,篮板部支架BD与水平支架BE的夹角为46°,BC、DE垂直于地面,求篮板顶端D到地面的距离.(结果保留一位小数,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin46°≈0.72,cos46°≈0.69,tan46°≈1.04)21.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期30天的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成如图所示的图象,图中的折线ODE表示日销售量y (件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元.(2)求线段DE所对应的函数关系式.(不要求写出自变量的取值范围)(3)通过计算说明试销售期间第几天的日销售量最大?最大日销售量是多少?22.(10分)(1)阅读理解利用旋转变换解决数学问题是一种常用的方法.如图1,点P是等边三角形ABC内一点,PA=1,PB=,PC=2.求∠BPC的度数.为利用已知条件,不妨把△BPC绕点C顺时针旋转60°得△AP′C,连接PP′,则PP′的长为;在△PAP′中,易证∠PAP′=90°,且∠PP′A的度数为,综上可得∠BPC的度数为;(2)类比迁移如图2,点P是等腰Rt△ABC内的一点,∠ACB=90°,PA=2,PB=,PC=1,求∠APC 的度数;(3)拓展应用如图3,在四边形ABCD中,BC=3,CD=5,AB=AC=AD.∠BAC=2∠ADC,请直接写出BD的长.23.(11分)如图,直线y=与x轴,y轴分别交于点A,C,经过点A,C的抛物线y=ax2+bx﹣3与x轴的另一个交点为点B(2,0),点D是抛物线上一点,过点D作DE ⊥x轴于点E,连接AD,DC.设点D的横坐标为m.(1)求抛物线的解析式;(2)当点D在第三象限,设△DAC的面积为S,求S与m的函数关系式,并求出S的最大值及此时点D的坐标;(3)连接BC,若∠EAD=∠OBC,请直接写出此时点D的坐标.参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:A、﹣<﹣1,故本选项不符合题意;B、﹣2<﹣1,故本选项不符合题意;C、﹣3<﹣1,故本选项不符合题意;D、0>﹣1,故本选项,符合题意;故选:D.2.【解答】解:44亿=4.4×109.故选:B.3.【解答】解:该几何体的主视图为:故选:C.4.【解答】解:A、原式=6a2,不符合题意;B、原式=27a6,符合题意;C、原式=a2,不符合题意;D、原式=a2+2ab+b2;不符合题意;故选:B.5.【解答】解:由作法得AE垂直平分CD,∴∠AED=90°,CE=DE,∵四边形ABCD为菱形,∴AD=2DE,∴∠DAE=30°,∠D=60°,∴∠ABC=60°,∵AB=2DE,作EH⊥BC交BC的延长线于H,如图,若AB=4,在Rt△ECH中,∵∠ECH=60°,∴CH=CE=1,EH=CH=,在Rt△BEH中,BE==2,故选:B.6.【解答】解:张敏的成绩是:=87.6(分),故选:B.7.【解答】解:设AC,BD交点为O,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA,又∵AC平分∠DAB,∴∠DAC=∠BAC,∴∠BCA=∠BAC,∴AB=BC,∴平行四边形ABCD是菱形;∵四边形ABCD是菱形,且AC=12、BD=16,∴AO=6、BO=8,且∠AOB=90°,∴AB==10,∴对边之间的距离==,故选:C.8.【解答】解:∵AB是⊙O的直径,∠ABD=15°,∴∠ADB=90°,∴∠A=75°,∵AD∥OC,∴∠AOC=75°,∴∠BOC=180°﹣75°=105°,故选:B.9.【解答】解:连结EF,作GH⊥x轴于H,如图,∵四边形ABOD为矩形,∴AB=OD=OF+FD=1+2=3,∵△ABE沿BE折叠后得到△GBE,∴BA=BG=3,EA=EG,∠BGE=∠A=90°,∵点E为AD的中点,∴AE=DE,∴GE=DE,在Rt△DEF和Rt△GEF中,∴Rt△DEF≌Rt△GEF(HL),∴FD=FG=2,∴BF=BG+GF=3+2=5,在Rt△OBF中,OF=1,BF=5,∴OB==2,∵GH∥OB,∴△FGH∽△FBO,∴==,即==,∴GH=,FH=,∴OH=OF﹣HF=1﹣=,∴G点坐标为(,).故选:B.10.【解答】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP 面积最大为3.∴AB•=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7﹣AB,代入AB•BC=12,得AB2﹣7AB+12=0,解得AB=4或3,因为AB>BC,所以AB=4.故选:B.二、填空题(每小题3分,共15分)11.【解答】解:原式=2﹣4+4=2,故答案为:2.12.【解答】解:y=x2﹣4x+a=(x﹣2)2+a﹣4,当x=2时,函数有最小值a﹣4,∵二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,﹣2≤x≤3,y随x的增大而增大,∴a﹣4=﹣3,∴a=1,故答案为1.13.【解答】解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之和为偶数的结果数为8,所以两次抽取的卡片上数字之和为偶数的概率为=,故答案为:.14.【解答】解:连接BG,CG∵BG=BC=CG,∴△BCG是等边三角形.∴∠CBG=∠BCG=660°,∵在正方形ABCD中,AB=4,∴BC=4,∠BCD=90°,∴∠DCG=30°,∴图中阴影部分的面积=S扇形CDG﹣S弓形CG=﹣(﹣×4×2)=4﹣,故答案为:4﹣.15.【解答】解:如图所示,当∠CFE=90°时,△ECF是直角三角形,由折叠可得,∠PFE=∠A=90°,AE=FE=DE,∴∠CFP=180°,即点P,F,C在一条直线上,在Rt△CDE和Rt△CFE中,,∴Rt△CDE≌Rt△CFE(HL),∴CF=CD=4,设AP=FP=x,则BP=4﹣x,CP=x+4,在Rt△BCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,解得x=,即AP=;如图所示,当∠CEF=90°时,△ECF是直角三角形,过F作FH⊥AB于H,作FQ⊥AD于Q,则∠FQE=∠D=90°,又∵∠FEQ+∠CED=90°=∠ECD+∠CED,∴∠FEQ=∠ECD,∴△FEQ∽△ECD,∴==,即==,解得FQ=,QE=,∴AQ=HF=,AH=,设AP=FP=x,则HP=﹣x,∵Rt△PFH中,HP2+HF2=PF2,即(﹣x)2+()2=x2,解得x=1,即AP=1.综上所述,AP的长为1或.三、解答题(75分)16.【解答】解:原式=÷=•=,当x=4|cos30°|+3=4×+3=2+3时,原式==.17.【解答】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.18.【解答】(1)证明:如图1,连接OD,∵在Rt△ABC中,∠BAC=90°,∠C=30°,∴AB=BC,∵D是BC的中点,∴BD=BC,∴AB=BD,∴∠BAD=∠BDA,∵OA=OD,∴∠OAD=∠ODA,∴∠ODB=∠BAO=90°,即OD⊥BC,∴BD是⊙O的切线.(2)①当DE⊥AC时,四边形ABDE是菱形;如图2,设DE交AC于点M,连接OE,则DE=2DM,∵∠C=30°,∴CD=2DM,∴DE=CD=AB=BC,∵∠BAC=90°,∴DE∥AB,∴四边形ABDE是平行四边形,∵AB=BD,∴四边形ABDE是菱形;∵AD=BD=AB=CD=BC=,∴△ABD是等边三角形,OD=CD•tan30°=1,∴∠ADB=60°,∵∠CDE=90°﹣∠C=60°,∴∠ADE=180°﹣∠ADB﹣∠CDE=60°,∴∠AOE=2∠ADE=120°,∴的长度为:=π;故答案为:;。

2024年上海市徐汇区中考数学二模试卷及答案解析

2024年上海市徐汇区中考数学二模试卷及答案解析

2024年上海市徐汇区中考数学二模试卷一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.(4分)下列实数中,有理数是()A.B.C.D.2.(4分)下列单项式中,与单项式2a2b3是同类项的是()A.﹣ab4B.2a3b2C.3b3a2D.﹣2a2b2c 3.(4分)已知一次函数y=kx+b的图象经过第一、二、四象限,那么直线y=bx+k经过()A.第二、三、四象限B.第一、二、三象限C.第一、二、四象限D.第一、三、四象限4.(4分)如表,记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差.甲乙丙丁平均数(cm)185180180185方差 3.6 3.68.17.4根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁5.(4分)如图,▱ABCD的对角线AC、BD相交于点O,如果添加一个条件使得▱ABCD 是矩形,那么下列添加的条件中正确的是()A.∠DAO+∠ADO=90°B.∠DAC=∠ACDC.∠DAC=∠BAC D.∠DAB=∠ABC6.(4分)如图,一个半径为9cm的定滑轮由绳索带动重物上升,如果该定滑轮逆时针旋转了120°,假设绳索(粗细不计)与滑轮之间没有滑动,那么重物上升的高度是()A.5πcm B.6πcm C.7πcm D.8πcm二、填空题(本大题共12题,每题4分,满分48分)7.(4分)方程﹣x=0的根是.8.(4分)不等式组的解集是.9.(4分)方程组的解是.10.(4分)关于x的一元二次方程x2﹣mx﹣1=0根的情况是:原方程实数根.11.(4分)如果二次函数y=2x2﹣4x+1的图象的一部分是上升的,那么x的取值范围是.12.(4分)如果反比例函数y=的图象经过点A(t,﹣2t),那么t的值是.13.(4分)如果从长度分别为2、4、6、7的四条线段中任意取出三条,那么取出的三条线段能构成三角形的概率是.14.(4分)小杰沿着坡比i=1:2.4的斜坡,从坡底向上步行了130米,那么他上升的高度是米.15.(4分)某校为了了解学生家长对孩子用手机的态度问题,随机抽取了100名家长进行问卷调查,每位学生家长只有一份问卷,且每份问卷仅表明一种态度(这100名家长的问卷真实有效),将这100份问卷进行回收整理后,绘制了如图1、图2所示的两幅不完整的统计图.如果该校共有2000名学生,那么可以估计该校对手机持“严格管理”态度的家长有人.16.(4分)如图,梯形ABCD中,BC∥AD,AB=CD,AC平分∠BAD,如果AD=2AB,=,=,那么是(用向量、表示).17.(4分)如图,在△ABC中,AB=AC=6,BC=4.已知点D是边AC的中点,将△ABC 沿直线BD翻折,点C落在点E处,联结AE,那么AE的长是.18.(4分)如图,点A是函数y=(x<0)图象上一点,联结OA交函数y=﹣(x<0)图象于点B,点C是x轴负半轴上一点,且AC=AO,联结BC,那么△ABC的面积是.三、(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分)19.(10分)计算:﹣|1﹣|+π0﹣.20.(10分)解方程:.21.(10分)如图,⊙O1和⊙O2相交于点A、B,联结AB、O1O2、AO2,已知AB=48,O1O2=50,AO2=30.(1)求⊙O1的半径长;(2)试判断以O1O2为直径的⊙P是否经过点B,并说明理由.22.(10分)A市“第××届中学生运动会”期间,甲校租用两辆小汽车(设每辆车的速度相同)同时出发送8名学生到比赛场地参加运动会,每辆小汽车限坐4人(不包括司机),其中一辆小汽车在距离比赛场地15千米的地方出现故障,此时离截止进场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车.已知这辆车的平均速度是每小时60千米,人步行的平均速度是每小时5千米(上、下车时间忽略不计).(1)如果该小汽车先送4名学生到达比赛场地,然后再回到出故障处接其他学生,请你判断他们能否在截止进场的时刻前到达?并说明理由;(2)试设计一种运送方案,使所有参赛学生能在截止进场的时刻前到达比赛场地,并说明方案可行性的理由.23.(12分)如图,在菱形ABCD中,点E、G、H、F分别在边AB、BC、CD、DA上,AE =AF,CG=CH,CG≠AE.(1)求证:EF∥GH;(2)分别联结EG、FH,求证:四边形EGHF是等腰梯形.24.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+4(a>0)与x轴交于点A(1,0)和点B,与y轴交于点C.(1)求该抛物线的表达式及点B的坐标;(2)已知点M(0,m),联结BC,过点M作MG⊥BC,垂足为G,点D是x轴上的动点,分别联结GD、MD,以GD、MD为边作平行四边形GDMN.①当m=时,且▱GDMN的顶点N正好落在y轴上,求点D的坐标;②当m≥0时,且点D在运动过程中存在唯一的位置,使得▱GDMN是矩形,求m的值.25.(14分)如图,在扇形OAB中,OA=OB=6,∠AOB=90°,点C、D是弧AB上的动点(点C在点D的上方,点C不与点A重合,点D不与点B重合),且∠COD=45°.(1)①请直接写出弧AC、弧CD和弧BD之间的数量关系;②分别联结AC、CD和BD,试比较AC+BD和CD的大小关系,并证明你的结论;(2)联结AB分别交OC、OD于点M、N.①当点C在弧AB上运动过程中,AN•BM的值是否变化,若变化请说明理由;若不变,请求AN•BM的值;②当MN=5时,求圆心角∠DOB的正切值.2024年上海市徐汇区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.【分析】整数和分数统称为有理数,据此进行判断即可.【解答】解:、、是无理数,=2,是有理数.故选:B.【点评】本题考查有理数的识别,熟练掌握其定义是解题的关键.2.【分析】所含字母相同,并且相同字母的指数也相同的项叫做同类项,由此判断即可.【解答】解:与单项式2a2b3是同类项的是3b3a2,故选:C.【点评】本题考查了同类项,熟知同类项的定义是解题的关键,注意同类项与系数无关,与字母的顺序无关.3.【分析】先根据题意判断出k,b的符号,进而可得出结论.【解答】解:∵一次函数y=kx+b的图象经过第一、二、四象限,∴k<0,b>0,∴y=bx+k经过一、三、四象限.故选:D.【点评】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解题的关键.4.【分析】据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:因为队员甲和乙的方差最小,但队员乙平均数小,所以甲的成绩好,所以队员甲成绩好又发挥稳定.故选:A.【点评】本题考查方差与算术平方根,解答本题的关键是掌握它们的定义:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.【分析】由矩形的判定和菱形的判定分别对各个选项进行判断即可.【解答】解:A、∵∠DAO+∠ADO=90°,∴∠AOD=90°,∴AC⊥BD,∴▱ABCD是菱形,故选项A不符合题意;B、∵∠DAC=∠ACD,∴AD=CD,∴▱ABCD是菱形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCA=∠BAC,∵∠DAC=∠BAC,∴∠DCA=∠DAC,∴AD=CD,∴▱ABCD是菱形,故选项C不符合题意;D、∵四边形ABCD是平行四边形,∴AD∥CB,∴∠DAB+∠ABC=180°,∵∠DAB=∠ABC,∴∠DAB=∠ABC=90°,∴▱ABCD是矩形,故选项D符合题意;故选:D.【点评】本题考查了矩形的判定,平行四边形的性质,掌握矩形的判定是解题的关键.6.【分析】根据弧长的计算方法计算半径为9cm,圆心角为120°的弧长即可.【解答】解:由题意得,重物上升的距离是半径为9cm,圆心角为120°所对应的弧长,即=6π(cm).故选:B.【点评】本题考查弧长的计算,掌握弧长的计算方法是正确解答的前提.二、填空题(本大题共12题,每题4分,满分48分)7.【分析】移项后方程两边平方得出2x﹣1=x2,求出方程的解,再进行检验即可.【解答】解:﹣x=0,移项,得=x,方程两边平方,得2x﹣1=x2,x2﹣2x+1=0,(x﹣1)2=0,x﹣1=0,x=1,经检验:x=1是原方程的解.故答案为:x=1.【点评】本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键.8.【分析】按照解一元一次不等式组的步骤进行计算,即可解答.【解答】解:,解不等式①得:x>2,解不等式②得:x>﹣5,∴原不等式组的解集为:x>2,故答案为:x>2.【点评】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的步骤是解题的关键.9.【分析】方程组化为一元二次方程可解得答案.【解答】解:由x﹣2y=0得x=2y,代入x2+y2=5得:5y2=5,解得y=1或y=﹣1,∴原方程组的解为或.故答案为:或.【点评】本题考查解高次方程,解题的关键是把方程组化为一元二次方程.10.【分析】先计算出Δ的值得到Δ>0,然后根据根的判别式的意义判断方程根的情况即可.【解答】解:∵Δ=(﹣m)2﹣4×(﹣1)=m2+4>0,∴方程有两个不相等的实数根.故答案为:有两个不相等的实数根.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.11.【分析】依据题意,由y=2x2﹣4x+1=2(x﹣1)2﹣1,又抛物线开口向上,从而当x<1时,y随x的增大而减小,图象逐渐下降,当x≥1时,y随x的增大而增大,图象逐渐上升,再结合二次函数y=2x2﹣4x+1的图象的一部分是上升的,进而可以判断得解.【解答】解:由题意,∵y=2x2﹣4x+1=2(x2﹣2x+1)﹣1=2(x﹣1)2﹣1,又抛物线开口向上,∴当x<1时,y随x的增大而减小,图象逐渐下降,当x≥1时,y随x的增大而增大,图象逐渐上升.∵二次函数y=2x2﹣4x+1的图象的一部分是上升的,∴x≥1.故答案为:x≥1.【点评】本题主要考查了二次函数的性质,解题时要熟练掌握并能灵活运用是关键.12.【分析】根据反比例函数图象上点的坐标特征解答本题即可.【解答】解:∵反比例函数y=的图象经过点A(t,﹣2t),∴t×(﹣2t)=﹣4,解得t=.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征,熟练掌握这一特征是关键.13.【分析】利用列举法展示所有4种等可能的结果,根据三角形三边的关系可判断三条线段能构成三角形的结果数,然后根据概率求解.【解答】解:从长度分别为2、4、6、7的四条线段中随机抽取三条线段,它们为2、4、6;2、4、7;2,6,7;4,6,7,共有4种等可能的结果,其中三条线段能构成三角形的结果数为2,所以三条线段能构成三角形的概率==,故答案为:.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了三角形三边的关系.14.【分析】设上升的高度为x米,根据坡比和勾股定理列方程即可求解.【解答】解:设上升的高度为x米,坡比i=1:2.4,根据题意得x2+(2.4x)2=1302,解得x=50,故答案为:50.【点评】本题考查解直角三角形的应用,解题的关键是理解坡比的定义.15.【分析】先用总人数乘以从来不管对应的百分比求出其人数,再根据三个类别人数之和等于总人数求出严格管理的人数,最后用总人数乘以样本中严格管理人数所占比例即可.【解答】解:由题意知,从来不管的人数为100×25%=25(人),则严格管理的人数为100﹣25﹣55=20(人),所以估计该校对手机持“严格管理”态度的家长有2000×=400(人),故答案为:400.【点评】本题考查了条形统计图的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.也考查了利用样本估计总体.16.【分析】首先判定△ABC是等腰三角形;如图,过点C作CE∥AB交AD于E,构造平行四边形ABCE,则BC=AE.所以在△ABC中,利用三角形法则求解即可.【解答】解:∵BC∥AD,∴∠BCA=∠CAD.∵AC平分∠BAD,∴∠BAC=∠CAD.∴∠BAC=∠BCA.∴AB=BC.如图,过点C作CE∥AB交AD于E,则四边形ABCE是平行四边形.∴BC=AE.∵AD=2AB,∴AD=2BC.∵=,∴==.∵=,=+.∴=.故答案为:.【点评】本题主要考查了平面向量,等腰三角形的判定与性质,梯形.解题的巧妙之处在于作出辅助线,构造平行四边形.将所求的向量置于△ABC中,利用三角形法则作答.17.【分析】过A作AM⊥BC,过D作DN⊥BC,连接AE,连接CE交BD于O,根据等腰三角形的性质以及平行线分线段成比例可以求出CN,BN的长,然后根据勾股定理求出DN和BD的长,根据轴对称的性质可得,CE⊥BD,OC=OE,DE=DC,根据等积变换可以求出OC,从而求得CE,再根据AD=CD=DE可以判断△ACE为直角三角形,最后根据勾股定理求出AE的长即可.【解答】解:如图,过A作AM⊥BC,过D作DN⊥BC,连接AE,连接CE交BD于O,∴AM∥DN,∵D为AC中点,AB=AC,∴AD=CD=3,BM=CM=2,∴CN=MN=1,∴DN==2,∴BD==,∵E和C关于BD对称,∴CE⊥BD,OC=OE,DE=DC,=BC•DN=BD•OC,∵S△BCD∴OC=,∴CE=,∵AD=CD=DE,∴△ACE为直角三角形,∴AE==.故答案为:.【点评】本题主要考查了翻折问题,合理运用平行线分线段成比例、勾股定理以及直角三角形的判定是本题解题的关键.18.【分析】过点A,B分别作x轴的垂线,垂足分别为D,E,反比例函数比例系数的几何=4,S△OBE=0.5,证△OAD∽△OBE得,由此得OA=意义得S△OADOB,则AB=(OB,再由得S△ABC=(S,然后根据等腰三角形的性质得S△AOC=2S△OAD=8,则S△ABC+S△OBC=8,由此得△OBC=,进而可得△ABC的面积.得S△OBC【解答】解:过点A,B分别作x轴的垂线,垂足分别为D,E,如下图所示:∵点A是函数(x<0)图象上一点,点B是反比例函数(x<0)图象上的点,=×8=4,S△OBE=×1=0.5,根据反比例函数比例系数的几何意义得:S△OAD∵AD⊥x轴,BE⊥x轴,∴AD∥BE,∴△OAD∽△OBE,∴,∴=8,∴OA=OB,∴AB=OA﹣OB=OB﹣OB=()OB,即,∵,=()S△OBC,∴S△ABC∵AC=AO,AD⊥x轴,∴OD=CD,=2S△OAD=8,∴S△AOC+S△OBC=8,∴S△ABC+S△OBC=8,即()S△OBC=,∴S△OBC=S△AOC﹣S△OBC=.∴S△ABC故答案为:.【点评】此题主要考查了反比例函数比例系数的几何意义,相似三角形的判定和性质,理解反比例函数比例系数的几何意义,熟练掌握相似三角形的判定和性质是解决问题的关键.三、(本大题共7题,第19—22题每题10分;第23、24题每题12分;第25题14分;满分78分)19.【分析】利用二次根式的性质、绝对值的性质以及零指数幂分别化简得出答案.【解答】解:﹣|1﹣|+π0﹣=2﹣+1+1﹣=2.【点评】本题考查了实数的运算,掌握正确化简各数是关键.20.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:(x+2)2﹣16=x﹣2,整理得:x2+4x+4﹣16=x﹣2,即x2+3x﹣10=0,分解因式得:(x﹣2)(x+5)=0,解得:x=2或x=﹣5,检验:当x=2时,(x+2)(x﹣2)=0,当x=﹣5时,(x+2)(x﹣2)≠0,∴x=2是增根,分式方程的解为x=﹣5.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.【分析】(1)连接AO1,由勾股定理求出CO2,再求出CO1,再由勾股定理求出AO1即可;(2)由勾股定理逆定理判断∠O1BO2是否为直角即可.【解答】解:(1)连接AO1,AB和O1O2交于点C,如图:∵AB是⊙O1和⊙O2的公共弦,∴AB⊥O1O2,AC=BC=24,∴CO2==18,∴CO1=O1O2﹣CO2=32,∴AO1==40.(2)经过.证明:∵BO1=AO1=40,BO2=AO2=30,O1O2=50,∴+=O1,∴∠O1BO2=90°,∴B在以O1O2为直径的圆上.【点评】本题主要考查了相交圆的性质,合理运用勾股定理及其逆定理是本题解题的关键.22.【分析】(1)根据题意,若小汽车送4人到达考场,然后再回到出故障处接其他人,则根据故障地点距考场的距离即可求出小汽车运动的总路程,又已知小汽车的平均速度,即可求得小汽车运动的总时间,随后与距截止进考场的时间进行比较,即可判断能否在截止进考场的时刻前到达考场;(2)由(1)知,若停留在原地等待则无法在截止进考场的时刻前到达考场,所以让在小汽车运送4人去考场的同时,留下的4人需步行前往考场,可节省一些时间,根据路程与速度的关系可分别求出小汽车运送第一批4人到达考场的时间、小汽车接到步行的4人的时间、小汽车从接到第二批4人到运送至考场的时间,三个时间相加后与距截止进考场的时间进行比较,即可判断方案的可行性.【解答】解:(1)他们不能在截止进场的时刻前到达比赛场地,小汽车先送4名学生到达比赛场地,然后再回到出故障处接其他学生,总路程为:15×3=45(千米),第二次到达考场所需时间为:45÷60=0.75(小时),0.75小时=45分钟,∵45>42,∴他们不能在截止进场的时刻前到达比赛场地;(2)先将4人用车送到考场,另外4人同时步行前往考场,汽车到考场后返回接到步行的4人的后再载他们前往考场,先将4人用车送到考场所需时间为15÷60=0.25(h)=15(分钟),5×0.25=1.25(km),∴此时他们与考场的距离为15﹣1.25=13.75(km),设汽车返回t(h)后与步行的4人相遇,则:5t十60t=13.75,解得t=,此时汽车与考场的距离为13.75﹣5×==(km),∴汽车由相遇点再去考场所需时间为(h),用这一方案送这8人到考场共需15≈40.4(分钟).∴40.4<42,∴采取此方案能使8个人在截止进考场的时刻前到达考场.【点评】本题考查了由实际问题抽象出一元一次方程,解题的关键是找准等量关系,正确列出一元一次方程.23.【分析】(1)连接BD.根据菱形的性质得到AB=AD=BC=CD,根据平行线分线段成比例定理即可得到结论;(2)根据相似三角形的性质得到=,同理=,又CG≠AE,得到EF≠GH,根据梯形的判定定理得到四边形EGHF是梯形;根据全等三角形的性质得到EG=FH,于是得到梯形EGHF是等腰梯形.【解答】证明:(1)连接BD.∵四边形ABCD是菱形,∴AB=AD=BC=CD,∵AE=AF,CG=CH,∴=,=,∴EF∥BD,GH∥BD,∴EF∥GH;(2)∵EF∥BD,∴△AEF∽△ABD,∴=,同理=,又CG≠AE,∴EF≠GH,∵EF∥GH,∴四边形EGHF是梯形;∵AB﹣AE=AD﹣AF,即BE=DF,∴BC﹣CG=CD﹣CH,即BG=DH,∵四边形ABCD是菱形,∴∠ABC=∠ADC,∴△BGE≌△DHF(SAS),∴EG=FH,∴梯形EGHF是等腰梯形.【点评】本题考查了等腰梯形的判定,菱形的性质,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.24.【分析】(1)由待定系数法求出函数表达式,进而求解;(2)①在Rt△CGM中,cos∠MCG=,则CG=CM•cos∠MCG=×=2,在Rt △CGH中,GH=CG•sin∠HCG=2×=,即可求解;②当m=0时,即点M与点O重合时,符合题意;当0<m<4时,如图所示,取MG的中点P,以MG为直径作圆P,则点N、D在圆上,由PM=OH,即可求解;当m≥4时,可得:OH>PM,所以符合题意的m不存在.【解答】解:(1)由题意,得:a﹣4a+4=0,解得:a=,∴抛物线的表达式为y=x2﹣x+4;则抛物线的对称轴是直线x=2,∴点B(3,0);(2)①由题意,得C(0,4)、M(0,),则CM=,∵四边形GDMN是平行四边形,∴DG∥MN,又点N在y轴上,∴NM⊥OD,∴GD⊥OD,在Rt△OBC中,BC==5,则cos∠OCB==,则sin∠OCB=,在Rt△CGM中,cos∠MCG=,则CG=CM•cos∠MCG=×=2,过点G作GH⊥CO,垂足为H,在Rt△CGH中,GH=CG•sin∠HCG=2×=,则OD=GH=,故点D(,0);②当m≥0时,根据m不同取值分三种情况讨论:当m=0时,即点M与点O重合时,符合题意;当0<m<4时,如图所示,取MG的中点P,以MG为直径作圆P,则点N、D在圆上,此时圆P和x轴有唯一切点D,符合题设条件,则OH=PD=PM,∵MG=MC•sin∠OCB=(4﹣m)=2PM,由①知,∠CMG=∠OCB,则sin∠CMG=sin∠OCB,则MH=PM•sin∠OCB=(4﹣m),而OH=MH+OM=MH+m,由PM=OH得:(4﹣m)+m=(4﹣m),解得:m=;当m≥4时,可得:OH>PM,所以符合题意的m不存在,综上,符合题意的m的值为0或.【点评】本题考查的是二次函数综合运用,涉及到解直角三角形、圆的切线的性质等知识,分类求解是解题的关键.25.【分析】(1)①根据弧长与圆心角之间的关系求解即可;②在弧CD上取点E,使得∠COE=∠AOC,然后根据圆心角、弧长、弦长之间的关系以及三角形的三边关系证明即可;(2)①利用相似三角形的判定与性质,先证明△OMB∽△AON,即可得出AN•BM的值;②过点O在OB下方作∠BOM′=∠AOM,截取OM′=OM,利用全等三角形的判定与性质,以及勾股定理可以求出BN的长,过N作OB垂线,根据三角函数的定义求解tan∠BOD即可.【解答】解:(1)①设∠AOC=α,∴∠BOD=90°﹣45°﹣α=45°﹣α,∵=•2πOA,=•2πOA,=•2πOA,∴=+;②AC+BD>CD.证明:在上取点E,连接OE,使得∠COE=∠AOC,连接CE,DE,如图:∴AC=CE,在△CDE中,CE+DE>CD,∵∠COE+∠DOE=45°,∠AOC+∠BOD=45°,∴∠DOE=∠BOD,∴BD=DE,∴AC+BD>CD.(2)①AN•BM的值不变,AN•BM=72.∵OA=OB,∴∠OAB=∠OBA,∵∠AOB=90°,∴∠OAB=∠OBA=45°,∵∠OMB=∠OAB+∠AOM=45°+∠AOM,又∵∠AON=∠COD+∠AOM=45°+∠AOM,∴∠OMB=∠AON,∴△OMB∽△AON,∴=,∴AN•BM=AO•BO=72;②过点O在OB下方作∠BOM′=∠AOM,截取OM′=OM,连接BM′,NM′,如图:∵AO=BO,∴△OBM′≌△OAM(SAS),∴BM′=AM,∠OBM′=∠OAB=45°,∴∠NBM′=90°,又∵∠M′ON=45°=∠COD,ON=ON,∴△ONM′≌△OMN(SAS),∴M′N=MN,∴MN2=M′N=BM′2+BN2=AM2+BN2,又∵AM+BN=12﹣5=7,∴BN=3或4,过N作NG⊥OB于G,当BN=3时,NG=BG=,∴OG=,∴tan∠BOD==,当BN=4时,NG=BG=2,∴OG=4,∴tan∠BOD==,∴tan∠BOD=或.【点评】本题主要考查了圆的综合题,综合运用全等三角形的判定与性质、相似三角形的判定与性质、勾股定理、圆心角与弦和弧的关系以及锐角三角函数的定义是本题解题的关键。

模拟测评2022年上海中考数学真题模拟测评 (A)卷(含答案及详解)

模拟测评2022年上海中考数学真题模拟测评 (A)卷(含答案及详解)

2022年上海中考数学真题模拟测评 (A )卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、与长方体中任意一条棱既不平行也不相交的棱有( ) A .2条B .4条C .6条D .8条2、一条弧所对的圆心角是72 ,则这条弧长与这条弧所在圆的周长之比为( )A .13B .14C .15D .163、如果(x -2)(x +3)=x 2+px +q ,那么p 、q 的值是( ) A .p=5,q=6B .p=1,q=-6C .p=1,q=6D .p=5,q=-64、下列说法正确的是( ) A .任何数都有倒数B .一个数的倒数一定不等于它本身C .如果两个数互为倒数,那么它们的乘积是1D .a的倒数是1a5、下列分数中,不能化为有限小数的是( ) ·线○封○密○外A .12B .13C .14D .156、下列哪个数不能和2,3,4组成比例( ) A .1B .1.5C .223D .67、如果一个扇形的半径扩大到原来的2倍,弧长缩小到原来的一半,那么这个扇形的面积与原扇形的面积之比为( ) A .1:2B .1:1C .2:1D .4:18、甲、乙两个正整数,它们的和是240,如果甲、乙两数的比是2:3,那么甲数是( ) A .48B .96C .144D .1929、关于数字91,下列说法错误的是( ) A .存在最大的因数 B .存在最大的倍数 C .存在最小的倍数D .它是一个合数10、如果1a =,2b =,4c =,那么下列说法正确的是( ) A .a ,b ,c 的第四比例项是6 B .2a ,2b ,2c 的第四比例项是18 C .c 是a ,b 的比例中项D .b 是a ,c 的比例中项第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,一块等腰直角的三角板ABC ,在水平桌面上绕点C 按顺时针方向旋转到A B C '''位置,如果A 、C 、B '三点在一条直线上,那么旋转角的大小是________________度.2、若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.3、分解素因数:84=__________________________.4、213的倒数是______. 5、某工厂三月份付水电费320元,四月份付水电费280元,四月份水电费比三月份水电线费节省了____________(填百分比).三、解答题(5小题,每小题10分,共计50分)1、计算:531.9124-+. 2、计算:3585615+-. 3、已知::2:3a b =,(5):()2:3a b x ++=,求x 的值4、某校为了了解六年级学生体育测试成绩情况,以六年级(1)班学生的体育测试成绩为样本,按A 、B 、C 、D 四个等级进行统计,并将统计结果绘制成如下两幅统计图,请结合图中所给信息回答下列问题:(说明:A 级:90~100分;B 级:75~89分;C 级:60~74分;D 级:60分以下)·线○封○密○外(1)求出D级学生的人数占全班人数的百分比;(2)求出图2中C级所在的扇形圆心角的度数;(3)若该校六年级学生共有500人,请估计这次考试中A级和B级的学生共有多少人?5、已知13:42:54x ,求x的值.-参考答案-一、单选题1、B【分析】根据题意,画出图形即可得出结论.【详解】解:看图以AB为例,与它既不平行也不相交的棱有HD、GC、HE和GF,共有4条,故选B.【点睛】此题考查的是长方体的特征,根据题意画出图形是解决此题的关键. 2、C 【分析】利用这条弧所对的圆心角的度数除以360°即可求出结论. 【详解】解:72÷360=15即这条弧长与这条弧所在圆的周长之比为15故选C . 【点睛】 此题考查的是弧长与圆的周长,掌握弧长与这条弧所在圆的周长之比等于这条弧所对的圆心角与360°的比是解题关键. 3、B 【分析】先根据多项式乘以多项式的法则,将(x-2)(x+3)展开,再根据两个多项式相等的条件即可确定p 、q 的值. 【详解】 解:∵(x-2)(x+3)=x 2+x-6, 又∵(x-2)(x+3)=x 2+px+q , ∴x 2+px+q=x 2+x-6, 4、C 【分析】 ·线○封○密○外根据题意,对各题进行依次分析、进而得出结论.【详解】解:A、0没有倒数,故选项错误;B、1的倒数是1,故选项错误;C、如果两个数互为倒数,那么他们的乘积一定是1,故选项正确;D、a=0时,a没有倒数,故选项错误.故选:C.【点睛】本题考查了倒数的知识,属于基础题,比较简单,注意平时基础知识的积累.5、B【分析】一个最简分数,如果分母中只含有质因数2或5,这个分数就能化成有限小数;如果分母中含有2或5以外的质因数,这个分数就不能化成有限小数,据此判断即可.【详解】解:A.12的分母的质因数只有2,故能化为有限小数,故不符合题意;B.13的分母含质因数3,故不能化为有限小数,故符合题意;C.14的分母的质因数只有2,故能化为有限小数,故不符合题意;D.15的分母的质因数只有5,故能化为有限小数,故不符合题意.故选B.【点睛】本题考查了小数与分数互化的方法的应用,解题的关键是要明确:一个最简分数,如果分母中只含有质因数2或5,这个分数就能化成有限小数;如果分母中含有2或5以外的质因数,这个分数就不能化成有限小数.6、A【分析】根据比例的基本性质,两内项之积等于两外项之积逐一分析即可.【详解】解:根据比例的基本性质,两内项之积等于两外项之积,则:A.1423⨯≠⨯,不可以组成比例;B.1.5423⨯=⨯,可以组成比例;C.223243⨯=⨯,可以组成比例;D.2634⨯=⨯,可以组成比例;故选:A.【点睛】本题考查比例,掌握比例的基本性质:两内项之积等于两外项之积是解题的关键.7、B【分析】设原扇形的半径为x,弧长为y,分别表示出原扇形和新扇形的面积,求比即可.【详解】解:设原扇形的半径为x,弧长为y,原扇形的面积为12 xy,新扇形的面积为1112222x y xy⨯=,·线○封○密○外∴新扇形的面积与原扇形的面积之比为1:1.故选:B【点睛】本题考查了扇形的面积的求法,熟知扇形的面积公式是解题关键.8、B【分析】根据甲、乙的和,以及它们的比例关系列式计算出甲的值.【详解】解:根据甲+乙=240,且甲:乙=2:3,÷⨯=.甲=2405296故选:B.【点睛】本题考查比例的应用,解题的关键是利用比例的性质进行运算求解.9、B【分析】由题意把91分解质因数,可以得到最小的因数是1,最大的因数是91;把91乘1、2、3……得到91的最小的倍数是91,倍数乘一个整数,有无穷无尽的倍数,所以存在最大的倍数的说法是错误的;据此得解.【详解】解:对于数字91,存在最大的因数91,存在最小的倍数91,存在最小的因数1;只有存在最大的倍数是错误的;故选:B.【点睛】本题考查因数和倍数的意义,熟练掌握分解质因数方法是解题的关键. 10、D 【分析】根据第四比例项和比例中项的性质作答即可. 【详解】解:∵1a =,2b =,4c =,设a ,b ,c 的第四比例项为x ,则有:a cb x=,解得:2481bc x a,故A 选项错误;设2a ,2b ,2c 的第四比例项为y ,则有:222acb y,解得:2224161bc y a,故B 选项错误; 如果c 是a ,b 的比例中项,则有2c ab =,解得:122c ab ,故C 选项错误; 如果b 是a ,c 的比例中项,则有2b ac =,解得:142b ac ,故D 选项正确; 故选:D . 【点睛】本题主要考查了第四比例项和比例中项的性质,熟悉相关性质是解题的关键. 二、填空题 1、135 【分析】根据等腰直角三角板可得∠ACB=45°,然后根据平角的定义即可求出∠BCB ',从而求出结论.·线○封○密○外【详解】解:∵三角板ABC 是等腰直角三角板 ∴∠ACB=45°∵A 、C 、B '三点在一条直线上, ∴∠BCB '=180°-∠ACB=135° 即旋转角为135° 故答案为:135. 【点睛】此题考查的是旋转问题,掌握三角板中各个角的度数和旋转角的定义是解题关键. 2、4π 【分析】直接利用弧长公式计算即可求解. 【详解】l =6012180π⨯=4π, 故答案为:4π. 【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l =180n rπ(n 是弧所对应的圆心角度数)3、2237⨯⨯⨯ 【分析】分解素因数也就是分解质因数,分解质因数就是把一个合数写成几个质数相乘的形式,一般先从较小的质数试着分解. 【详解】84=2×2×3×7,故答案为:2×2×3×7.【点睛】此题主要考查分解质因数的方法及运用,注意要把这个合数写成几个质数相乘的形式.4、35 【分析】 根据倒数的定义进行求解即可. 【详解】 解:213的倒数是35, 故答案为:35. 【点睛】 此题主要考查了倒数的判断,熟练掌握倒数的定义是解答此题的关键.5、12.5% 【分析】 根据题意列出算式计算即可. 【详解】 320280100%12.5%320-⨯= 故答案为:12.5%. 【点睛】 本题主要考查了百分比的应用,熟练掌握百分比在实际问题中的应用是解题的关键. 三、解答题·线·○封○密○外1、17130【分析】先把第二项和第三项交换位置,再用结合律先算后面两项的差,最后算加法.【详解】解:53 1.9124-+=5 1.90.7512+- =()5 1.90.7512+- =5 1.1512+ =5311220+ =25916060+ =34160=17130 【点睛】完成本题要注意分析式中数据,运用合适的简便方法计算.2、910【分析】先进行通分,然后根据同分母分数的运算法则运算即可.【详解】3585615+-=182516303030+- =2730 =910 【点睛】本题主要考查了分数的加减运算,熟练掌握分数的运算法则是解题的关键. 3、152【分析】 根据:2:3a b =可用a 表示b 并代入(5):()2:3a b x ++=中化简即可抵消a ,解出x . 【详解】 解:因为:2:3a b =, 所以32b a =, 所以3(5):()2:32a a x ++=, 即33(5)2()2a a x +=⋅+ 31532a a x +=+ 解得152x =. 【点睛】 本题考查比的性质.化简过程中注意内项之积等于外项之积. 4、(1)4%;(2)72︒ ;(3)380 【分析】 ·线○封○密·○外(1)先求出总人数,再求D成绩的人数占的比例;(2)C成绩的人数为10人,占的比例=10÷50=20%,表示C的扇形的圆心角=360°×20%=72°;(3)根据该班占全年级的比例,所以即可求出这次考试中A级和B级的学生数.【详解】解:(1)总人数为:25÷50%=50人,D成绩的人数占的比例为:2÷50=4%;(2)表示C的扇形的圆心角为:360°×(10÷50)=360°×20%=72°;(3)这次考试中A级和B级的学生数:13+25500=38050⨯(人).【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.5、35 x=【分析】根据比例的基本性质:内项积等于外项积,解方程即可.【详解】解:1 3:42:54x=135244x⨯=⨯159x=35x=【点睛】此题考查的是解比例方程,掌握比例的基本性质:内项积等于外项积,是解题关键.·线○封○密○外。

上海市2023届中考徐汇区九年级二模考试数学试卷(附答案)

上海市2023届中考徐汇区九年级二模考试试卷数 学(考试时间100分钟,满分150分)一、选择题(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的】1.下列各对数中互为倒数的是( )(A )3和13; (B )2-和2; (C )3和13-; (D )2-和12. 2.下列运算结果错误..的是( ) (A )132-=÷m m m ; (B )632)(m m =; (C )235m m m ⋅=; (D ) 532m m m =+.3.如图,数轴上的点A 和点B 分别在原点的左侧和右侧,点A 、B 对应的实数分别是a 、b ,下列结论一定成立的是( )(A )0a b +<; (B )0b a -<; (C )22a b ->-; (D )a b >.4.如果点1(2,)y -、2(1,)y -、3(2,)y 在反比例函数(0)ky k x=<的图像上,那么( ) (A )123y y y >>; (B )213y y y >>; (C )312y y y >>; (D )321y y y >>. 5.某校足球社团有50名成员,下表是社团成员的年龄分布统计表,对于不同的m (m 为014 的整数),下列关于年龄的统计量不会发生改变的是( )(A )平均数、中位数; (B )平均数、方差;(C )众数、中位数; (D )众数、方差.6.如图,在梯形ABCD 中,已知AD ∥BC ,AD =3,BC=9,AB =6,CD =4,分别以AB 、CD 为直径作圆,这两圆的位置关系是( )(A )内切; (B )外切; (C )相交; (D )外离.二、填空题(本大题共12题,每题4分,满分48分)7. 计算:124=_____.8.已知2()1f x x =-,那么f = .年龄(单位:岁) 13 14 151617 频数(单位:名)1215m 14m -9第3题图第6题图9.根据电影发行方的数据,电影《满江红》截至2023年3月17日,以4 535 000 000元的票房高居春节档前列,数据4 535 000 000用科学记数法表示为________.10.方程组223203x xy y x y ⎧-+=⎨+=⎩的解是 . 11.妈妈煮了4个汤圆,分别是2个花生味和2个芝麻味,小明随意吃两个恰好都是花生味的概率是______.12.已知关于x 的方程022=--m x x 有两个不相等的实数根,那么m 的取值范围是 .13.如图,已知在ABC △中,点D 是边AC 上一点,且2CD AD =.设BA a =uu r r ,BC b =uu u r r,那么向量BD =uuu r.(用xa yb + 的形式表示,其中x 、y 为实数)14.为了了解学生在家做家务情况,某校对部分学生进行抽样调查,并绘制了如图所示的频数分布直方图(每组数据含最小值,不含最大值).如果该校有1500名学生,估计该校平均每周做家务的时间少于2小时的学生人数约是 人.15.某公司产品的销售收入1y 元与销售量x 吨的函数关系记为1()y f x =,销售成本2y 与销售量x 的函数关系记为2()y g x =,两个函数的图像如图所示.当销售收入与销售成本相等时,销售量x 为吨.16.如图,已知⊙O 的内接正方形ABCD ,点F 是 CD 的中点,AF 与边DC 交于点E ,那么EFAE= . 17.如图,抛物线C 1:223y x x =+-与抛物线C 2:2y ax bx c =++组成一个开口向上的“月牙线”,抛物线C 1和抛物线C 2与x 轴有着相同的交点A 、B (点B 在点A 右侧),与y 轴的交点分别为C 、D .如果BD=CD ,那么抛物线C 2的表达式是 .18.如图,在直角坐标系中,已知点A ()8,0、点()0,6B ,A 的半径为5,点C 是A 上的动点,点P 是线段BC 的中点,那么OP 长的取值范围是_________.第13题图第14题图第15题图部分学生平均每周做家务时间的频数分布直方图三、解答题(本大题共7题,满分78分)19.先化简:22141369xx x x-⎛⎫-÷⎪+++⎝⎭,然后从3-、2-、0、2、3中选一个数代入求值.20.求不等式组的365(2)221132x xx x+>-⎧⎪--⎨-≤⎪⎩整数解.21.如图,AD、AE分别是△ABC边BC上的高和中线,已知BC=8,tan B=13,∠C=45°.(1)求AD的长;(2)求sin∠BAE的值.22.小明家的花洒的实景图及其侧面示意图分别如图1、图2所示,花洒安装在离地面高度160厘米的A处,花洒AD的长度为20厘米.(1)已知花洒与墙面所成的角∠BAD=︒120,求当花洒喷射出的水流CD与花洒AD 成︒90的角时,水流喷射到地面的位置点C与墙面的距离.(结果保留根号)(2)某店铺代理销售这种花洒,上个月的销售额为2400元,这个月由于店铺举行促销活动,每个花洒的价格比上个月便宜20元,因此比上个月多卖出8个的同时销售额也上涨了400元,求这个此款花洒的原价是多少元?第22题图1第22题图2 第21题图23. 如图,已知⊙O 是△ABC 的外接圆,联结AO 并延长交边BC 于点D ,联结OC , 且AD OD DC ⋅=2.(1)求证:AC=BC ;(2)当AB=AD 时,过点A 作边BC 的平行线,交⊙O 于点E ,联结OE 交AC 于点F . 请画出相应的图形,并证明:EF BC AE AD ⋅=⋅.24.如图,已知抛物线c bx x y ++=2经过点(2,7)A -,与x轴交于点B 、(5,0)C . (1)求抛物线的顶点M 的坐标;(2)点E 在抛物线的对称轴上,且位于x 轴的上方,将△BCE 沿直线BE 翻折, 如果点C 的对应点F 恰好落在抛物线的对称轴上,求点E 的坐标;(3)点P 在抛物线的对称轴上,点Q 是抛物线上位于第四象限内的点,当△CPQ 为等边三角形时,求直线BQ 的表达式.25.已知:如图1,四边形ABCD 中,AB =AD =CD ,∠B =∠C <90°. (1) 求证:四边形ABCD 是等腰梯形;(2) 边CD 的垂直平分线EF 交CD 于点E ,交对角线AC 于点P ,交射线AB 于点F .① 当AF =AP 时,设AD 长为x ,试用x 表示AC 的长; ② 当BF =DE 时,求ADBC的值.第23题图 第24题图(第25题 备用图2)(第25题 备用图1)参考答案一.选择题1.A .2.D .3.C .4.B .5.C .6.D . 二.填空题7. 2. 8.13+. 9.910535.4⨯. 10.⎩⎨⎧==12y x⎪⎩⎪⎨⎧==2323y x . 11.16. 12.1->m .13.b a3132+.14.720. 15.4. 16.212-. 17.3498942-+=x x y .18.2.57.5OP ≤≤.三、解答题19.解:原式 )2)(2()3(3)2(2-++⋅++-=x x x x x………………(5分)x x -+=23………………(2分),、、,,∵223,020203--≠∴≠-≠+≠+x x x x ………………(1分)当x =0时 原式=0230-+=23 当x =3时 原式=3233-+=6-. ……………(2分)20.解:由)2(563->+x x 得:8<x …………………………(3分)由221132x x ---≤ 得:138x ≥ …………………………(4分) 则不等式组的解集为8813<≤x . …………………………(1分) 不等式组的整数解为x=2、3、4、5、6、7 …………………………(2分)21.解:(1)在△ABC 中 ∵AD 是BC 边上的高 ∴∠ADB =∠ADC =90°.在△ADC 中 ∵∠ADC =90° ∠C =45° ∴DC =AD . ……………(1分)在△ADB 中 ∵∠ADB =90° 31tan =B ∴BD =AD B AD 3tan = ……………(2分)∵BD +DC =BC ∴6283===+BD AD AD AD ,,; ……………(1分)(2)过点E 作EF ⊥AB 垂足为点F ∵AE 是BC 边上的中线 ∴BE =EC =21BC =4 ∵DC EC ED -= ∴2=ED ……………(1分)在△ADB 中 ∵∠ADB =90° ∴10222=+=BD AD AB ……………(1分)在△ADE 中 ∵∠ADE =90° ∴2222=+=DE AD AE ……………(1分)∵AD BE EF AB S ⋅⋅=⋅⋅=2121ABE △ ∴51021028==⋅=AB AD BE EF ……(2分)在△AEF 中 ∵∠EF A =90° ∴55225102sin ===∠AE EF BAE . ……………(1分) 22.解:(1)延长BA 、CD 交于点E由题意得 AB =160 AD =20 ∠DAB =120° ∠B =90° ∠ADE =90°∵∠DAB =∠E +∠ADE ∴∠E =30° …………(2分) 在△ADE 中 ∵∠ADE =90° ∠E =30° ∴AE =2AD =40 …………(1分) △EBC 中 ∠B =90° ∠E =30°∵EB =EA +AB ∴EB =200 ∴3320030tan 200tan =︒⋅=⋅=E BE BC…………(2分) ∴水流喷射到地面的位置点C 与墙面的距离为33200cm.(2)设此款花洒的原价为x 元由题意得82400204002400+=-+xx ……………………(2分) 解得12120,50x x ==- ……………………(1分)经检验12120,50x x ==-是原方程的解 502-=x 不符合题意 舍去 …………(1分) ∴此款花洒的原价为120元. …………(1分) 23. (1)∵AD OD DC ⋅=2 ∴DCADOD DC =又∵CDA ODC ∠=∠ ∴CDA ODC ∽△△ …………(1分) ∴DAC DCO ∠=∠ …………(1分)∵OC OA = ∴DAC OCA ∠=∠ …………(1分) ∴OCA DCO ∠=∠ …………(1分) 过点O 作OM ⊥AC 、ON ⊥BC 垂足分别为点M 、N ∴OM=ON .∴AC=BC. …………(2分)(2)∵AB=AD ∴ADB B ∠=∠ …………(1分)∵∥AE BC ∴ADB OAE ∠=∠ ACB EAF ∠=∠ …………(1分)∵OA=OE ∴E OAE ∠=∠∴E B ∠=∠ …………(2分)∴AEF CBA ∽△△ …………(1分)∴EFABAE BC = ∴EF BC AE AB ⋅=⋅ 又∵AB=AD ∴EF BC AE AD ⋅=⋅. …………(1分)24.(1)∵抛物线c bx x y ++=2经过点(2,7)A - 与x 轴交于点(5,0)C .∴⎩⎨⎧=++=+-0525724c b c b 解得⎩⎨⎧-=-=54c b∴抛物线的表达式为542--=x x y …………(2分)∴顶点M 的坐标为(2 ﹣9) . …………(1分)(2)∵抛物线的表达式为542--=x x y ∴B (-1 0)∴BC =6 且抛物线的对称轴为直线x =2. …………(1分) 设抛物线的对称轴与x 轴交于点G 则G 点的坐标为(2 0) BG =3 由翻折得BF=BC =6.在Rt △BGF 中 由勾股定理 得3322=-=BG BF FG ∴点F 的坐标为(2 33) tan ∠FBG =3=BGFG∴∠FBG =60°.……(1分)由翻折得∠EBG =︒=∠3021FBG 在Rt △EBG 中 330tan 3tan =︒⋅=∠⋅=EBG BG EG .∴点E 的坐标为)32(,. …………(2分)(3)联结CF 联结BQ 交y 轴于点H∵BC=BF ∠FBC =60°∴△FBC 为等边三角形 .∵△FBC △PQC 为等边三角形 ∴CQ=CP BC=FC ∠QCP =∠BCF =60° ∴∠BCQ =∠FCP∴△BCQ ≌△FCP …………(2分) ∴∠QBC =∠PFC . ∵BF=CF FG ⊥BC ∴∠PFC =︒=∠30BFC 21∴∠QBC =30°. …………(1分)在Rt △BOH 中 33331tan =⨯=∠⋅=QBC OB OH ∴点H 坐标为)330(-,.…………(1分) 由设直线BQ 的表达式为y =mx +n (m ≠0) 将B (-1 0)H )330(-,代入 由⎪⎩⎪⎨⎧=-+-=n n m 330 有⎪⎪⎩⎪⎪⎨⎧-=-=3333n m .∴直线BQ 的表达式为3333--=x y . ……………(1分)25.(1)证明:延长BA 、CD 交于点P .……………(1分)∵∠B =∠C ∴PB =PC .∵AB =CD ∴P A =PD ∴∠P AD =∠PDA .∵∠B +∠C +∠P =∠P AD +∠PDA +∠P =180° ∴∠B +∠C =∠P AD +∠PDA 即2∠B =2∠P AD .∴∠B =∠P AD ∴AD ∥BC . ……………(2分) ∵∠B =∠C <90° ∴∠B +∠C ≠180°. ……………(1分) ∴AB 与CD 不平行 ∴四边形ABCD 是梯形. ∵AB =CD ∴梯形ABCD 是等腰梯形. (2) 解: ①联结DP 则DP =CP ∠PDC =∠PCD . ∵AD =CD ∴∠DAC =∠DCA =∠PDC . ∴△CPD ∽△CDA . …………(1分) ∵四边形ABCD 是等腰梯形∴∠BAD =∠ADC ∴∠BAP =∠ADP .∵AF =AP ∴∠AFP =∠APF =∠CPE . ∵DP =CP PE ⊥CD ∴∠DPE =∠CPE =∠AFP .∴DP ∥AF ∴∠APD =∠F AP =∠ADP ∴AP =AD . …………(2分)∵△CPD ∽△CDA ∴CP CDCD AC= 设AC =y 则AP =AD=x CD =x CP =y -x . 有y x xx y -= 即y 2-xy -x 2=0 解得12y x =(负值舍). …………(2分) ∴12AC x +=②延长FE 、AD 交于点G ;过点E 作EN ∥AB 交BC 于点N ;作EH ⊥BC 垂足为H . 记EF 与BC 的交点为M .若点F 在线段AB 上 则点F 为AB 的中点 EF 为等腰梯形ABCD 的中位线. 于是EF ∥BC ∠DEF =∠C <90° 这与EF ⊥CD 不符当点F 在AB 的延长线上时∵BF =DE =12CD =12AB 又∵AD∥BC∴13BM BF AG AF ==. …………(1分)设BM =a AD =x 则AG =3a DG =3a -x . ∵1DG DECM CE== ∴CM =DG =3a -x . ∵EN ∥AB ∴∠ENC =∠ABC =∠C ∴EN =EC =DE =BF . ∴1MN ENBM BF== MN =BM =a CN =2a -x .∵EH⊥BC∴CH=NH=12CN=a-12x cos C=12212a x a xxx--=.…………(1分)∵∠CDG=∠C cos∠CDG=12362xDE xDG a x a x==--…………(1分)∴262x a xa x x-=-整理得x2-10ax+12a2=0解得(5x a=.∵CN=2a-x>0∴(5x a=-…………(1分)∴824123AD xBC a x--====-.…………(1分)。

上海市初三中考数学一模模拟试卷

九年级中考数学(模拟一) 2019-2020年上海市初三中考数学一模模拟试卷解:A、32=9,23=8,故不相等; B、|-3|3=27(-3)3=-27,故不相等; C、(-3)2=9,-32=-9,故不相等; D、(-3)3=-27,-33=-27,故相等,故选:D.利用有理数乘方法则判定即可.本题主要考查了有理数乘方,解题的关键是注意符号.解:14420000=1.442×107,故选:A.根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.本题考查科学记数法-表示较大的数,解答本题的关键是明确科学记数法的表示方法.解:A、5a3-a3=4a3,正确,本选项不符合题意; B、(-a)2oa3=a5,正确,本选项不符合题意; C、(a-b)3o(b-a)2=(a-b)5,正确,本选项不符合题意; D、2mo3n≠6m+n,错误,本选项符合题意;故选:D.根据合并同类项法则,同底数幂的乘法法则等知识求解即可求得答案.本题考查的是合并同类项法则,同底数幂的乘法,需注意区别:同底数幂的乘法:底数不变,指数相加;幂的乘方:底数不变,指数相乘.解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形.故选C.根据轴对称图形与中心对称图形的概念求解.掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.解:A、每月阅读数量的平均数是=56.625,故A错误;B、出现次数最多的是58,众数是58,故B错误;C、由小到大顺序排列数据28,36,42,58,58,70,78,83,中位数是58,故C正确;D、由折线统计图看出每月阅读量超过40天的有6个月,故D错误;故选:C.根据平均数的计算方法,可判断A;根据众数的定义,可判断B;根据中位数的定义,可判断C;根据折线统计图中的数据,可判断D.本题考查的是折线统计图、平均数、众数和中位数.要注意,当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位,关键是根据折线统计图获得有关数据.。

上海市初三中考数学一模模拟试卷【含答案】

2 3 3 3 3 2上海市初三中考数学一模模拟试卷【含答案】一.选择题(共 10 小题)1.在数轴上,与原点的距离是 2 个单位长度的点所表示的数是()A .2B .﹣2C .±2D .2.据统计,我市常住人口为 268.93 万人,用科学记数法表示 268.93 万人为()A .268.93×104 人B .2.6893×107 人C .2.6893×106 人D .0.26893×107 人3.下列运算正确的是()A . += B . 4 - = 4C . 2 ⨯ = 2D .4+ =24.下列 4 个图形中:①圆;②正五边形;③正三角形;④菱形、从中任意取两个图形,都是中心对称图形的概率为( )31 A .B .C .D .4 35.已知直线 y 1=2x+1,y2=-2x+1,则下列说法正确的是()A .两直线互相平行B .两直线互相垂直C .两直线关于 x 轴对称D .两直线关于 y 轴对称6.小明骑自行车到学校上学,若每小时骑 15 千米,可早到 10 分钟,若每小时骑 13 千米,则迟到 5 分钟,设他家到学校的路程为 x 千米,下列方程正确的是( )A .B .C .D .7.若 m >n ,则下列各式中一定成立的是( )A .m ﹣2>n ﹣3B .m ﹣5<n ﹣5C .﹣2m >﹣2nD .3m <4n8.如图,在正方形 A BCD 纸片中,EF 是 B C 的垂直平分线,按以下四种方法折叠纸片,图中不能折出 30°角的是()A .B .C .D .5329.直角三角形的三边为x,x﹣y,x+y且x、y都为正整数,则三角形其中一边长可能为()A.31 B.41 C.51 D.6110.如图,△ABC 中,点D 为边BC 的点,点E、F 分别是边AB、AC 上两点,且EF∥BC,若AE:EB=m,BD:DC=n,则()A.若m>1,n>1,则2S△AEF>S△ABD B.若m>1,n<1,则2S△AEF<S△ABDC.若m<1,n<1,则2S△AEF<S△ABD D.若m<1,n>1,则2S△AEF<S△ABD二.填空题(共 5 小题)11.分解因式:4x2﹣4=.12.已知圆弧的长为10πcm,弧的半径为20cm,则圆弧的度数为.13.如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1 的大小为.15.已知实数m,n 满足m²-6m=n+3,且满足不等式m - 2 ⋅(7 -m) > 0,则n的取值范围。

2024年上海市闵行区中考三模数学试卷含详解

2023学年第二学期初三年级学业质量调研数学试卷(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.4.本次考试不能用计算器.一、选择题:(本大题共6题,每题4分,满分24分)1.下列说法正确的是()A.无限小数都是无理数B.1125-没有立方根C.正数的两个平方根互为相反数D.(13)--没有平方根2.已知3a →=,2b →=,而且b →和a →的方向相反,那么下列结论中正确的是()A.32a b →→= B.23a b →→= C.32a b→→=- D.23a b →→=-3.下列成语所反映的事件中,是确定事件的是()A.十拿九稳B.守株待兔C.水中捞月D.一箭双雕4.方差是刻画数据波动程度的量.对于一组数据1x ,2x ,3x ,…,n x ,可用如下算式计算方差:()()()()2222212315555n s x x x x n ⎡⎤=-+-+-+⋅⋅⋅-⎣⎦,其中“5”是这组数据的()A .最小值 B.平均数 C.中位数 D.众数5.“利用描点法画函数图象,进而探究函数的一些简单性质”是初中阶段研究函数的主要方式,请试着研究函数21y x =,其图象位于()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限6.如图,在矩形ABCD 中,O 为对角线BD 的中点,60ABD ∠=︒.动点E 在线段OB 上,动点F 在线段OD 上,点,E F 同时从点O 出发,分别向终点,B D 运动,且始终保持OE OF =.点E 关于,AD AB 的对称点为12,E E ;点F 关于,BC CD 的对称点为12,F F .在整个过程中,四边形1212E E F F 形状的变化依次是()A.菱形→平行四边形→矩形→平行四边形→菱形B.菱形→正方形→平行四边形→菱形→平行四边形C.平行四边形→矩形→平行四边形→菱形→平行四边形D.平行四边形→菱形→正方形→平行四边形→菱形二、填空题:(本大题共12题,每题4分,满分48分)7.若函数2m y x =-是反比例函数,则m 的值是__.8.为了考察闵行区15000名九年级学生数学知识与能力测试的成绩,从中抽取50本试卷,每本试卷25份,那么样本容量是__.9.如果关于x 的多项式22x x m -+在实数范围内因式分解,那么实数m 的取值范围是________.10.某班共有6名学生干部,其中4名是男生,2名是女生,任意抽一名学生干部去参加一项活动,其中是女生的概率为_____.11.如果二次函数241y x x =-+的图象的一部分是下降的,那么x 的取值范围是__.12.一个多边形的内角和是1080︒,这个多边形的边数是______.13.若点P 到A 上的所有点的距离中,最大距离为8,最小距离为2,那么A 的半径为__.14.如图,在平行四边形ABCD 中,点M 是边CD 中点,点N 是边BC 的中点,设AB a = ,BC b = ,那么MN 可用a ,b表示为_____________.15.中国高铁的飞速发展,已成为中国现代化建设的重要标志.如图是高铁线路在转向处所设计的圆曲线(即圆弧),高铁列车在转弯时的曲线起点为A ,曲线终点为B ,过点A ,B 的两条切线相交于点C ,列车在从A 到B 行驶的过程中转角a 为60︒.若圆曲线的半径 1.5km OA =,则这段圆曲线 AB 的长为________km .16.蜂巢结构精巧,其巢房横截面的形状均为正六边形.如图是部分巢房的横截面图,图中7个全等的正六边形不重叠且无缝隙,将其放在平面直角坐标系中,点P ,Q ,M 均为正六边形的顶点.若点P ,Q 的坐标分别为()23,3-,()0,3-,则点M 的坐标为__.17.如图,ABC 为等腰直角三角形,1906A AB G ∠=︒=,,为ABC 的重心,E 为线段AB 上任意一动点,以CE 为斜边作等腰Rt CDE △(点D 在直线BC 的上方),2G 为Rt CDE △的重心,设12G G 、两点的距离为d ,那么在点E 运动过程中d 的取值范围是_________.18.在平面直角坐标系xOy 中,一个图形上的点都在一边平行于x 轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数()2(2)03y x x =-≤≤的图象(抛物线中的实线部分),它的关联矩形为矩形OABC .若二次函数()21034y x bx c x =++≤≤图象的关联矩形恰好也是矩形OABC ,则b =________.三、解答题:(本大题共7题,满分78分)19.计算:(103833232π++-.20.解方程组:2256012x xy y x y ⎧-+=⎨+=⎩21.如图,一次函数y 1=﹣x ﹣1的图象与x 轴交于点A ,与y 轴交于点B ,与反比例函数2k y x=图象的一个交点为M (﹣2,m ).(1)求反比例函数的解析式;(2)求点B 到直线OM 的距离.22.如图,某校的饮水机有温水、开水两个按钮,温水和开水共用一个出水口.温水的温度为30℃,流速为20ml /s ;开水的温度为100℃,流速为15ml /s .某学生先接了一会儿温水,又接了一会儿开水,得到一杯280ml 温度为60℃的水(不计热损失),求该学生分别接温水和开水的时间.23.如图,在梯形ABCD 中,AD //BC ,AC 与BD 相交于点O ,点E 在线段OB 上,AE 的延长线与BC 相交于点F ,OD 2=OB ·OE .(1)求证:四边形AFCD 是平行四边形;(2)如果BC =BD ,AE ·AF =AD ·BF ,求证:△ABE ∽△ACD .24.蔬菜大棚是一种具有出色的保温性能的框架覆膜结构,它出现使得人们可以吃到反季节蔬菜.一般蔬菜大棚使用竹结构或者钢结构的骨架,上面覆上一层或多层保温塑料膜,这样就形成了一个温室空间,如图,某个温室大棚的横截面可以看作矩形ABCD 和抛物线AED 构成,其中E 点为抛物线的拱顶且高4m ,3m AB =,4m BC =,取BC 中点O ,过点O 作线段BC 的垂直平分线OE 交抛物线AED 于点E ,若以O 点为原点,BC 所在直线为x 轴,OE 为y 轴建立如图所示平面直角坐标系.解决下列问题:(1)如图,求抛物线的解析式;(2)如图,为了保证蔬菜大棚的通风性,该大棚要安装两个正方形孔的排气装置LFGT ,SMNR ,若0.75m FL NR ==,求两个正方形装置的间距GM 的长;(3)如图,在某一时刻,太阳光线(太阳光线为平行线)透过A 点恰好照射到C 点,此时大棚截面的阴影为,求BK 的长.25.如图,已知在ABC 中,射线AM BC ∥,P 是边BC 上一动点,APD B ∠=∠,PD 交射线AM 于点D ,连接CD .4AB =,6BC =,=60B ∠︒.(1)求证:2AP AD BP =⋅;(2)如果以AD 为半径的圆A 与以BP 为半径的圆B 相切,求线段BP 的长度;(3)将ACD 绕点A 旋转,如果点D 恰好与点B 重合,点C 落在点E 的位置上,求此时BEP ∠的余切值.2023学年第二学期初三年级学业质量调研数学试卷(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分)1.下列说法正确的是()A.无限小数都是无理数B.1125-没有立方根C.正数的两个平方根互为相反数D.(13)--没有平方根【答案】C【分析】根据无理数、立方根、平方根的定义解答即可.【详解】A 、无限循环小数是有理数,故不符合题意;B 、1125-有立方根是15-,故不符合题意;C 、正数的两个平方根互为相反数,正确,故符合题意;D 、﹣(﹣13)=13有平方根,故不符合题意,故选:C .【点睛】本题考查了无理数、立方根、平方根,掌握无理数、立方根、平方根的定义是解题的关键.2.已知3a →=,2b →=,而且b →和a →的方向相反,那么下列结论中正确的是()A.32a b→→= B.23a b →→= C.32a b →→=- D.23a b→→=-【答案】D 【分析】根据3,2a b == ,而且b 和a 的方向相反,可得两者的关系,即可求解.【详解】∵3,2a b == ,而且b 和a 的方向相反∴32a b =- 故选D.【点睛】本题考查的是向量,熟练掌握向量的定义是解题的关键.3.下列成语所反映的事件中,是确定事件的是()A.十拿九稳B.守株待兔C.水中捞月D.一箭双雕【答案】C【分析】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.根据必然事件、不可能事件、随机事件的概念进行解答即可.【详解】解:A.十拿九稳是随机事件,不符合题意;B.守株待兔是随机事件,不符合题意;C.水中捞月是不可能事件,是确定事件,符合题意;D.一箭双雕是随机事件,不符合题意;故选:C .4.方差是刻画数据波动程度的量.对于一组数据1x ,2x ,3x ,…,n x ,可用如下算式计算方差:()()()()2222212315555n s x x x x n ⎡⎤=-+-+-+⋅⋅⋅-⎣⎦,其中“5”是这组数据的()A.最小值B.平均数C.中位数D.众数【答案】B 【分析】根据方差公式的定义即可求解.【详解】方差()()()()2222212315555n s x x x x n ⎡⎤=-+-+-+⋅⋅⋅-⎣⎦中“5”是这组数据的平均数.故选B .【点睛】此题主要考查平均数与方差的关系,解题的关键是熟知方差公式的性质.5.“利用描点法画函数图象,进而探究函数的一些简单性质”是初中阶段研究函数的主要方式,请试着研究函数21y x =,其图象位于()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限【答案】A【分析】根据x 的取值,判断y 的范围即可求解.【详解】解:当0x >时,0y >,此时点在第一象限,当0x <时,0y >,此时点在第二象限,故选:A .【点睛】本题主要考查函数的图像、描点法等知识点,掌握分类讨论思想是解答本题的关键.6.如图,在矩形ABCD 中,O 为对角线BD 的中点,60ABD ∠=︒.动点E 在线段OB 上,动点F 在线段OD 上,点,E F 同时从点O 出发,分别向终点,B D 运动,且始终保持OE OF =.点E 关于,AD AB 的对称点为12,E E ;点F 关于,BC CD 的对称点为12,F F .在整个过程中,四边形1212E E F F 形状的变化依次是()A.菱形→平行四边形→矩形→平行四边形→菱形B.菱形→正方形→平行四边形→菱形→平行四边形C.平行四边形→矩形→平行四边形→菱形→平行四边形D.平行四边形→菱形→正方形→平行四边形→菱形【答案】A【分析】根据题意,分别证明四边形1212E E F F 是菱形,平行四边形,矩形,即可求解.【详解】∵四边形ABCD 是矩形,∴AB CD ∥,90BAD ABC ∠=∠=︒,∴60BDC ABD ∠=∠=︒,906030ADB CBD ∠=∠=︒-︒=︒,∵OE OF =、OB OD =,∴DF EB=∵对称,∴21DF DF BF BF ==,,21,BE BE DE DE ==∴1221E F E F =∵对称,∴260F DC CDF ∠=∠=︒,130EDA E DA ∠=∠=︒∴160E DB ∠=︒,同理160F BD ∠=︒,∴11DE BF ∥∴1221E F E F ∥∴四边形1212E E F F 是平行四边形,如图所示,当,,E F O 三点重合时,DO BO =,∴1212DE DF AE AE ===即1212E E EF =∴四边形1212E E F F 是菱形,如图所示,当,E F 分别为,OD OB 的中点时,设4DB =,则21DF DF ==,13DE DE ==,在Rt △ABD 中,2,3AB AD ==,连接AE ,AO ,∵602ABO BO AB ,∠=︒==,∴ABO 是等边三角形,∵E 为OB 中点,∴AE OB ⊥,1BE =,∴22213AE =-,根据对称性可得13AE AE ==,∴2221112,9,3AD DE AE ===,∴22211AD AE DE =+,∴1DE A 是直角三角形,且190E ∠=︒,∴四边形1212E E F F 是矩形,当,F E 分别与,D B 重合时,11,BE D BDF 都是等边三角形,则四边形1212E E F F 是菱形∴在整个过程中,四边形1212E E F F 形状的变化依次是菱形→平行四边形→矩形→平行四边形→菱形,故选:A .【点睛】本题考查了菱形的性质与判定,平行四边形的性质与判定,矩形的性质与判定,勾股定理与勾股定理的逆定理,轴对称的性质,含30度角的直角三角形的性质,熟练掌握以上知识是解题的关键.二、填空题:(本大题共12题,每题4分,满分48分)7.若函数2m y x =-是反比例函数,则m 的值是__.【答案】1-【分析】本题考查反比例函数定义.根据反比例函数的定义:()10-=≠y kxk ,列式计算即可.【详解】解:∵函数2m y x =-是反比例函数,∴1m =-,故答案为:1-8.为了考察闵行区15000名九年级学生数学知识与能力测试的成绩,从中抽取50本试卷,每本试卷25份,那么样本容量是__.【答案】1250【分析】本题主要考查样本容量,掌握样本容量的概念是解题的关键.根据抽取的试卷的本数⨯每本试卷的份数即可得出答案.【详解】50251250⨯=∴样本容量是1250.故答案为:1250.9.如果关于x 的多项式22x x m -+在实数范围内因式分解,那么实数m 的取值范围是________.【答案】1m £【分析】原多项式在实数范围内能因式分解,说明方程22x x m -+=0有实数根,即转换为24b ac ∆=-不小于0,再代入求值即可.【详解】由题意知:∵关于x 的多项式22x x m -+在实数范围内因式分解,∴22x x m -+=0有实数根,∴a=1,b=-2,c=m ,则224(2)41440b ac m m ∆=-=--⨯⨯=-≥,解得:1m £;故答案为:1m £.【点睛】本题考查因式分解,其实是考查一元二次方程根与判别式的关系,能够转换思维解题是关键.10.某班共有6名学生干部,其中4名是男生,2名是女生,任意抽一名学生干部去参加一项活动,其中是女生的概率为_____.【答案】13【详解】分析:根据概率公式用女生人数除以总人数即可得结论.详解:所有等可能结果共有6种,其中女生有2种,∴恰好是女生的概率为2163=.故答案为13.点睛:本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.11.如果二次函数241y x x =-+的图象的一部分是下降的,那么x 的取值范围是__.【答案】2x ≤【分析】本题主要考查二次函数的性质,掌握二次函数的性质是解题的关键.根据函数解析式可得抛物线开口向上,则当x 在对称轴左侧时,函数图象下降,所以求出函数的对称轴即可求解.【详解】解: ()224123y x x x =-+=--,又抛物线开口向上,∴当2x ≤时,y 随x 的增大而减小,图像下降;当2x ≥时,y 随x 的增大而增大,图像上升;二次函数241y x x =-+的图像的一部分是下降的,∴2x ≤,故答案为:2x ≤.12.一个多边形的内角和是1080︒,这个多边形的边数是______.【答案】8【分析】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键;因此此题可根据多边形内角和公式()2180n -⨯︒进行求解即可.【详解】解:由题意得:()21801080n -⨯︒=︒,∴8n =;故答案为8.13.若点P 到A 上的所有点的距离中,最大距离为8,最小距离为2,那么A 的半径为__.【答案】3或者5【分析】本题考查了点与圆的位置关系,分点P 在A 外和A 内两种情况讨论,当点P 在A 外时,最大距离与最小距离之差等于直径;当点P 在A 内时,最大距离与最小距离之和等于直径,即可得.【详解】解:点P 在A 外时,O 外一点P 到O 上所有的点的距离中,最大距离是8,最小距离是2,O ∴ 的半径长等于8232-=;点P 在A 内时,O 内一点P 到O 上所有的点的距离中,最大距离是8,最小距离是2,O ∴ 的半径长等于8252+=,故答案为:3或者5.14.如图,在平行四边形ABCD 中,点M 是边CD 中点,点N 是边BC 的中点,设AB a = ,BC b = ,那么MN 可用a ,b表示为_____________.【答案】1122a b - 【分析】根据平行四边形的性质和线段的中点,可用a 表示出MC ,用b 表示出CN ,再根据MN MC CN =+ ,即可用a 和b 表示出MN .【详解】∵BC b = ,∴CB b =-uu r r .∵四边形ABCD 是平行四边形,∴CD AB a ==,∵点M 是边CD 中点,点N 是边BC 的中点,∴1122MC AB a == ,1122CN CB b ==- ,∴1111()2222MN MC CN a a b =+=+-=- .故答案为:1122a b - .【点睛】本题考查平行四边形的性质,线段的中点和向量的线性运算.利用数形结合的思想是解答本题的关键.15.中国高铁的飞速发展,已成为中国现代化建设的重要标志.如图是高铁线路在转向处所设计的圆曲线(即圆弧),高铁列车在转弯时的曲线起点为A ,曲线终点为B ,过点A ,B 的两条切线相交于点C ,列车在从A 到B 行驶的过程中转角a 为60︒.若圆曲线的半径 1.5km OA =,则这段圆曲线 AB 的长为________km .【答案】2π##12π【分析】本题考查了切线的性质,求弧长,根据题意得出60AOB ∠=︒,将已知数据代入弧长公式,即可求解.【详解】解:∵过点A ,B 的两条切线相交于点C ,列车在从A 到B 行驶的过程中转角a 为60︒.∴90CAO CBO ∠=∠=︒,∴18060AOB ACB α∠=︒-∠==︒,∴圆曲线 AB 的长为()603ππ18022km ⨯⨯=故答案为:π2.16.蜂巢结构精巧,其巢房横截面的形状均为正六边形.如图是部分巢房的横截面图,图中7个全等的正六边形不重叠且无缝隙,将其放在平面直角坐标系中,点P ,Q ,M 均为正六边形的顶点.若点P ,Q 的坐标分别为()-,()0,3-,则点M 的坐标为__.【答案】()32-,【分析】设中间正六边形的中心为D ,连接DB .判断出OC ,CM 的长,可得结论.本题考查正多边形与圆,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.【详解】解:设中间正六边形的中心为D ,连接DB .点P ,Q 的坐标分别为(23,3)-,(0,3)-,图中是7个全等的正六边形,3AB BC ∴==3OQ =,3OA OB ∴==33OC ∴=,2DQ DB OD == ,1OD ∴=,2QD DB CM ===,()332M ∴-,,故答案为:()332-,17.如图,ABC 为等腰直角三角形,1906A AB G ∠=︒=,,为ABC 的重心,E 为线段AB 上任意一动点,以CE 为斜边作等腰Rt CDE △(点D 在直线BC 的上方),2G 为Rt CDE △的重心,设12G G 、两点的距离为d ,那么在点E 运动过程中d 的取值范围是_________.【答案】010d ≤≤【分析】当点E 与点B 重合时,0d =,当点E 与点A 重合时,d 的值最大,利用重心的性质以及勾股定理求得125CG =,210CG =12CG G BCA ∽△△,推出12CG G △是等腰直角三角形,据此求解即可.【详解】解:当点E 与点B 重合时,0d =,当点E 与点A 重合时,d 的值最大,如图,点FH 分别为BC AC 、的中点,∵ABC 为等腰直角三角形,1906A AB G ∠=︒=,,为ABC的重心,∴221166222AF BF FC BC ====+,∴1123G F AF ==22115CG CF G F =+=,同理11322DH AH HC AC AB =====,∴2113G H DH ==,222210CG CH G H =+=1245BAC G CG ∠=∠=︒,2262AC BC ==,21102225CG CG ==,即21CG AC CG BC =,∴12CG G BCA ∽△△,∴12CG G △是等腰直角三角形,∴12210G G CG ==∴010d ≤≤故答案为:010d ≤≤【点睛】本题考查了相似三角形的判定和性质,重心的性质,勾股定理,等腰直角三角形的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件.18.在平面直角坐标系xOy 中,一个图形上的点都在一边平行于x 轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数()2(2)03y x x =-≤≤的图象(抛物线中的实线部分),它的关联矩形为矩形OABC .若二次函数()21034y x bx c x =++≤≤图象的关联矩形恰好也是矩形OABC ,则b =________.【答案】712或2512-【分析】根据题意求得点()3,0A ,()3,4B ,()0,4C ,根据题意分两种情况,待定系数法求解析式即可求解.【详解】由()2(2)03y x x =-≤≤,当0x =时,4y =,∴()0,4C ,∵()3,0A ,四边形ABCO 是矩形,∴()3,4B ,①当抛物线经过O B ,时,将点()0,0,()3,4B 代入()21034y x bx c x =++≤≤,∴019344c b c =⎧⎪⎨⨯++=⎪⎩解得:712b =②当抛物线经过点,A C 时,将点()3,0A ,()0,4C 代入()21034y x bx c x =++≤≤,∴419304c b c =⎧⎪⎨⨯++=⎪⎩解得:2512b =-综上所述,712b =或2512b =-,故答案为:712或2512-.【点睛】本题考查了待定系数法求抛物线解析式,理解新定义,最小矩形的限制条件是解题的关键.三、解答题:(本大题共7题,满分78分)19.计算:(10383π++.【答案】4-【分析】本题考查了实数的运算,熟练掌握运算法则是解题的关键;原式第一项利用立方根的定义化简,第二项利用绝对值的代数意义化简,第三项分母有理化,最后一项利用零指数幂法则计算即可得到结果.【详解】(10383π+-+2321=+-+4=-.20.解方程组:2256012x xy yx y⎧-+=⎨+=⎩【答案】1184xy=⎧⎨=⎩或2293xy=⎧⎨=⎩【分析】利用因式分解法求22560x xy y-+=,得到20x y-=或30x y-=,然后得到两个二元一次方程组,分别求出方程组的解即可.【详解】解:由(1)得20x y-=或30x y-=,2012x yx y-=⎧⎨+=⎩或3012x yx y-=⎧⎨+=⎩,解方程组得:1184xy=⎧⎨=⎩,2293xy=⎧⎨=⎩,则原方程组的解为1184xy=⎧⎨=⎩和2293xy=⎧⎨=⎩.【点睛】本题主要考查解二元二次方程组,解此题的关键在于利用因式分解法将第一个方程求解,然后得到新的方程组.也可以利用代入消元法进行求解.21.如图,一次函数y1=﹣x﹣1的图象与x轴交于点A,与y轴交于点B,与反比例函数2kyx=图象的一个交点为M(﹣2,m).(1)求反比例函数的解析式;(2)求点B到直线OM的距离.【答案】(1)22y x =-(2255.【分析】(1)根据一次函数解析式求出M 点的坐标,再把M 点的坐标代入反比例函数解析式即可;(2)设点B 到直线OM 的距离为h ,过M 点作MC ⊥y 轴,垂足为C ,根据一次函数解析式表示出B 点坐标,利用△OMB 的面积=12×BO×MC 算出面积,利用勾股定理算出MO 的长,再次利用三角形的面积公式可得12OM•h ,根据前面算的三角形面积可算出h 的值.【详解】解:(1)∵一次函数y 1=﹣x ﹣1过M (﹣2,m ),∴m=1.∴M (﹣2,1).把M (﹣2,1)代入2k y x=得:k=﹣2.∴反比列函数为22y x =-.(2)设点B 到直线OM 的距离为h ,过M 点作MC ⊥y 轴,垂足为C .∵一次函数y 1=﹣x ﹣1与y 轴交于点B ,∴点B 的坐标是(0,﹣1).∴OMB 1S 1212∆=⨯⨯=.在Rt △OMC 中,2222OC +CM 1+25==,∵OMB 15S OM h h=122∆=⋅⋅=,∴2h=555=∴点B 到直线OM 255.22.如图,某校的饮水机有温水、开水两个按钮,温水和开水共用一个出水口.温水的温度为30℃,流速为20ml /s ;开水的温度为100℃,流速为15ml /s .某学生先接了一会儿温水,又接了一会儿开水,得到一杯280ml 温度为60℃的水(不计热损失),求该学生分别接温水和开水的时间.【答案】该学生接温水的时间为8s ,接开水的时间为8s【分析】本题考查一元一次方程的实际应用,设该学生接温水的时间为s x ,则接温水20ml x ,开水()28020ml x -,由物理常识的公式可得方程,解方程即可.【详解】解:设该学生接温水的时间为s x ,根据题意可得:()()()2060302802010060x x ⨯-=-⨯-,解得8x =,∴208160ml ⨯=(),∵280160120ml -=(),∴120158s ÷=(),∴该学生接温水的时间为8s ,接开水的时间为8s .23.如图,在梯形ABCD 中,AD //BC ,AC 与BD 相交于点O ,点E 在线段OB 上,AE 的延长线与BC 相交于点F ,OD 2=OB ·OE .(1)求证:四边形AFCD 是平行四边形;(2)如果BC =BD ,AE ·AF =AD ·BF ,求证:△ABE ∽△ACD .【答案】(1)证明见解析;(2)证明见解析【分析】(1)由题意,得到OE OD OD OB =,然后由AD ∥BC ,得到OA OD OC OB =,则OA OE OC OD =,即可得到AF//CD ,即可得到结论;(2)先证明∠AED=∠BCD ,得到∠AEB=∠ADC ,然后证明得到AE AD BE DC =,即可得到△ABE ∽△ADC.【详解】证明:(1)∵OD 2=OE ·OB ,∴OE OD OD OB=.∵AD//BC ,∴OA OD OC OB =.∴OA OE OC OD=.∴AF//CD .∴四边形AFCD 是平行四边形.(2)∵AF//CD ,∴∠AED=∠BDC ,BE BF BD BC =.∵BC=BD ,∴BE=BF ,∠BDC=∠BCD∴∠AED=∠BCD .∵∠AEB=180°-∠AED ,∠ADC=180°-∠BCD ,∴∠AEB=∠ADC .∵AE·AF=AD·BF ,∴AE AD BF AF=.∵四边形AFCD 是平行四边形,∴AF=CD .∴AE AD BE DC=.∴△ABE ∽△ADC .【点睛】本题考查了相似三角形的判定和性质,平行线分线段成比例,平行四边形的判定和性质,以及平行线的性质,解题的关键是熟练掌握相似三角形的判定方法,正确找到证明三角形相似的条件.24.蔬菜大棚是一种具有出色的保温性能的框架覆膜结构,它出现使得人们可以吃到反季节蔬菜.一般蔬菜大棚使用竹结构或者钢结构的骨架,上面覆上一层或多层保温塑料膜,这样就形成了一个温室空间,如图,某个温室大棚的横截面可以看作矩形ABCD 和抛物线AED 构成,其中E 点为抛物线的拱顶且高4m ,3m AB =,4m BC =,取BC 中点O ,过点O 作线段BC 的垂直平分线OE 交抛物线AED 于点E ,若以O 点为原点,BC 所在直线为x 轴,OE 为y 轴建立如图所示平面直角坐标系.解决下列问题:(1)如图,求抛物线的解析式;(2)如图,为了保证蔬菜大棚的通风性,该大棚要安装两个正方形孔的排气装置LFGT ,SMNR ,若0.75m FL NR ==,求两个正方形装置的间距GM 的长;(3)如图,在某一时刻,太阳光线(太阳光线为平行线)透过A 点恰好照射到C 点,此时大棚截面的阴影为,求BK 的长.【答案】(1)2144y x =-+;(2)0.5m ;(3)97m 12【分析】(1)根据题意得到E 的坐标,设函数解析式为24y ax =+,求出点A 坐标,待定系数法求出函数解析式即可;(2)根据正方形性质得到 3.75m HL HF FL =+=,求出 3.75y =时,对应的自变量的值,得到FN 的长,再减去两个正方形的边长即可得解;(3)设直线AC 的解析式为y kx b =+,根据题意求出直线AC 的解析式,进而设出过点的光线解析式为34y x m =-+,利用光线与抛物线相切,求出m 的值,进而求出点K 坐标,即可得出BK 的长.【小问1详解】解:由题知,E 点为抛物线顶点坐标为()0,4,设抛物线的解析式为24y ax =+,四边形ABCD 为矩形,OE 为BC 的中垂线,4m BC =,∴4m AD BC ==,2m OB =,3m AB =,∴()2,3A -,将其代入24y ax =+中,有344a =+,14a ∴=-,∴抛物线的解析式为2144y x =-+;【小问2详解】解: 四边形LFGT 和SMNR 为正方形,0.75m FL NR ==,∴0.75m MN FG FL NR ====,延长LF 交BC 于点H ,延长RN 交BC 于点J ,易知四边形FHJN 和ABFH 为矩形,∴3m FH AB ==,FN HJ =,3.75m HL HF FL ∴=+=, 2144y x =-+,当 3.75y =时,214 3.754x -+=,解得1x =±,()1,0H ∴-,()1,0J ,2m FN HJ ∴==,0.5m GM FN FG MN ∴=--=;【小问3详解】解: OE 为BC 的中垂线,4m BC =,2m OB OC ==,∴()2,0B -,()2,0C ,设直线AC 的解析式为y kx b =+,则2023k b k b +=⎧⎨-+=⎩,解得3432k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AC 的解析式为3342y x =-+, 太阳光为平行线,设过点K 且平行于直线AC 的解析式为34y x m =-+,由题意得34y x m =-+与抛物线相切,即只有一个交点,联立234144y x m y x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,整理得234160x x m -+-=,则()()224344160b ac m -=---=,解得7316m =,∴373416y x =-+,当0y =时,7312x =,73,012K ⎛⎫∴ ⎪⎝⎭,()2,0B - ,73972m 1212BK ∴=+=.【点睛】本题考查二次函数的实际应用,坐标与图形,中垂线性质,待定系数法求出函数解析式,正方形的性质,矩形的性质和判定.读懂题意,正确的求出二次函数解析式,利用数形结合的思想进行求解,是解题的关键.25.如图,已知在ABC 中,射线AM BC ∥,P 是边BC 上一动点,APD B ∠=∠,PD 交射线AM 于点D ,连接CD .4AB =,6BC =,=60B ∠︒.(1)求证:2AP AD BP =⋅;(2)如果以AD 为半径的圆A 与以BP 为半径的圆B 相切,求线段BP 的长度;(3)将ACD 绕点A 旋转,如果点D 恰好与点B 重合,点C 落在点E 的位置上,求此时BEP ∠的余切值.【答案】(1)证明见解析(2)2(3)【分析】(1)先由平行线证明APB DAP ∠=∠,再由已知条件APD B ∠=∠,证明ABP DPA ∽,得出对应边成比例AP BP DA AP=,即可得出结论;(2)设BP x =,作AH BC ⊥于H ,,先根据勾股定理求出AH ,再由勾股定理得出222AP PH AH =+,由两圆外切时,AB AD BP =±,得出方程,解方程即可;(3)作PG AB ⊥于G ;先根据题意得出2416 4.x x AD AB x-+===,解方程求出BP ,再证明ABP 为等边三角形求出PG ,然后证明四边形ADCH 为矩形得出BE CD AH ===,90ABE ADC ∠=∠=︒,求出BF ,即可求BEP ∠的余切值,【小问1详解】AM BC ∥,APB DAP =∴∠∠,APD B ∠=∠,ABP DPA ∴∽△△,AP BP DA AP∴=,∴2AP AD BP =⋅;【小问2详解】设BP x =,作AH BC ⊥于H ,如图所示∶=60B ∠︒,4AB =,30BAH ∴∠=︒,122BH AB ∴==,根据勾股定理得∶AH ==()(2222222416AP PH AH x x x =+=-+=-+,22416AP x x AD BP x-+∴==,两圆相切时,AB AD BP =±,即24164x x x x-+=±,解得:2x =,∴BP 的长度为2;【小问3详解】根据题意得:2416 4.x x AD AB x-+===,解得:4x =,4BP ∴=,60ABP ∠=︒ ,4AB BP ==ABP ∴ 为等边三角形,4AD AB ==,4CH BC BH =-=,AD CH ∥,90AHC ∠=︒,∴四边形ADCH 为矩形,BE CD AH ∴===,90ABE ADC ∠=∠=︒,作PG AB ⊥于G ,如图所示:则PG BE ∥,PG =PG BE ∴=,∴112BF FG BG ===,cot BEEBP BF ∴∠==.【点睛】本题是相似形综合题,考查了相似三角形的判定与性质、勾股定理、两圆外切的条件、等边三角形的判定与性质、三角函数等知识;通过作辅助线运用勾股定理和证明等边三角形、矩形是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20XX年上海中考数学预测卷
考生注意:
1.本试卷含三个大题,共25题;
2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一
律无效;
3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或
计算的主要步骤.

一、选择题:(本大题共6题,每题4分,满分24分)
【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸
的相应位置上】
1.下列各式中,正确的是

(A)1266aaa; (B)1644aaa;

(C)2332)()(aa; (D)22)()(abba.
2.下列根式中,属于最简二次根式的是

(A)x1; (B)yx2; (C)x8; (D)22yx.

3.如果反比例函数xky的图像经过点(-1,2),那么这个反比例函数的图像一定经过点
(A)(21,2); (B)(21,2); (C)(2,-1); (D)(-2,-1).
4.为了奖励学习有进步的学生,老师请小杰帮忙到文具店买了20本练习簿和10支水笔,
共花了36元.已知每支水笔的价格比每本练习簿的价格贵1.2元,如果设练习簿每本为x
元,水笔每支为y元,那么下面列出的方程组中正确的是

(A);361020,2.1yxyx (B);361020,2.1yxxy

(C);362010,2.1yxyx (D).362010,2.1yxxy
5.已知在△ABC中,点D、点E分别在边AB和边AC上,且AD=2DB,AE=2EC,aAB,
bAC,用a
、b表示向量DE正确的是

(A)ba2121; (B)ab2121; (C)ba3232; (D)ab3232.
6.下列说法中,正确的是
(A)每个命题都有逆命题; (B)每个定理都有逆定理;
(C)真命题的逆命题也是真命题; (D)假命题的逆命题也是假命题.

二、填空题:(本大题共12题,每题4分,满分48分)
【请将结果直接填入答题纸的相应位置上】
7.2)3(的平方根等于 ▲ .
8.函数12xy的定义域是 ▲ .
9.方程2132xx的解是 ▲ .
10.如果关于x的方程xax2的一个根为3,那么a= ▲ .
11.已知关于x的方程22mxx有两个相等的实数根,那么m的值是 ▲ .
12.在一次函数mxmy2)4(中,如果y的值随自变量x的值增大而减小,那么这个一
次函数的图像一定不经过第 ▲ 象限.
13.请写出一个图像的对称轴为y轴,且经过点(2,-4)的二次函数解析式,这个二次函数
的解析式可以是 ▲ .
14.如果从数字1、2、3、4中,任意取出两个数字组成一个两位数,那么这个两位数是奇
数的概率是 ▲ .
15.正十边形的中心角等于 ▲ 度.
16.已知⊙O的直径为6cm,点A在直线l上,且AO=3cm,那么直线l与⊙O的位置关系
是 ▲ .
17.已知在等腰梯形ABCD中,AD∥BC,AB=AD=CD,AC⊥AB,那么Bcot= ▲ .
18.已知在三角形纸片ABC中,∠C=90度,BC=1,AC=2,如果将这张三角形纸片折叠,
使点A与点B重合,折痕交AC于点M,那么AM= ▲ .

三、解答题:(本大题共7题,满分78分)
19.(本题满分10分)

求不等式组37225,64xxxx的整数解.

20.(本题满分10分)
先化简,再求值:xxxxxxxx2321212222,其中2x.

21.(本题满分10分)
如图,已知AB是⊙O的直径,CD⊥AB,垂足为点E,如果
BE=OE,AB=10cm,求△ACD的周长.
22.(本题满分10分)
O

C

D
A B
E

(第21题图)
在20XX年上海世博会举行期间,某初级中学组织全校学生参观世博园,亲身体验“城
市让生活更美好”的世博理念.为了解学生就学校统一组织参观过的5个场馆的最喜爱程
度,随机抽取该校部分学生进行问卷调查(每人应选且只能选一个场馆),数据整理后,绘
制成如下的统计图:

请根据统计图提供的信息回答下列问题:
(1)本次随机抽样调查的样本容量是 ;
(2)本次随机抽样调查的统计数据中,男生最喜爱场馆的中位数是 名;
(3)估计该校女生最喜爱泰国馆的约占全校学生数的 %(保留三个有效数
字);
(4)如果该校共有2000名学生,而且六、七、八年级学生人数总和比九年级学生人数
的3倍还多200名,试通过计算估计该校九年级学生最喜爱中国馆的人数约为多少名?

23.(本题满分12分,其中每小题各6分)
已知:如图,在△ABC中,M是边AB的中点,D是边BC延长线上一点,BCDC21,
DN∥CM,交边AC于点N.
(1)求证:MN∥BC;
(2)当∠ACB为何值时,四边形BDNM是等腰梯形?并证明你的猜想. 24.(本题满分12分,其中第(1)小题3分,第(2)小题4分,第(3)小题5分) 如图,已知在直角坐标平面内,点A的坐标为(3,0),第一象限内的点P在直线y=2x上,∠PAO=45度. (1)求点P的坐标; (2)如果二次函数的图像经过P、O、A三点,求这个二次函数的解析式,并写出它的图像的顶点坐标M; 20 10 30 15 30 38 64 42 6 45 男生 女生 学生数(名) 最喜爱的场馆 航空馆 汽车馆 泰国馆 中国馆 震旦馆 (第22题图) A B M
N

(第23题图)
D
C
(3)如果将第(2)小题中的二次函数的图像向上或向下平移,使它的顶点落在直线
y=2x上的点Q处,求△APM与△APQ的面积之比.

25.(本题满分14分,其中第(1)小题3分,第(2)小题5分,第(3)小题6分)
如图,已知在△ABC中,AB=4,BC=2,以点B为圆心,线段BC长为半径的弧交边AC
于点D,且∠DBC=∠BAC,P是边BC延长线上一点,过点P作PQ⊥BP,交线段BD的延
长线于点Q.设CP=x,DQ=y.
(1)求CD的长;
(2)求y关于x的函数解析式,并写出它的定义域;
(3)当∠DAQ=2∠BAC时,求CP的值.

x
y
O
1 2 3

1
2
3

(第24题图)

A
B C
D
(第25题图)

Q

P

相关文档
最新文档