(完整版)重积分习题及答案

合集下载

重积分习题三

重积分习题三

重积分习题三1、试求函数f(x,y)=xy2在区域D:0≤x≤1,0≤y≤1上的平均值。

2、计算二次积分3、计算二次积分4、计算二次积分5、计算二次积分6、计算二次积分7、计算二次积分8、计算二次积分9、计算二次积分10、计算二次积分11、计算二次积分12、计算二重积分其中D:|x|≤2,|y|≤1.13、计算二重积分其中D:0≤x≤1,0≤y≤2.14、计算二重积分其中D:0≤x≤a0≤y≤b.15、计算二重积分其中D:0≤x≤1,0≤y≤2.16、计算二重积分其中D:0≤x≤1,0≤y≤1.17、计算二重积分其中D:0≤x≤1,0≤y≤1.18、计算二重积分其中D:-1≤x≤1,0≤y≤2.19、计算二重积分其中D:0≤x≤2,-1≤y≤1.20、计算二重积分其中D:0≤x≤π,0≤y≤.21、计算二重积分其中D:-1≤x≤3,0≤y≤2.22、计算二重积分其中D:0≤x≤1,0≤y≤4.23、计算二重积分其中24、计算二重积分其中D:|x|≤π,|y|≤1.25、计算二重积分其中D:|x|≤3,|y|≤1.26、计算二重积分其中D:|x|≤1,0≤y≤1.27、计算二重积分其中D是以O(0,0)A(1,1)和B(0,1)为顶点的三角形区域。

28、计算二重积分其中D:0≤x≤1,-1≤y≤0.29、计算二重积分其中D:0≤y≤sin x,0≤x≤π.30、计算二重积分其中D是由曲线y=x2,直线y=0,x=2所围成区域。

31、计算二重积分其中D为由y=x,y=2x,x=4所围成的区域。

32、计算二重积分其中D:x≤y≤x,1≤x≤2.33、计算二重积分其中D是由直线x=0,y=π和y=x围成的区域。

34、计算二重积分其中D是由直线y=x,y=x+1,y=1及y=3所围成的区域。

35、计算二重积分其中36、计算二重积分其中D:-1≤x≤1,1≤y≤1.37、计算二重积分其中D:|x|≤π,0≤y≤1.38、计算二重积分其中D为由y=x,x=0,y=1所围成的区域。

重积分作业参考解答Word版

重积分作业参考解答Word版

第七章 重积分作业参考解答习题7.1 4.(1)解答:在积分区域D 内,12x y ≤+≤,)ln()][ln(,1)ln(2y x y x y x +<+<+∴,故⎰⎰+Dd y x σ)ln(>⎰⎰+Dd y x σ2)][ln( 5.(1) 解答:43422ππ≤+≤y x, 1)sin(2222≤+≤∴y x ,圆环积分区域的面积为2443222πππ=-=S故 2)sin(422222πσπ≤+≤⎰⎰Dd y x 5.(3)解答:80,40≤≤≤≤y x ,16ln )4ln(4ln ≤++≤∴y x ,积分区域的面积为3284=⨯=S故 4ln 132)4ln(116ln 132⨯≤++≤⨯⎰⎰D d y x σ 即2ln 16)4ln(12ln 8≤++≤⎰⎰D d y x σ 习题7.21.(2)解答:原式=dx xe dy yy y ⎰⎰-3123=dx x dy e yy y ⎰⎰-3123=⎰-3122]2[3dy x e yy y⎰=312233dy y e y ⎰=313213dy e y 31][213y e =)(2127e e -= 1.(3)解答:原式=dx x dy y⎰⎰+10131变化积分次序为:原式=dy x dx x ⎰⎰+1321=⎰⋅+1231dxx x=⎰++1033)1(131x d x =10233])1[(3231+⋅x =9224- 2.(2)解答:积分区域如图1,原式=dy xye dx xy ⎰⎰112=)(21210102xy d e dx xy ⎰⎰ =⎰-10)1(21dx e x=10)(21x e x -=)2(21-e2.(4)解答:积分区域如图2:交点为(1,1),(-1,-1),积分区域看做Y 型:2223,11y x y y -≤≤≤≤-原式=dx y y dy y y⎰⎰---1123222)(=⎰---1123222])[(dy x y y yy =⎰---1122)33)((dy y y y =⎰-+--11342)3333(dy y y y y=114253]432353[-+--y y y y =54 2.(6)解答:积分区域如图3: 交点为(2,4),积分区域看做Y 型:y x yy -≤≤≤≤62,40 原式=dx ye dy yy x ⎰⎰-40621.51.00.5图 2图 34 062][dyey yyx=⎰--426][dyeeyyy==⎰-⎰--426](dy ye yee y y=4926--e e3.(1)解答:积分区域如图4, 原式=dx y x f dy y⎰⎰11),(3.(4)解答:积分区域如图5 原式=dx y x f dx dx y x f dx x x x ⎰⎰⎰⎰+211212222),(),(3.(5)解答:积分区域如图6 原式 =dx y x f dy dx y x f dy dx y x f dy y y y y ⎰⎰⎰⎰⎰⎰---+--++2140141111102222),(),(),(8.(2)解答:积分区域}41),{(22≤+≤y x y x 关于y 轴对称,而)sin(2xy 是x 的奇函数,y 的偶函数,故⎰⎰=Dd xy 0)sin(2σ 10.(1)解答:积分区域如图7rdr r r f d dxdy y x f aD⎰⎰⎰⎰=020)sin ,cos (),(θθθπ10.(3)解答:积分区域如图 4图 5图 6图 7图 8图8,rdr r r f d dxdy y x f D⎰⎰⎰⎰+=θθπθθθsin cos 102)sin ,cos (),(11.(2)解答:积分区域如图9,=⎰⎰dy y x f dx xx31),(rdr r r f d ⎰⎰θππθθθcos 134)sin ,cos (11.(3)解答:积分区域如图10,=⎰⎰--dy y x f dx x x211221),(rdr r f d ⎰⎰+1sin cos 1220)(θθπθ12.(3)解答:积分区域如图11,=⎰⎰-dx xy dy y y21220arctan rdr d ⎰⎰⋅140tan arctan θθπ=rdr d ⎰⎰⋅140θθπ=rdr d ⎰⎰140πθθ=642π13.(2)解答:积分区域如图12=++⎰⎰σd y x D2241rdr r d ⎰⎰⋅+202441πθ= 2202404121dr r d ⎰⎰+πθ=202)]4[ln(421r +⋅⋅π=2ln 8π 13.(3)解答:积分区域如图13,=++⎰⎰σd y xD)1ln(22rdr r d )1ln(212⎰⎰+πθ= 221020)1ln(21dr r d ⎰⎰+πθ=})1()]1ln()1{[(2211021022r r r +-++⋅⋅π=π412ln 2-图9图 10图 11图 12图 13图 1414.(1)解答:积分区域如图14, 原式=⎰⎰-xx e edy dx 1=⎰--1)(dx e e x x =21)(10-+=+-ee e e x x 14.(3)解答:积分区域如图15,原式=⎰⎰----2111y y dx dy =⎰---012)(dy y y =0132)32(---y y =61图 1515.(2)解答:积分区域如图16 原式=⎰⎰-------22222211)4)3310((x xdy y x dx =⎰⎰-20220)36(rdr r d πθ=⎰⎰-2320)36(dr r r d πθ=2042)433(2r r -⋅π=π6 16.(2)解答:由题意知积分闭区域在极坐标系上变量范围为,0πθ≤≤,sin 11θ+≤≤r 故 原式=⎰⎰=+Dd yx σ221rdr rd ⎰⎰+⋅θπθsin 1121=⎰πθθ0sin d =216.(3)解答:积分区域如图17,利用极坐标系知变量范围为,20πθ≤≤,10≤≤r图 16原式=⎰⎰=++--Dd yx y x σ222211rdr r r d ⎰⎰⋅+-1222011πθ=21022201121dr r r d ⎰⎰+-πθdttt rt ⎰+-=12114πdt t t ⎰+-=12114πada aa a t cos sin 1cos 4sin 20⎰+=ππda a a ⎰+-=202sin 1sin 14ππ=2020)cos (4)sin 1(4ππππa a da a +=-=⎰=)12(4-ππ习题7.31.(2)解答:由题意知积分闭区域在xoy 坐标面上的投影区域为,10≤≤x ,10x y -≤≤故⎰⎰⎰⎰⎰⎰-Ω=xyxdz z y x f dy dx dxdydz z y x f 01010),,(),,(1.(4)解答:空间闭区域在xoy 坐标面上的投影区域为122≤+y x , 故 故⎰⎰⎰⎰⎰⎰-+---Ω-=22222221111),,(),,(x y x x x dz z y x f dy dx dxdydz z y x f2.(1)解答:dz xy dy dx yx x x ⎰⎰⎰+0212=⎰⎰+xxyx dy z xy dx 201][2=⎰⎰+xxdy y x xy dx 21)(2=⎰⎰+xx dy y yx xdx 2210)(2=⎰+10232]3121[2dx y xy x xx =⎰+1033)3723(2dx x x x =⎰+1033)3723(2dx x x x =dx x ⎰104323 =10551323x ⋅=1523 2.(3)解答:⎰⎰⎰-2402sin z ydx z dz dy π=⎰⎰-2402][sin dz x y z dy z π=⎰⎰-202)4(sin dz z z ydy π=⎰--⋅-⋅-2220)4()4(21)cos (z d z yπ图 17=20232])4[(321z -⋅-=316 4.(1)解答:由题意知积分闭区域在yoz 坐标面上的投影区域为,10≤≤z ,20z y ≤≤ 故⎰⎰⎰⎰⎰⎰+Ω+=+zzdx xy z dy dz dxdydz xy z 2022012)()(=⎰⎰⋅+⋅++zz zdy y x x z dz 2020220210])21()([=⎰⎰+++z dy y z z z dz 202210])2(21)2([ =⎰+++102022202])21()2(21))(2([dz y z y z z zz =⎰+++10223])2()2(2[dz z z z z =⎰++1234)483(dz z z z=10345)34253(z z z ++ =1559 4.(3)解答:利用球面坐标,其各变量范围为,22πθπ≤≤-,20πϕ≤≤,10≤≤r ,故⎰⎰⎰⎰⎰⎰+⋅⋅=+++Ω-10222022222sin 1cos cos sin sin sin 1dx r r r r r d d dxdydz z y x xyz ϕϕθϕθϕϕθπππ=⎰⎰⎰+-1025203221cos sin cos sin dx r rd d πππϕϕϕθθθ=⎰⎰+⋅-10252032221cos sin ]2sin [dx r r d πππϕϕϕθ =⎰⎰+⋅1025231cos sin 0dx r r d πϕϕϕ=04.(5)解答:由题意知积分闭区域在xoy 坐标面上的投影区域为,20π≤≤y ,0y x ≤≤故⎰⎰⎰⎰⎰⎰-Ω+=+yydz z y x dx dy dxdydz z y x 2020)sin()sin(ππ=⎰⎰⎰⎰=+--yyyydx x dy dx z y x dy 0202020cos )]cos([πππ=⎰⋅2002]21[cos πdy x y y =⎰20cos 21πydy y=}sin ]sin {[212020⎰-ππydy y y =42-π6.(1)解答:积分闭区域如图所示,利用柱面坐标,其各变量范围为,20πθ≤≤,10≤≤r ,222r z r -≤≤,故⎰⎰⎰⎰⎰⎰-Ω=2221020r r rzdz dx d zdv πθ⎰⎰--⋅=⋅=-10421022]2[]21[222dx r r r dx z r r r ππππ127)2(1053=--=⎰dx r r r 7.(1)解答:积分闭区域如图所示,利用球面坐标,其各变量范围为,20πθ≤≤,60πϕ≤≤,20≤≤r ,故⎰⎰⎰⎰⎰⎰⋅=++Ω2026020222sin dx r r d d dv z y x ϕϕθππ ⎰⎰⋅=20360sin 2dx r d πϕϕπ =πϕππ)348(][41]cos [220460-=⋅-⋅r 7.(2)解答:积分闭区域如图所示,利用球面坐标,其各变量范围为,20πθ≤≤,20πϕ≤≤,21≤≤r ,故 ⎰⎰⎰⎰⎰⎰⋅⋅=Ω++2122020)(sin cos sin 42222dx r e r d d dv xe r z y x ϕθϕϕθππ⎰⎰⎰⋅213202204sin cos dx r e d d r ππϕϕθθ =212020][41]42sin 21[][sin 4r e ⋅-⋅ππϕϕθ =π1616e e - 8.(1)解答:利用柱面坐标,其各变量范围为,20πθ≤≤10≤≤r ,10≤≤z ,故 ⎰⎰⎰⎰⎰⎰⋅⋅=Ω101020sin cos rdz r r dr d xydv θθθπ=⎰⎰⎰1010320sin cos dz dr r d πθθθ=811]41[]2sin [104202=⋅⋅r πθ 8.(3)解答:积分闭区域如图所示,利用柱面坐标,其各变量范围为,20πθ≤≤20≤≤r ,525≤≤z r ,故 ⎰⎰⎰⎰⎰⎰⋅=+Ω5252202022)(r rdz r dr d dv y x πθ =⎰⋅205253][2dr z r r π=⎰⎰-=-⋅2043203)255(2)255(2dr r r dr r r ππ =8π友情提示:范文可能无法思考和涵盖全面,供参考!最好找专业人士起草或审核后使用,感谢您的下载!。

重积分习题及解答

重积分习题及解答

重积分练习一. 填空1.⎰⎰12),(xx dy y x f dx 交换积分次序后为_________________.2.用柱面坐标系化三重积分为三次积分________________),,(=⎰⎰⎰Ωdv z y x f其中2,1,1:22===+Ωz z y x 围成. 3. (化为柱面坐标中的三次积分)__________________),,(22222211111111==⎰⎰⎰--+-------dz z y x f dydxI y x y x x x (化为柱面坐标中的三次积分) 二.选择题1. =+⎰⎰-dy y x dxx x243221( ).A. ⎰⎰302πθrdr d . B.⎰⎰232ππθrdr d C.⎰⎰3022πθdr r d . D.⎰⎰2322ππθdr r d2.若区域D 由1)1(22=+-y x 所围,则⎰⎰Ddxdy y x f ),(化成累次积分为 ( )A.⎰⎰πθθθθ0cos 20)sin ,cos (rdr r r f d . B. ⎰⎰-ππθθθθcos 20)sin ,cos (rdr r r f dC.⎰⎰20cos 20)sin ,cos (2πθθθθrdr r r f d D. ⎰⎰-22cos 20)sin ,cos (ππθθθθrdr r r f d三.计算1.. 计算⎰⎰-+=+-⋅+22)(4122222x a a xady y x a y x dx2. 计算⎰⎰-Ddxdy y x ||,其中D 是由2,0,1,0====y y x x 所围成的区域.3. 求由x e z y 222-=+与平面1,0==x x 所围立体体积.4.D 由直线x y y x ===,2,4所围成,求⎰⎰--Dxdxdy x e 22.5.计算⎰⎰-=Dd y x I σ||,其中0,0,1:22≥≥≤+y x y x D .6.计算⎰⎰⎰Ω+dV z x )(,其中22221,:y x z y x z --=+=Ω所围的空间区域.四.应用题。

数学分析21.6重积分的应用(含习题及参考答案)

数学分析21.6重积分的应用(含习题及参考答案)

第二十一章 重积分 6重积分的应用一、曲面的面积问题:设D 为可求面积的平面有界区域,函数f(x,y)在D 上具有连续的一阶偏导数,讨论由方程z=f(x,y), (x,y)∈D 所确定的曲面S 的面积.分析:对区域D 作分割T ,把D 分成n 个小区域σi (i=1,2,…,n). 曲面S 同时也被分割成相应的n 个小曲面片S i (i=1,2,…,n). 在每个S i 上任取一点M i , 作曲面在这一点的切平面πi , 并 在πi 上取出一小块A i , 使得A i 与S i 在xy 平面上的投影都是σi . 现在M i 附近,用切平面A i 代替小曲面片S i . 则当T 充分小时,有 △S=∑=∆ni i S 1≈∑=∆ni i A 1, 这里的△S, △S i , △A i 分别表示S, S i 和A i 的面积.∴当T →0时,可用和式∑=∆ni i A 1的极限作为S 的面积.建立曲面面积计算公式:∵切平面πi 的法向量就是曲面S 在点M i (ξi ,ηi ,ζi )处的法向量, 记其与z 轴的夹角为γi , 则|cos γi |=),(),(1122i i yi i xf f ηξηξ++.∵A i 在xy 平面上投影为σi , ∴△A i =iiγσcos ∆=i i i y i i x f f σηξηξ∆++),(),(122. 又和数∑=∆ni i A 1=∑=∆++ni i i i y i i x f f 122),(),(1σηξηξ是连续函数),(),(122y x f y x f y x ++在有界闭区域D 上的积分和,∴当T →0时,有△S=∑=→∆++ni i i i y i i x T f f 1220),(),(1lim σηξηξ=⎰⎰++Dy x dxdy y x f y x f ),(),(122, 或△S=∑=→∆ni i iT 1cos limγσ=⎰⎰∧Dz n dxdy ),cos(,其中),cos(∧z n 为曲面的法向量与z 轴正向夹角的余弦.例1:求圆锥z=22y x +在圆柱体x 2+y 2≤x 内那一部分的面积. 解:由x 2+y 2≤x, 得D={(r,θ)|0≤r ≤21, 0≤θ≤2π}, 又z x =22y x x +=r r θcos =cos θ, z y =22yx y+=r r θsin =sin θ, ∴△S=⎰⎰++Dyxdxdy z z 221=⎰⎰πθ202102rdr d =π42.例2:设平面光滑曲线的方程为y=f(x), x ∈[a,b] (f(x)>0). 求证:此曲线绕x 轴旋转一周得到的旋转曲面的面积为: S=⎰'+ba dx x f x f )(1)(22π.证:由上半旋转面方程为z=22)(y x f -, 得 z x =22)()()(yx f x f x f -', z y =22)(yx f y --. 即有221yxz z ++=2222222)()()()(1yx f y y x f x f x f -+-'+=2222)())(1)((yx f x f x f -'+. ∴S=⎰⎰--'+b a x f x f dy y x f x f x f dx )()(222)()(1)(2=⎰⎰-'+b a x f dyy x f dx x f x f )(0222)(1)(1)(4=⎰⎰---'+ba x f x yf d x f y dx x f x f )(01222))(()(11)(1)(4=⎰⎰-'+b a dt tdx x f x f 102211)(1)(4=⎰'+b adx x f x f )(1)(22π.注:若空间曲面S 由参量方程:x=x(u,v),y=y(u,v),z=z(u,v),(u,v)∈D 确定, 其中x(u,v), y(u,v), z(u,v)在D 上具有连续一阶偏导数,且),(),(v u u y x ∂,),(),(v u u z y ∂,),(),(v u u x z ∂中至少有一个不等于0,则 曲面S 在点(x,y,z)的法线方向数为⎝⎛∂),(),(v u u z y ,),(),(v u u x z ∂,⎪⎪⎭⎫∂),(),(v u u y x , 则 它与z 轴的夹角的余弦的绝对值为:),cos(∧z n =222),(),(),(),(),(),(),(),(⎪⎪⎭⎫ ⎝⎛∂+⎪⎪⎭⎫ ⎝⎛∂+⎪⎪⎭⎫ ⎝⎛∂∂v u u y x v u u x z v u u z y v u u y x=2222222)())((),(),(v u v u v u vvvuuuz z y y x x z y x z y x v u u y x ++-++++∂=21),(),(FEG v u u y x -∂,其中E=222u u u z y x ++,G=222v v v z y x ++,F=v u v u v u z z y y x x ++.当),(),(v u u y x ∂≠0,则有△S=⎰⎰∧Dz n dxdy ),cos(=dudv z n v u u y x D ⎰⎰'∧∂),cos(),(),(=dudv F EG D ⎰⎰'-2.例3:求球面上两条纬线和两条经线之间 的曲面的面积(图中阴影部分). 解:设球面方程为:(R 为球的半径). x=Rcos ψcos φ,y=Rcos ψsin φ, z=Rsin ψ.由E=222ψψψz y x ++=R 2, G=222ϕϕϕz y x ++=R 2cos 2ψ, F=ϕψϕψϕψz z y y x x ++=0, 得2F EG -=R 2cos ψ. ∴△S=⎰⎰2121cos 2ψψϕϕψψϕd R d =R 2(φ2-φ1)(sin ψ2-sin ψ1).二、质心引例:设V 是密度函数为ρ(x,y,z)的空间物体,ρ(x,y,z)在V 上连续. 为求得V 的质心坐标公式,先对V 作分割T ,在属于T 的每一小块v i 上任取一点(ξi ,ηi ,ζi ),则小块v i 的质量可用ρ(ξi ,ηi ,ζi )△v i 近似代替. 若把每一小块看作质量集中在(ξi ,ηi ,ζi )的质点时,整个物体就可用这n 个质点的质点系来近似代替. 由于质点系的质心坐标公式为:∑∑==∆∆=ni iiiini iiiiin v v x 11),,(),,(ζηξρζηξρξ, ∑∑==∆∆=ni iiiini iiiiin v v y 11),,(),,(ζηξρζηξρη, ∑∑==∆∆=n i iiiini ii i i in v v z 11),,(),,(ζηξρζηξρζ.当T →0时,n x , n y , n z 的极限x , y , z 就定义为V 的质心坐标,即⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x x x ),,(),,(ρρ, ⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x y y ),,(),,(ρρ, ⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x z z ),,(),,(ρρ.当物体V 的密度均匀即ρ为常数时,则有⎰⎰⎰∆=VxdV Vx 1, ⎰⎰⎰∆=VydV Vy 1, ⎰⎰⎰∆=VzdV Vz 1, 这里△V 为V 的体积.又密度分布为ρ(x,y)的平面薄板D 的质心坐标为:⎰⎰⎰⎰=DDd y x d y x x x σρσρ),(),(, ⎰⎰⎰⎰=DDd y x d y x y y σρσρ),(),(. 当平面薄板的密度均匀时,即ρ为常数时,则有⎰⎰∆=Dxd D x σ1, ⎰⎰∆=D yd D y σ1, △D 为薄板D 的面积.例4:求密度均匀的上半椭球体的质心.解:设椭球体由不等式a x 2+by 2+c z 2≤1表示.由对称性知x =0, y =0, 又由ρ为常数,得z =⎰⎰⎰⎰⎰⎰VVdVdVz ρρ=abc abc ππ3242=83c .三、转动惯量质点A 对于轴l 的转动惯量J 是质点A 的质量m 和A 与转动轴l 的距离r 的平方的乘积,即J=mr 2.设ρ(x,y,z)为空间物体V 的密度分布函数,它在V 上连续. 对V 作分割T ,在属于T 的每一小块v i 上任取一点(ξi ,ηi ,ζi ),则v i 的质量可用ρ(ξi ,ηi ,ζi )△v i 近似代替. 当以质点系{(ξi ,ηi ,ζi ), i=1,2,…, n}近似替代V 时,质点系对于x 轴的转动惯量为:i i i i ni i i x v J n∆+=∑=),,()(122ζηξρζη.当T →0时,上述积分和的极限就是物体V 对于x 轴的转动惯量 J x =⎰⎰⎰+VdV z y x z y ),,()(22ρ. 类似地,V 对于y 轴与z 轴的转动惯量分别为:J y =⎰⎰⎰+VdV z y x x z ),,()(22ρ, J z =⎰⎰⎰+VdV z y x y x ),,()(22ρ.同理,V 对于坐标平面的转动惯量分别为:J xy =⎰⎰⎰VdV z y x z ),,(2ρ, J yz =⎰⎰⎰VdV z y x x ),,(2ρ, J xz =⎰⎰⎰VdV z y x y ),,(2ρ.平面薄板对于坐标轴的转动惯量分别为:J x =⎰⎰Dd y x y σρ),(2, J y =⎰⎰Dd y x x σρ),(2. 以及有J l =⎰⎰Dd y x y x r σρ),(),(2,其中l 为转动轴, r(x,y)为D 中点(x,y)到l 的距离函数.例5:求密度均匀的圆环D 对于垂直于圆环面中心轴的转动惯量. 解:设圆环D 为R 12≤x 2+y 2≤R 22, 密度为ρ, 则D 中任一点(x,y)与转轴的距离平方为x 2+y 2, 于是转动惯量为:J=⎰⎰+Dd y x σρ)(22=⎰⎰21320R R dr r d πθρ=2πρ(R 24-R 14)=例6:求均匀圆盘D 对于其直径的转动惯量.解:设D 为x 2+y 2≤R 2, 密度为ρ, D 内任一点(x,y)与y 轴的距离为|x|, 于是转动惯量为:(m 为圆盘质量) J=⎰⎰Dd x σρ2=⎰⎰Rdr r d 02320cos θθρπ=⎰πθθρ2024cos 4d R =44R ρπ=42mR .例7:设某球体的密度与球心的距离成正比,求它对于切平面的转动惯量.解:设球体由x 2+y 2+z 2≤R 2表示,密度为k 222z y x ++, k 为比便常数. 切平面方程为x=R, 则球体对于平面x=R 的转动惯量为: J=k ⎰⎰⎰-++VdV x R z y x 2222)(=k ⎰⎰⎰-ππϕθϕϕθ003220sin )cos sin (Rdr r r R d d=kR 6⎰⎰⎪⎭⎫ ⎝⎛+-ππϕθϕθϕθ023220cos sin 61cos sin 5241d d =⎰πθθ2026cos 911d kR =911k πR 6.四、引力求密度为ρ(x,y,z)的立体对立体外质量为1的质点A 的引力.设A 的坐标为(ξi ,ηi ,ζi ),V 中点的坐标用(x,y,z)表示. V 中质量微元dm=ρdV 对A 的引力在坐标轴上的投影为 dF xyz其中K 为引力系数, r=222)()()(ζηξ-+-+-z y x 是A 到dV 的距离,于是 力F 在三个坐标轴上的投影分别为: F x =K ⎰⎰⎰-VdV r x ρξ3, F y =K ⎰⎰⎰-V dV r y ρη3, F z =K ⎰⎰⎰-VdV r z ρζ3, 所以F=F x i+F y j+F z k.例8:设球体V 具有均匀的密度ρ, 求V 对球外一点A(质量为1)的引力(引力系数为k).解:设球体为x 2+y 2+z 2≤R 2,球外一点坐标为(0,0,a) (R<a). 则F x =F y =0,F z =k ⎰⎰⎰-++-V dV a z y x a z ρ2/3222])([=k ρ⎰⎰⎰-++--zD R R a z y x dxdydz a z 2/3222])([)(, 其中D z ={(x,y)|x2+y2≤R 2-z 2}. 运用极坐标计算得: F z =k ρdr a z r rd dz a z z R RR ⎰⎰⎰---+-2202/32220])([)(πθ =2πk ρ⎰-+----R R dz aaz R a z )21(22=2πk ρ⎪⎪⎭⎫⎝⎛+--++-+-⎰-R R dz a az R R a a az R a R 22222222212= 2πk ρ⎥⎦⎤⎢⎣⎡-+----+---⎰⎰--RRRRaz d a az R a R a az d a az R a R )2(214)2(241222222222=2πk ρ⎥⎦⎤⎢⎣⎡+---+-----RRRRa az R a R a a az R a R 22222322222)2(612 =2πk ρ⎥⎦⎤⎢⎣⎡-++----222233)(6)()(2a R a R a a R R a R=2πk ρ⎪⎪⎭⎫⎝⎛-+++-232332a R R a R R R =2334a R k ρπ-. (注:z ≤R<a)习题1、求曲面az=xy 包含在圆柱x 2+y 2=a 2内那部分的面积.解:∵z x =a y, z y =ax , D={(r,θ)|0≤r ≤a, 0≤θ≤2π}, ∴曲面面积为: S=⎰⎰⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+Ddxdy a x a y 221=⎰⎰+a dr a r r d 022201πθ=)122(322-a π.2、求锥面z=22y x +被柱面z 2=2x 所截部分的曲面面积. 解:且面在xy 平面的投影区域为:D={(r,θ)|0≤r ≤1, 0≤θ≤2π}, 且z x =22yx x +, z y =22yx y +, ∴曲面面积为:S=⎰⎰⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++Ddxdy y x y y x x 2222221=⎰⎰10202rdr d πθ=π2.3、求下列均匀密度的平面薄板质心:(1)半椭圆2222by a x +≤1, y ≥0;(2)高为h, 底分别为a 和b 的等腰梯形.解:(1)设质心位置为(x ,y ), 由对称性得x =0.y =⎰⎰⎰⎰DDd yd σρσρ=⎰⎰⎰⎰DDd yd σσ=⎰⎰Dyd ab σπ2=dr r ab d ab ⎰⎰πθθπ122sin 2=π34b . (2)不妨设a 为下底,以下底中点为原点建立直角坐标系,则 D={(x,y)|l 1(y)≤x ≤l 2(y),0≤y ≤h}.设质心位置为(x ,y ), 由对称性得x =0.又等腰三角形的面积为2)(hb a +, ∴y =⎰⎰+D yd h b a σ)(2=⎰⎰+h y l y l dx ydy h b a 0)()(21)(2=⎰⎥⎦⎤⎢⎣⎡+---+--+h ydy a h y h a b a h y h b a h b a 02)(22)(2)(2=⎰⎥⎦⎤⎢⎣⎡+--+h ydy a h y h b a h b a 0)()(2=⎰⎪⎭⎫ ⎝⎛+-+h dy by y h b a h b a 02)(2=h b a a b )(32++. 其中:l 1(y): x=2)(2a h y h a b ---; l 2(y): x=2)(2ah y h b a +--.4、求下列均匀密度物体的质心.(1)z ≤1-x 2-y 2, z ≥0;(2)由坐标面及平面x+2y-z=1所围的四面体. 解:(1)设质心为(x ,y ,z ), 由对称性x =y =0, 应用柱面坐标变换有,z =⎰⎰⎰⎰⎰⎰VVdV dV z ρρ=⎰⎰⎰⎰⎰⎰--221020110201r r dz r d r d zdz r d r d ππθθ=dr r r dr r r )1()1(212102210--⎰⎰=31. (2)设质心为(x ,y ,z ),∵V=⎰⎰⎰VdV =121, ∴x =⎰⎰⎰--+21001211x y x dz dy xdx V =⎰⎰---2101)21(12x dy y x xdx =⎰-1024)1(12dx x x =41. y =⎰⎰⎰--+yy x dz dx ydy V 210122101=⎰⎰---ydx x y ydy 210210)21(12=⎰-21022)21(12dy y y =81. z =⎰⎰⎰--+yy x zdz dx dy V21012211=⎰⎰--+-ydx y x dy 2102210)12(6=⎰--21033)21(6dy y =41-.5、求下列均匀密度的平面薄板的转动惯量: (1)半径为R 的圆关于其切线的转动惯量;(2)边长为a 和b, 且夹角为φ的平行四边形,关于底边b 的转动惯量.解:(1)设切线为x=R, 密度为ρ.则对任一点P(x,y)∈D, P 到x=R 的距离为R-x ,从而转动惯量 J=ρ⎰⎰-Dd x R σ2)(=ρ⎰⎰+-Rdr r Rr R r d 022220)cos cos 2(θθθπ=ρ⎰+-πθθθ2024)cos 41cos 3221(d R= R 4. (2)设密度为ρ. 以底边为x 轴,左端点为原点,则转动惯量 J=⎰⎰Dd y σ2=ρ⎰⎰+by y a dx dy y ϕϕϕcot cot sin 02=3sin 33ϕρb a .6、计算下列引力:(1)均匀薄片x 2+y 2≤R 2, z=0对于轴上一点(0,0,c) (c>0)处的单位质量的引力;(2)均匀柱体x 2+y 2≤a 2, 0≤z ≤h 对于点P(0,0,c) (c>h)处的单位质量的引力;(3)均匀密度的正圆锥体(高h, 底半径R)对于在它的顶点处质量为m 的质点的引力.解:(1)根据对称性知引力方向在z 轴上,∴F z =0, F y =0.F z =k ρ⎰⎰++Ddxdy c y x c 2/3222)(=kc ρ⎰⎰+R dr c r r d 02/32220)(πθ=2k .∴F={0,0,2k }.(2)根据对称性知引力方向在z 轴上,∴F z =0, F y =0. F z =k ρ⎰⎰⎰-++-VdV c z y x c z 2/3222])([=k ρ⎰⎰⎰-+-a h dr c z r rd dz c z 02/322200])([)(πθ=-2k πρdz c z a c z h⎰⎥⎥⎦⎤⎢⎢⎣⎡-+-+022)(1=2k πρ[]h c h a c a --+-+2222)(. ∴F={0,0,2k πρ[]h c h a c a --+-+2222)(}.(3)以圆锥体的顶点为原点, 对称轴为z 轴建立xyz 三维直角坐标系. 根据对称性知引力方向在z 轴上,∴F z =0, F y =0.F z =k ρm ⎰⎰⎰++V dV z y x z 2/3222)(=k ρm ⎰⎰⎰+R hrR dz z r zrdr d 02/322020)(πθ=2k πR ρm ⎪⎪⎭⎫⎝⎛++-22221R h R h R . ∴F={0,0, 2k πR ρm ⎪⎪⎭⎫ ⎝⎛++-22221R h R h R }.7、求曲面⎪⎩⎪⎨⎧=+=+=ψϕψϕψsin sin )cos (cos )cos (a z a b y a b x (0≤φ≤2π, 0≤ψ≤2π) 的面积,其中常数a,b 满足0≤a ≤b.解:∵x φ=-(b+acos ψ)sin φ, y φ=(b+acos ψ)cos φ, z φ=0; x ψ=-asin ψcos φ, y ψ=-asin ψsin φ, z ψ=acos ψ.∴E=222ϕϕϕz y x ++=(b+acos ψ)2, G=222ψψψz y x ++=a 2, F=ψϕψϕψϕz z y y x x ++=0. ∴S=σd F EG D ⎰⎰'-2=σψd a b a D ⎰⎰'+)cos (=⎰⎰+ππψψϕ2020)cos (d a b d a =4ab π2.8、求螺旋面⎪⎩⎪⎨⎧===ϕϕϕb z r y r x sin cos (0≤r ≤a, 0≤φ≤2π) 的面积.解:∵x r =cos φ, y r =sin φ, z r =0; x φ=-rsin φ, y φ=rcos φ, z φ=b.∴E=222r r r z y x ++=1, G=222ϕϕϕz y x ++=r 2+b 2, F=ϕϕϕz z y y x x r r r ++=0.∴S=σd F EG D ⎰⎰'-2=σd b r D ⎰⎰'+22=⎰⎰+πϕ20022d dr b r a=π⎪⎪⎭⎫⎝⎛++++b b a a b b a a 22222ln .9、求边长为a 密度均匀的正方体关于其任一棱边的转动变量. 解:以正方体的一个顶点为原点,顶点上方的棱为z 轴,使 正方体处于第一卦限中,则正方体对z 轴上的棱的转动变量为: J z =ρ⎰⎰⎰+V dV y x )(22=ρ⎰⎰⎰+aaadz y x dy dx 00220)(=a ρ⎰⎰+aady y x dx 0220)(=a ρ⎰+adx a ax 032)31(=32a 5ρ. (ρ为正方体密度)。

(完整版)重积分习题及答案

(完整版)重积分习题及答案

第九章 重积分(A)1.填空题(1) 设()y x y x P 2,=,()23,y x y x Q =,定义于:D 10<<x ,10<<y ,则()σd y x P D⎰⎰, ()⎰⎰Dd y x Q σ,(2) 设曲顶柱体的顶面是()y x f z ,=,()D y x ∈,,侧面是母线平行于z 轴,准线为D的边界线的柱面,则此曲顶柱体的体积用重积分可表示为=V 。

(3) 在极坐标系中,面积元素为 。

2.利用二重积分的性质,比较下列积分大小(1) ()⎰⎰+Dd y x σ2与()⎰⎰+Dd y x σ3,其中积分区域D 由x 轴,y 轴以及直线1=+y x 所 围成。

(2) ()⎰⎰+D d y x σ2与()⎰⎰+Dd y x σ3,其中积分区域D 是由圆周()()21222=-+-y x 所围成。

3.利用二重积分性质,估计积分()⎰⎰++=Dd y x I σ92222的值,其中D 是圆形闭区域422≤+y x 。

4.交换积分()⎰⎰--a ax ax xa dy y x f dx 2222,的积分次序。

5.交换积分()⎰⎰-2120,ydx y x f dy 的积分次序。

6.交换二次积分()⎰⎰+-aa y y a y x f dy 022,的积分次序。

7.计算()⎰⎰+Dd y x σ23,其中D 是由两坐标轴及直线2=+y x 所围成的闭区域。

8.计算()⎰⎰+Dd y x x σcos ,其中D 是顶点分别为()0,0,()0,π和()ππ,的三角形区域。

9.计算()⎰⎰+Dyd x σsin 1,其中D 是顶点分别为()0,0,()0,1,()2,1和()1,0的梯形闭区域。

10.计算二重积分⎰⎰Ddxdy ,其中区域D 由曲线21x y -=与12-=x y 围成。

11.计算二重积分⎰⎰Dd xy σ2,其中D 是由圆周422=+y x 及y 轴所围成的右半闭区域。

高数第六章重积分课堂练习题及答案

高数第六章重积分课堂练习题及答案

r O
图3
D {(r, ) | 0 r r( ), 0 2}
f
(r cos , r sin )rdrd
2
0
d r( ) 0
f
(r cos , r sin )rdr
D
2o 极点在区域 D 的边界上,如图 8-10 所示.
O
r
图4
D {(r, ) | 0 r r( ), }
r( )
D
D
大小. 先判断 f (x, y) 和 g(x, y) 在 D 上的大小关系,再应用二重积分的比较性质比较两个二
重积分的大小.
解: 由 (x 1)2 ( y 1)2 2 ,可得
y
x y 1 (x2 y2 2x 3) 1 [(x 1)2 y2 ] 1 1
2
2
x
如图 8-22.
o
图 8-22
成的在第一卦限内的立体体积. R3 arctan K
y
3
z x2 y2 z2 1
y
O Dxy
y
x
x2 y2 1
O
x
o
x
图6
2. 求由曲面 z x2 2 y2 及 z 6 2x2 y2 所围成的立体的体积. 6 3. 求由曲面 z x2 y 2 及 z x 2 y 2 所围成的立体的体积
D
[思路] 利用二重积分的估值性质估计二重积分,先计算被积函数在积分区域上的最大、 最小值和积分区域的面积,应用估值性质来估计二重积分的值.
解: 因为在积分区域 D 上, 0 x 1,0 y 2 ,所以 0 xy 2, 1 x y 1 4
于是可得 0 xy(x y 1) 8 ,而 D 的面积 1 2 2 ,应用估值性质有

数学分析21.6重积分的应用(含习题及参考答案)

数学分析21.6重积分的应用(含习题及参考答案)

第二十一章 重积分 6重积分的应用一、曲面的面积问题:设D 为可求面积的平面有界区域,函数f(x,y)在D 上具有连续的一阶偏导数,讨论由方程z=f(x,y), (x,y)∈D 所确定的曲面S 的面积.分析:对区域D 作分割T ,把D 分成n 个小区域σi (i=1,2,…,n). 曲面S 同时也被分割成相应的n 个小曲面片S i (i=1,2,…,n). 在每个S i 上任取一点M i , 作曲面在这一点的切平面πi , 并 在πi 上取出一小块A i , 使得A i 与S i 在xy 平面上的投影都是σi . 现在M i 附近,用切平面A i 代替小曲面片S i . 则当T 充分小时,有 △S=∑=∆ni i S 1≈∑=∆ni i A 1, 这里的△S, △S i , △A i 分别表示S, S i 和A i 的面积.∴当T →0时,可用和式∑=∆ni i A 1的极限作为S 的面积.建立曲面面积计算公式:∵切平面πi 的法向量就是曲面S 在点M i (ξi ,ηi ,ζi )处的法向量, 记其与z 轴的夹角为γi , 则|cos γi |=),(),(1122i i yi i xf f ηξηξ++.∵A i 在xy 平面上投影为σi , ∴△A i =iiγσcos ∆=i i i y i i x f f σηξηξ∆++),(),(122. 又和数∑=∆ni i A 1=∑=∆++ni i i i y i i x f f 122),(),(1σηξηξ是连续函数),(),(122y x f y x f y x ++在有界闭区域D 上的积分和,∴当T →0时,有△S=∑=→∆++ni i i i y i i x T f f 1220),(),(1lim σηξηξ=⎰⎰++Dy x dxdy y x f y x f ),(),(122, 或△S=∑=→∆ni i iT 1cos limγσ=⎰⎰∧Dz n dxdy ),cos(,其中),cos(∧z n 为曲面的法向量与z 轴正向夹角的余弦.例1:求圆锥z=22y x +在圆柱体x 2+y 2≤x 内那一部分的面积. 解:由x 2+y 2≤x, 得D={(r,θ)|0≤r ≤21, 0≤θ≤2π}, 又z x =22y x x +=r r θcos =cos θ, z y =22yx y+=r r θsin =sin θ, ∴△S=⎰⎰++Dyxdxdy z z 221=⎰⎰πθ202102rdr d =π42.例2:设平面光滑曲线的方程为y=f(x), x ∈[a,b] (f(x)>0). 求证:此曲线绕x 轴旋转一周得到的旋转曲面的面积为: S=⎰'+ba dx x f x f )(1)(22π.证:由上半旋转面方程为z=22)(y x f -, 得 z x =22)()()(yx f x f x f -', z y =22)(yx f y --. 即有221yxz z ++=2222222)()()()(1yx f y y x f x f x f -+-'+=2222)())(1)((yx f x f x f -'+. ∴S=⎰⎰--'+b a x f x f dy y x f x f x f dx )()(222)()(1)(2=⎰⎰-'+b a x f dyy x f dx x f x f )(0222)(1)(1)(4=⎰⎰---'+ba x f x yf d x f y dx x f x f )(01222))(()(11)(1)(4=⎰⎰-'+b a dt tdx x f x f 102211)(1)(4=⎰'+b adx x f x f )(1)(22π.注:若空间曲面S 由参量方程:x=x(u,v),y=y(u,v),z=z(u,v),(u,v)∈D 确定, 其中x(u,v), y(u,v), z(u,v)在D 上具有连续一阶偏导数,且),(),(v u u y x ∂,),(),(v u u z y ∂,),(),(v u u x z ∂中至少有一个不等于0,则 曲面S 在点(x,y,z)的法线方向数为⎝⎛∂),(),(v u u z y ,),(),(v u u x z ∂,⎪⎪⎭⎫∂),(),(v u u y x , 则 它与z 轴的夹角的余弦的绝对值为:),cos(∧z n =222),(),(),(),(),(),(),(),(⎪⎪⎭⎫ ⎝⎛∂+⎪⎪⎭⎫ ⎝⎛∂+⎪⎪⎭⎫ ⎝⎛∂∂v u u y x v u u x z v u u z y v u u y x=2222222)())((),(),(v u v u v u vvvuuuz z y y x x z y x z y x v u u y x ++-++++∂=21),(),(FEG v u u y x -∂,其中E=222u u u z y x ++,G=222v v v z y x ++,F=v u v u v u z z y y x x ++.当),(),(v u u y x ∂≠0,则有△S=⎰⎰∧Dz n dxdy ),cos(=dudv z n v u u y x D ⎰⎰'∧∂),cos(),(),(=dudv F EG D ⎰⎰'-2.例3:求球面上两条纬线和两条经线之间 的曲面的面积(图中阴影部分). 解:设球面方程为:(R 为球的半径). x=Rcos ψcos φ,y=Rcos ψsin φ, z=Rsin ψ.由E=222ψψψz y x ++=R 2, G=222ϕϕϕz y x ++=R 2cos 2ψ, F=ϕψϕψϕψz z y y x x ++=0, 得2F EG -=R 2cos ψ. ∴△S=⎰⎰2121cos 2ψψϕϕψψϕd R d =R 2(φ2-φ1)(sin ψ2-sin ψ1).二、质心引例:设V 是密度函数为ρ(x,y,z)的空间物体,ρ(x,y,z)在V 上连续. 为求得V 的质心坐标公式,先对V 作分割T ,在属于T 的每一小块v i 上任取一点(ξi ,ηi ,ζi ),则小块v i 的质量可用ρ(ξi ,ηi ,ζi )△v i 近似代替. 若把每一小块看作质量集中在(ξi ,ηi ,ζi )的质点时,整个物体就可用这n 个质点的质点系来近似代替. 由于质点系的质心坐标公式为:∑∑==∆∆=ni iiiini iiiiin v v x 11),,(),,(ζηξρζηξρξ, ∑∑==∆∆=ni iiiini iiiiin v v y 11),,(),,(ζηξρζηξρη, ∑∑==∆∆=n i iiiini ii i i in v v z 11),,(),,(ζηξρζηξρζ.当T →0时,n x , n y , n z 的极限x , y , z 就定义为V 的质心坐标,即⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x x x ),,(),,(ρρ, ⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x y y ),,(),,(ρρ, ⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x z z ),,(),,(ρρ.当物体V 的密度均匀即ρ为常数时,则有⎰⎰⎰∆=VxdV Vx 1, ⎰⎰⎰∆=VydV Vy 1, ⎰⎰⎰∆=VzdV Vz 1, 这里△V 为V 的体积.又密度分布为ρ(x,y)的平面薄板D 的质心坐标为:⎰⎰⎰⎰=DDd y x d y x x x σρσρ),(),(, ⎰⎰⎰⎰=DDd y x d y x y y σρσρ),(),(. 当平面薄板的密度均匀时,即ρ为常数时,则有⎰⎰∆=Dxd D x σ1, ⎰⎰∆=D yd D y σ1, △D 为薄板D 的面积.例4:求密度均匀的上半椭球体的质心.解:设椭球体由不等式a x 2+by 2+c z 2≤1表示.由对称性知x =0, y =0, 又由ρ为常数,得z =⎰⎰⎰⎰⎰⎰VVdVdVz ρρ=abc abc ππ3242=83c .三、转动惯量质点A 对于轴l 的转动惯量J 是质点A 的质量m 和A 与转动轴l 的距离r 的平方的乘积,即J=mr 2.设ρ(x,y,z)为空间物体V 的密度分布函数,它在V 上连续. 对V 作分割T ,在属于T 的每一小块v i 上任取一点(ξi ,ηi ,ζi ),则v i 的质量可用ρ(ξi ,ηi ,ζi )△v i 近似代替. 当以质点系{(ξi ,ηi ,ζi ), i=1,2,…, n}近似替代V 时,质点系对于x 轴的转动惯量为:i i i i ni i i x v J n∆+=∑=),,()(122ζηξρζη.当T →0时,上述积分和的极限就是物体V 对于x 轴的转动惯量 J x =⎰⎰⎰+VdV z y x z y ),,()(22ρ. 类似地,V 对于y 轴与z 轴的转动惯量分别为:J y =⎰⎰⎰+VdV z y x x z ),,()(22ρ, J z =⎰⎰⎰+VdV z y x y x ),,()(22ρ.同理,V 对于坐标平面的转动惯量分别为:J xy =⎰⎰⎰VdV z y x z ),,(2ρ, J yz =⎰⎰⎰VdV z y x x ),,(2ρ, J xz =⎰⎰⎰VdV z y x y ),,(2ρ.平面薄板对于坐标轴的转动惯量分别为:J x =⎰⎰Dd y x y σρ),(2, J y =⎰⎰Dd y x x σρ),(2. 以及有J l =⎰⎰Dd y x y x r σρ),(),(2,其中l 为转动轴, r(x,y)为D 中点(x,y)到l 的距离函数.例5:求密度均匀的圆环D 对于垂直于圆环面中心轴的转动惯量. 解:设圆环D 为R 12≤x 2+y 2≤R 22, 密度为ρ, 则D 中任一点(x,y)与转轴的距离平方为x 2+y 2, 于是转动惯量为:J=⎰⎰+Dd y x σρ)(22=⎰⎰21320R R dr r d πθρ=2πρ(R 24-R 14)=例6:求均匀圆盘D 对于其直径的转动惯量.解:设D 为x 2+y 2≤R 2, 密度为ρ, D 内任一点(x,y)与y 轴的距离为|x|, 于是转动惯量为:(m 为圆盘质量) J=⎰⎰Dd x σρ2=⎰⎰Rdr r d 02320cos θθρπ=⎰πθθρ2024cos 4d R =44R ρπ=42mR .例7:设某球体的密度与球心的距离成正比,求它对于切平面的转动惯量.解:设球体由x 2+y 2+z 2≤R 2表示,密度为k 222z y x ++, k 为比便常数. 切平面方程为x=R, 则球体对于平面x=R 的转动惯量为: J=k ⎰⎰⎰-++VdV x R z y x 2222)(=k ⎰⎰⎰-ππϕθϕϕθ003220sin )cos sin (Rdr r r R d d=kR 6⎰⎰⎪⎭⎫ ⎝⎛+-ππϕθϕθϕθ023220cos sin 61cos sin 5241d d =⎰πθθ2026cos 911d kR =911k πR 6.四、引力求密度为ρ(x,y,z)的立体对立体外质量为1的质点A 的引力.设A 的坐标为(ξi ,ηi ,ζi ),V 中点的坐标用(x,y,z)表示. V 中质量微元dm=ρdV 对A 的引力在坐标轴上的投影为 dF xyz其中K 为引力系数, r=222)()()(ζηξ-+-+-z y x 是A 到dV 的距离,于是 力F 在三个坐标轴上的投影分别为: F x =K ⎰⎰⎰-VdV r x ρξ3, F y =K ⎰⎰⎰-V dV r y ρη3, F z =K ⎰⎰⎰-VdV r z ρζ3, 所以F=F x i+F y j+F z k.例8:设球体V 具有均匀的密度ρ, 求V 对球外一点A(质量为1)的引力(引力系数为k).解:设球体为x 2+y 2+z 2≤R 2,球外一点坐标为(0,0,a) (R<a). 则F x =F y =0,F z =k ⎰⎰⎰-++-V dV a z y x a z ρ2/3222])([=k ρ⎰⎰⎰-++--zD R R a z y x dxdydz a z 2/3222])([)(, 其中D z ={(x,y)|x2+y2≤R 2-z 2}. 运用极坐标计算得: F z =k ρdr a z r rd dz a z z R RR ⎰⎰⎰---+-2202/32220])([)(πθ =2πk ρ⎰-+----R R dz aaz R a z )21(22=2πk ρ⎪⎪⎭⎫⎝⎛+--++-+-⎰-R R dz a az R R a a az R a R 22222222212= 2πk ρ⎥⎦⎤⎢⎣⎡-+----+---⎰⎰--RRRRaz d a az R a R a az d a az R a R )2(214)2(241222222222=2πk ρ⎥⎦⎤⎢⎣⎡+---+-----RRRRa az R a R a a az R a R 22222322222)2(612 =2πk ρ⎥⎦⎤⎢⎣⎡-++----222233)(6)()(2a R a R a a R R a R=2πk ρ⎪⎪⎭⎫⎝⎛-+++-232332a R R a R R R =2334a R k ρπ-. (注:z ≤R<a)习题1、求曲面az=xy 包含在圆柱x 2+y 2=a 2内那部分的面积.解:∵z x =a y, z y =ax , D={(r,θ)|0≤r ≤a, 0≤θ≤2π}, ∴曲面面积为: S=⎰⎰⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+Ddxdy a x a y 221=⎰⎰+a dr a r r d 022201πθ=)122(322-a π.2、求锥面z=22y x +被柱面z 2=2x 所截部分的曲面面积. 解:且面在xy 平面的投影区域为:D={(r,θ)|0≤r ≤1, 0≤θ≤2π}, 且z x =22yx x +, z y =22yx y +, ∴曲面面积为:S=⎰⎰⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++Ddxdy y x y y x x 2222221=⎰⎰10202rdr d πθ=π2.3、求下列均匀密度的平面薄板质心:(1)半椭圆2222by a x +≤1, y ≥0;(2)高为h, 底分别为a 和b 的等腰梯形.解:(1)设质心位置为(x ,y ), 由对称性得x =0.y =⎰⎰⎰⎰DDd yd σρσρ=⎰⎰⎰⎰DDd yd σσ=⎰⎰Dyd ab σπ2=dr r ab d ab ⎰⎰πθθπ122sin 2=π34b . (2)不妨设a 为下底,以下底中点为原点建立直角坐标系,则 D={(x,y)|l 1(y)≤x ≤l 2(y),0≤y ≤h}.设质心位置为(x ,y ), 由对称性得x =0.又等腰三角形的面积为2)(hb a +, ∴y =⎰⎰+D yd h b a σ)(2=⎰⎰+h y l y l dx ydy h b a 0)()(21)(2=⎰⎥⎦⎤⎢⎣⎡+---+--+h ydy a h y h a b a h y h b a h b a 02)(22)(2)(2=⎰⎥⎦⎤⎢⎣⎡+--+h ydy a h y h b a h b a 0)()(2=⎰⎪⎭⎫ ⎝⎛+-+h dy by y h b a h b a 02)(2=h b a a b )(32++. 其中:l 1(y): x=2)(2a h y h a b ---; l 2(y): x=2)(2ah y h b a +--.4、求下列均匀密度物体的质心.(1)z ≤1-x 2-y 2, z ≥0;(2)由坐标面及平面x+2y-z=1所围的四面体. 解:(1)设质心为(x ,y ,z ), 由对称性x =y =0, 应用柱面坐标变换有,z =⎰⎰⎰⎰⎰⎰VVdV dV z ρρ=⎰⎰⎰⎰⎰⎰--221020110201r r dz r d r d zdz r d r d ππθθ=dr r r dr r r )1()1(212102210--⎰⎰=31. (2)设质心为(x ,y ,z ),∵V=⎰⎰⎰VdV =121, ∴x =⎰⎰⎰--+21001211x y x dz dy xdx V =⎰⎰---2101)21(12x dy y x xdx =⎰-1024)1(12dx x x =41. y =⎰⎰⎰--+yy x dz dx ydy V 210122101=⎰⎰---ydx x y ydy 210210)21(12=⎰-21022)21(12dy y y =81. z =⎰⎰⎰--+yy x zdz dx dy V21012211=⎰⎰--+-ydx y x dy 2102210)12(6=⎰--21033)21(6dy y =41-.5、求下列均匀密度的平面薄板的转动惯量: (1)半径为R 的圆关于其切线的转动惯量;(2)边长为a 和b, 且夹角为φ的平行四边形,关于底边b 的转动惯量.解:(1)设切线为x=R, 密度为ρ.则对任一点P(x,y)∈D, P 到x=R 的距离为R-x ,从而转动惯量 J=ρ⎰⎰-Dd x R σ2)(=ρ⎰⎰+-Rdr r Rr R r d 022220)cos cos 2(θθθπ=ρ⎰+-πθθθ2024)cos 41cos 3221(d R= R 4. (2)设密度为ρ. 以底边为x 轴,左端点为原点,则转动惯量 J=⎰⎰Dd y σ2=ρ⎰⎰+by y a dx dy y ϕϕϕcot cot sin 02=3sin 33ϕρb a .6、计算下列引力:(1)均匀薄片x 2+y 2≤R 2, z=0对于轴上一点(0,0,c) (c>0)处的单位质量的引力;(2)均匀柱体x 2+y 2≤a 2, 0≤z ≤h 对于点P(0,0,c) (c>h)处的单位质量的引力;(3)均匀密度的正圆锥体(高h, 底半径R)对于在它的顶点处质量为m 的质点的引力.解:(1)根据对称性知引力方向在z 轴上,∴F z =0, F y =0.F z =k ρ⎰⎰++Ddxdy c y x c 2/3222)(=kc ρ⎰⎰+R dr c r r d 02/32220)(πθ=2k .∴F={0,0,2k }.(2)根据对称性知引力方向在z 轴上,∴F z =0, F y =0. F z =k ρ⎰⎰⎰-++-VdV c z y x c z 2/3222])([=k ρ⎰⎰⎰-+-a h dr c z r rd dz c z 02/322200])([)(πθ=-2k πρdz c z a c z h⎰⎥⎥⎦⎤⎢⎢⎣⎡-+-+022)(1=2k πρ[]h c h a c a --+-+2222)(. ∴F={0,0,2k πρ[]h c h a c a --+-+2222)(}.(3)以圆锥体的顶点为原点, 对称轴为z 轴建立xyz 三维直角坐标系. 根据对称性知引力方向在z 轴上,∴F z =0, F y =0.F z =k ρm ⎰⎰⎰++V dV z y x z 2/3222)(=k ρm ⎰⎰⎰+R hrR dz z r zrdr d 02/322020)(πθ=2k πR ρm ⎪⎪⎭⎫⎝⎛++-22221R h R h R . ∴F={0,0, 2k πR ρm ⎪⎪⎭⎫ ⎝⎛++-22221R h R h R }.7、求曲面⎪⎩⎪⎨⎧=+=+=ψϕψϕψsin sin )cos (cos )cos (a z a b y a b x (0≤φ≤2π, 0≤ψ≤2π) 的面积,其中常数a,b 满足0≤a ≤b.解:∵x φ=-(b+acos ψ)sin φ, y φ=(b+acos ψ)cos φ, z φ=0; x ψ=-asin ψcos φ, y ψ=-asin ψsin φ, z ψ=acos ψ.∴E=222ϕϕϕz y x ++=(b+acos ψ)2, G=222ψψψz y x ++=a 2, F=ψϕψϕψϕz z y y x x ++=0. ∴S=σd F EG D ⎰⎰'-2=σψd a b a D ⎰⎰'+)cos (=⎰⎰+ππψψϕ2020)cos (d a b d a =4ab π2.8、求螺旋面⎪⎩⎪⎨⎧===ϕϕϕb z r y r x sin cos (0≤r ≤a, 0≤φ≤2π) 的面积.解:∵x r =cos φ, y r =sin φ, z r =0; x φ=-rsin φ, y φ=rcos φ, z φ=b.∴E=222r r r z y x ++=1, G=222ϕϕϕz y x ++=r 2+b 2, F=ϕϕϕz z y y x x r r r ++=0.∴S=σd F EG D ⎰⎰'-2=σd b r D ⎰⎰'+22=⎰⎰+πϕ20022d dr b r a=π⎪⎪⎭⎫⎝⎛++++b b a a b b a a 22222ln .9、求边长为a 密度均匀的正方体关于其任一棱边的转动变量. 解:以正方体的一个顶点为原点,顶点上方的棱为z 轴,使 正方体处于第一卦限中,则正方体对z 轴上的棱的转动变量为: J z =ρ⎰⎰⎰+V dV y x )(22=ρ⎰⎰⎰+aaadz y x dy dx 00220)(=a ρ⎰⎰+aady y x dx 0220)(=a ρ⎰+adx a ax 032)31(=32a 5ρ. (ρ为正方体密度)。

(整理)重积分典型例题.

(整理)重积分典型例题.

重积分典型例题一、二重积分的概念、性质n1、二重积分的概念: f (x, y) d lim0 f ( i, i) iD 0i 1其中:D:平面有界闭区域,:D 中最大的小区域的直径(直径:小区域上任意两点间距离的最大值者),i : D 中第i 个小区域的面积2、几何意义:当f(x,y) 0时, f (x, y) d 表示以曲面z f(x,y)为曲顶,DD 为底的曲顶柱体的体积。

所以1 d 表示区域 D 的面积。

D3、性质(与定积分类似) ::线性性、对积分区域的可加性、比较性质、估值性质、二重积分中值定理 (03 年)1、在直角坐标系下计算二重积分(1) 若 D 为X 型积分区域: a x b, y1(x) y y2( x) ,则b y2( x )f(x, y)dxdya dxy(x)f (x, y)dyD a y1( x)2)若 D 为Y 型积分区域: c y d, x1( y) x x2( y) ,则d x2( y)D f(x,y)dxdycdyx1(y)f(x,y)dx3)D 必须经过分割才能化为若干块X-型或者Y-型区域之和,如图,则f ( x , y) d x d y ( f , x ) y d x d y ( ,f )x y d x d y( ,f) x y d xD D1 D2 D3、二重积分的计算(4)被积函数含有绝对值符号时,应将积分区域分割成几个子域,使被积函数 在每个子域保持同一符号,以消除被积函数中的绝对值符号。

(5)对称性的应用f (x, y)dxdy 2 f ( x, y)dxdy, f(x,y)关于y 为偶函数 区域D关于 x 轴对称 D D10, f (x, y)关于y 为奇函数f ( x, y)dxdy 2 f (x, y)dxdy, f (x, y)关于x 为偶函数 区域 D 关于 y 轴对称 D D10, f (x, y)关于x 为奇函数6)积分顺序的合理选择:不仅涉及到计算繁简问题,而且又是能否进行计算积分 例 1.设 f (x, y ) 为连续函数,交换二次积分1 0 0 0dy f (x,y )dx dy f (x,y )dx 的积分次序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章 重积分(A)1.填空题(1) 设()y x y x P 2,=,()23,y x y x Q =,定义于:D 10<<x ,10<<y ,则()σd y x P D⎰⎰, ()⎰⎰Dd y x Q σ,(2) 设曲顶柱体的顶面是()y x f z ,=,()D y x ∈,,侧面是母线平行于z 轴,准线为D的边界线的柱面,则此曲顶柱体的体积用重积分可表示为=V 。

(3) 在极坐标系中,面积元素为 。

2.利用二重积分的性质,比较下列积分大小(1) ()⎰⎰+Dd y x σ2与()⎰⎰+Dd y x σ3,其中积分区域D 由x 轴,y 轴以及直线1=+y x 所 围成。

(2) ()⎰⎰+D d y x σ2与()⎰⎰+Dd y x σ3,其中积分区域D 是由圆周()()21222=-+-y x 所围成。

3.利用二重积分性质,估计积分()⎰⎰++=Dd y x I σ92222的值,其中D 是圆形闭区域422≤+y x 。

4.交换积分()⎰⎰--a ax ax xa dy y x f dx 2222,的积分次序。

5.交换积分()⎰⎰-2120,ydx y x f dy 的积分次序。

6.交换二次积分()⎰⎰+-aa y y a y x f dy 022,的积分次序。

7.计算()⎰⎰+Dd y x σ23,其中D 是由两坐标轴及直线2=+y x 所围成的闭区域。

8.计算()⎰⎰+Dd y x x σcos ,其中D 是顶点分别为()0,0,()0,π和()ππ,的三角形区域。

9.计算()⎰⎰+Dyd x σsin 1,其中D 是顶点分别为()0,0,()0,1,()2,1和()1,0的梯形闭区域。

10.计算二重积分⎰⎰Ddxdy ,其中区域D 由曲线21x y -=与12-=x y 围成。

11.计算二重积分⎰⎰Dd xy σ2,其中D 是由圆周422=+y x 及y 轴所围成的右半闭区域。

12.计算⎰⎰+Dy x d 22σ,其中D 是圆环域4122≤+≤y x 。

13.计算()⎰⎰++Dd y x σ221ln ,D :122≤+y x ,0≥x ,0≥y 。

14.计算二重积分⎰⎰+Ddxdy y x 22,其中D :x y x 222≤+。

15.计算⎰⎰-1122xy dy e dx x 。

16.求区域()θcos 1+≤≤a r a 的面积。

17.求由x y 2=,2xy =,2=xy 围成的平面图形的面积。

18.求椭圆抛物面4422y x z --=与平面0=z 所围成的立体体积。

19.设平面上半径为a 的圆形薄片,其上任一点处的密度与该点到圆心的距离平方成正比,比例系数为k ,求该圆形薄片的质量。

20.由圆θcos 2=r ,θcos 4=r 所围成的均匀薄片,面密度ρ为常数,求它关于坐标原点O 的动惯量。

(B)1.选择题设空间区域1Ω:2222R z y x ≤++,0≥z ,2Ω:2222R z y x ≤++,0≥x ,0≥y ,0≥z ,则………………( )A .⎰⎰⎰⎰⎰⎰ΩΩ=214dv zdv B .⎰⎰⎰⎰⎰⎰ΩΩ=214dv dv C .⎰⎰⎰⎰⎰⎰ΩΩ=212ydv ydv D .⎰⎰⎰⎰⎰⎰ΩΩ=21zdv dv2.根据二重积分性质,比较下列积分大小: (1)()⎰⎰+Dd y x σln 与()[]⎰⎰+Dd y x σ2ln ,其中D 是三角形区域,三顶点分别为()0,1,()1,1,()0,2。

(2)()⎰⎰+Dd y x σln 与()[]⎰⎰+D d y x σ2ln ,其中D 是矩形闭区域:53≤≤x ,10≤≤y 。

3.估计积分值()⎰⎰++=Dd y x I σ10,其中D 是由圆周422=+y x 围成。

4.估计二重积分⎰⎰≤+++=10||||22sin cos 1001y x d yx I σ的值。

5.交换二次积分次序()⎰⎰--0112,y dx y x f dy 。

6.交换二次积分的次序:()⎰⎰-223211,y y dy y x f dy 。

7.改变积分次序()⎰⎰-x x x dy y x f dx 2,10。

8.计算二重积分⎰⎰Dxy dxdy ye ,其中D 是由直线1=x ,2=x ,2=y 及双曲线1=xy 所围成的区域。

9.计算二重积分⎰⎰-x y dy edx 02102。

10.计算积分⎰⎰+-xdy y x x dx 022101。

11.⎰⎰+σd e y x 其中D 是由1||||≤+y x 所确定的闭区域。

12.()⎰⎰-+Dd x y x σ22,其中D 是由直线2=y ,x y =及x y 2=所围成的闭区域。

13.计算⎰⎰Ddxdy xy 22,其中D 由抛物线x y =2及直线2-=x y 所围成。

14.计算dx xy x dy y⎰⎰1210sin 。

15.计算⎰⎰Dxy dxdy e ,D 是由曲线2x y =,0=y ,1=x 所围成的区域。

16.计算()⎰⎰-+-+-+a x a a xdydx yx a yx 0222222241。

17.计算⎰⎰⎪⎪⎭⎫ ⎝⎛++--D dxdy y x y x 21222211,其中D 为122≤+y x 在第一象限的部分。

18.计算()⎰⎰≤++122||||y x dxdy y x 。

19.计算⎰⎰≤+1||||||y x dxdy xy 。

20.计算dxdy x y y x ⎰⎰≤≤≤≤--10112|| 21.计算三重积分⎰⎰⎰Ωxdw ,其中Ω由三个坐标面与平面12=++z y x 所围成。

22.计算()⎰⎰⎰++Vdxdydz z y x sin ,其中V 是平面2π=++z y x 和三个坐标平面所围成的区域。

23.计算积分⎰⎰⎰=Vxdxdydt I 。

24.计算积分()⎰⎰⎰++Vdxdydz z y x 22,其中V 为第一象限中由旋转抛物面22y x z +=与圆柱面122=+y x 所围成的部分。

25.计算()⎰⎰⎰Ω+=dxdydz y x I 22,其中Ω是由曲线⎩⎨⎧==022x zy 绕z 轴旋转一周而成的曲面与平面2=z ,8=z 所围的立体。

26.求由下列曲面所界的体积,y x z +=,xy z =,1=+y x ,0=x ,0=y 。

27.求由圆锥面224y x z +-=与旋转抛物面222y x z +=所围立体的体积。

28.求平面1=++czb y a x 被三坐标面所割出部分的面积。

29.求底圆半径相等的两个直交圆柱面222R y x =+及222R z x =+所围立体的表面积。

30.一个物体由旋转抛物面22y x z +=及平面1=z 所围成,已知其任一点处的体密度ρ与到z 轴的距离成正比,求其质量m 。

31.求由圆θcos a r =,θcos 2a r =所围成的均匀薄片的重心。

32.一均匀物体(密度ρ为常量)占有的闭区域Ω是由曲面22y x z +=和平面0=z ,a x =||,a y =||所围成的。

(1) 求其体积;(2) 求物体的重心;(3) 求物体关于z 轴的转动质量。

(C)1.将下面积分化为重积分,并求I 的值。

()()⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=-+---+-ϕϕϕϕsin 0sin sin 2222222222a b a y b ycgt y x y b y a y x dy dx e dy dx e I ,其中b a <<0,20πϕ<<为常数。

2.设区域D 为图中斜线部分,试将二重积分()⎰⎰=Ddxdy y x f I ,化为两种次序的二次积分。

3.计算三重积分()⎰⎰⎰Ω+dv z x ,其中Ω是由曲面22y x z +=与221y x z --=所围成的区域。

4.计算⎰⎰+Ddxdy y x |43|,D :122≤+y x 。

5.设()y x f ,连续,且()()⎰⎰+=Ddudv v u yf x y x f ,,,其中D 是由xy 1=,1=x ,2=y 所围区域,求()y x f ,。

6.(1) 计算⎰⎰--σσd ey x 22,其中(){}222|,R y x y x ≤+=σ;(2) 试证⎰∞+-=22πdx e x 。

7.求曲面Σ:122++=y x z 上任一点的切平面与曲面S :22y x z +=所围立体Ω的体积。

8.设()()⎰⎰⎰≤++++=2222222t z y x dxdydz z y x f t F ,其中()u f 为连续函数,()0f '存在,且()00=f ,()10='f ,求()5limt t F t →。

第九章 重积分(A)1.填空题(1) 设()y x y x P 2,=,()23,y x y x Q =,定义于:D 10<<x ,10<<y ,则()σd y x P D⎰⎰, > ()⎰⎰Dd y x Q σ,(2) 设曲顶柱体的顶面是()y x f z ,=,()D y x ∈,,侧面是母线平行于z 轴,准线为D的边界线的柱面,则此曲顶柱体的体积用重积分可表示为=V ()⎰⎰Dd y x f σ|,|。

(3) 在极坐标系中,面积元素为θσrdrd d =。

2.利用二重积分的性质,比较下列积分大小(1) ()⎰⎰+Dd y x σ2与()⎰⎰+Dd y x σ3,其中积分区域D 由x 轴,y 轴以及直线1=+y x 所 围成。

解:在区域D 内,1≤+y x ,两边乘以()2y x +,得()()23y x y x +≤+,故由性质得:()()⎰⎰⎰⎰+≤+DDd y x d y x σσ23(2) ()⎰⎰+D d y x σ2与()⎰⎰+Dd y x σ3,其中积分区域D 是由圆周()()21222=-+-y x 所围成。

解:令两被积函数相等,得0=+y x 或1=+y x ,直线1=+y x 与圆周()()21222=-+-y x 交点为()0,1由图知:D 位于1≥+y x 的半平面内故()()32y x y x +≤+,因而()()⎰⎰⎰⎰+≤+DDd y x d y x σσ32。

3.利用二重积分性质,估计积分()⎰⎰++=Dd y x I σ92222的值,其中D 是圆形闭区域422≤+y x 。

解:因为4022≤+≤y x ,故17922922≤++≤y x ,故()⎰⎰⎰⎰⎰⎰=⨯=≤++≤=DDDd d y x d ππσσσπ10827417922936224.交换积分()⎰⎰--a ax ax xa dy y x f dx 2222,的积分次序。

相关文档
最新文档