机械能守恒定律及其应用(1)

合集下载

机械能守恒定律的理解与实际应用

机械能守恒定律的理解与实际应用

机械能守恒定律的理解与实际应用机械能守恒定律在动力学中是一条重要物理定律。

它是功能转换的重要依据。

同时也是物理学中的一种重要的解题方法。

因此对于机械能守恒定律的掌握也尤为重要,对于机械能守恒定律的理解和应用我做了如下的总结,供大家参考。

首先我们先对机械能的概念做一下介绍,物体的机械能是指物体的动能和势能的总和。

这是机械能的定义,在具体计算时,学生通常把不同状态下的动能和势能加在一起,这是概念不清。

动能、势能和机械能都是状态量,同一物体不同状态下,这三个量是会变化的,所以要分别运算;同样即使是同一物体,状态不同,动能和势能是不能相加而等于物体的机械能。

机械能守恒定律的内容是:在只有重力或弹力做功的情况下,物体的动能和重力势能(或弹性势能)发生相互转化,机械能的总量保持不变。

机械能守恒定律的公式:机械能守恒定律能解决的问题(1)与物体位置变化有关的运动问题如:自由落体运动,抛体运动,物体在光滑斜面上的自由滑动等等。

(2)求解动能、势能或只与物体速度和高度有关的问题。

每个物理定理和定律都会有它特定的应用条件,机械能守恒定律应用时也需要一定的条件:首先研究对象一般为一个物体(或一个系统即一个整体),同时这个物体只受重力(弹力);或者除重力(弹力)外其它的合力为零。

由于机械能守恒定律中涉及物体的两种状态和物体两种位置,初学者在应用时不容易掌握而且容易混淆。

我们通过实例来具体分析一下:(1)自由落体过程物体机械能守恒。

如图-1质量为m的物体,从高处自由下落。

当它位于最高点(位置A时),高度是h1,速度v1=0.因此Ek1=0,Ep1=mgh1,物体的总机械能为:E1=Ek1+Ep1=mgh1当物体下落到位置B时,它的高度是h2,这时它的速度所以物体的总机械能为(2)抛体运动过程中,物体的机械能守恒。

无论物体做的是平抛、斜抛、竖直上抛或竖直上抛等等,只要是忽略空气阻力的抛体运动,由于物体在空中只受重力,只有位置的高低变化,所以只有重力在做功,物体在整个的运动过程中机械能不变,只有重力势能和动能之间进行相应的转化,但总的机械能保持不变。

机械能守恒定律的应用

机械能守恒定律的应用

机械能守恒定律的应用在物理学中,机械能守恒定律是一条基本的物理定律,它描述了在一个孤立的力学系统中,总的机械能保持不变。

这个定律可以被广泛应用于各种物理现象和工程问题中。

本文将探讨机械能守恒定律的应用,并以实际例子加以说明。

一、弹簧势能和重力势能的转化机械能守恒定律可以应用于弹簧势能和重力势能的相互转化的问题。

考虑一个弹簧与一个质点连接,并将这个质点放置在重力场中。

当质点在弹簧的作用下沿着垂直方向运动时,弹簧的势能和重力势能会相互转化。

假设质点在某一时刻具有高度h,速度v,弹簧的劲度系数为k。

根据机械能守恒定律,质点的机械能E可以表示为:E = mgh + (1/2)mv^2 + (1/2)kx^2其中m是质点的质量,g是重力加速度,x是弹簧的伸缩量。

在运动过程中,如果质点在距离平衡位置的位置发生变化,即x不等于零,那么弹簧的势能和重力势能会发生相应的变化。

然而,总的机械能E在整个过程中保持不变。

二、轨道运动中的机械能守恒机械能守恒定律在轨道运动中也有重要的应用。

考虑一个质点在离心力和引力的作用下在一个假设无摩擦的平面上运动。

根据机械能守恒定律,质点的机械能E在整个运动过程中保持不变。

在一个闭合轨道上,质点具有速度v和离心力F_c,引力和重力力F_g。

根据机械能守恒定律,质点的机械能E可以表示为:E = (1/2)mv^2 - GmM/r其中M是引力中心的质量,r是质点与引力中心之间的距离,G是引力常数。

在闭合轨道上,质点的速度和距离会相应变化,但机械能E保持不变。

三、动能转化与物体碰撞机械能守恒定律还可以应用于动能转化和物体碰撞的问题。

在一个孤立的力学系统中,当两个物体碰撞时,它们的机械能可以部分转化为其他形式的能量,如热能或变形能。

考虑两个质量分别为m1和m2的物体,在碰撞前具有速度v1和v2。

根据机械能守恒定律,碰撞后物体的机械能E'可以表示为:E' = (1/2)m1v1'^2 + (1/2)m2v2'^2其中v1'和v2'是碰撞后物体的速度。

机械能守恒定律及其应用

机械能守恒定律及其应用

机械能守恒定律的意义
揭示了能量守恒的实质
机械能守恒定律是能量守恒定律在力 学系统中的具体表现,它表明在满足 一定条件下,系统中的机械能可以自 发的相互转化,但总能量保持不变。
提供了解决问题的方法
在解决力学问题时,如果满足机械能 守恒定律的条件,可以将问题简化为 求解初末状态的机械能,从而大大简 化计算过程。
VS
详细描述
火箭升空过程中,燃料燃烧产生大量气体 ,向下喷射产生推力,使火箭加速上升。 在这个过程中,火箭的重力势能和动能之 间相互转化,机械能总量保持不变,也是 机械能守恒定律的应用。
水利发电站工作过程中的机械能守恒
ቤተ መጻሕፍቲ ባይዱ总结词
水轮机在水的冲力作用下旋转,将水的重力 势能转化为水轮机的动能,再通过发电机转 化为电能,整个过程中机械能总量保持不变 。
之间的关系。
数学表达式的理解
机械能守恒
机械能守恒定律表明,在没有外 力做功的情况下,质点的机械能 (动能和势能之和)保持不变。
适用范围
机械能守恒定律适用于没有外力 做功的系统,如自由落体运动、 弹性碰撞等。
守恒原因
机械能守恒的原因是重力做功与 路径无关,只与初末位置的高度 差有关。
数学表达式的应用
单摆在摆角小于5°的理想情况下,只受重力和摆线的拉力,不涉及其他外力。因此,其 机械能守恒。
详细描述
单摆是一种简单的机械系统,由一根悬挂的细线和下面的小球组成。当单摆在垂直平面 内摆动时,其动能和势能之间相互转换。在摆角小于5°的理想情况下,由于空气阻力和 摩擦力可以忽略不计,因此只有重力和摆线的拉力作用在单摆上。根据机械能守恒定律
,单摆的动能和势能之和保持不变,即机械能守恒。
弹簧振子的机械能守恒

机械能守恒定律及其应用

机械能守恒定律及其应用

机械能守恒定律及其应用机械能守恒定律及其应用机械能守恒定律是物理学中的重要定律之一,它指出在一个自由体系中,机械能守恒不变。

这个定律是基于能量守恒定律发展出来的,而机械能,则包括系统的动能和势能。

机械能守恒定律的应用非常广泛,可以用来解释或预测各种物理现象,例如弹性碰撞、滑动摩擦等。

机械能和动能在物理学中,机械能被定义为系统的动能和势能之和。

动能表示系统内物体的运动能量,而势能则表示系统中物体由于它们的位置而具有的能量。

这两种能量可以通过下面的公式来计算:机械能= 动能+ 势能动能= 0.5mv^2,其中m为物体的质量,v为物体的速度势能= mgh,其中m为物体的质量,g为重力加速度,h为物体的高度机械能守恒定律机械能守恒定律表述如下:一个系统中,如果所有作用力都是保守力,那么机械能守恒不变。

在这个定律中,所谓的保守力是指只与位置有关的力。

在这样的力作用下,系统的总机械能将保持不变,即机械能的初始值等于机械能的最终值。

如果存在非保守力,如滑动摩擦、空气阻力等,那么系统的机械能将不再是恒定的。

应用弹性碰撞在物理学中,弹性碰撞是指两个物体相撞后不会失去动能的碰撞。

这个现象可以用机械能守恒定律来解释。

考虑两个质量分别为m1和m2的小球以速度v1和v2相向运动,它们碰撞后弹性分离,速度分别变为v1'和v2'。

在弹性碰撞过程中,小球之间的作用力可以看做保守力,因此可以使用机械能守恒定律:1/2 m1v1^2 + 1/2 m2v2^2 = 1/2 m1v1'^2 + 1/2 m2v2'^2通过解这个方程组,可以求出小球在弹性碰撞后的速度。

滑动摩擦滑动摩擦是指物体之间相对滑动时产生的阻力。

摩擦力常常会导致机械能的损失,因此在实际物理问题中,必须考虑摩擦力对机械能守恒定律的影响。

考虑一个物体运动在一个光滑的水平面上,它的速度为v0,然后被一个恒定的摩擦力Ff反向作用,作用距离为d,使物体在最终速度为v的情况下停下来。

机械能守恒定律的理解及应用

机械能守恒定律的理解及应用

机械能守恒定律的理解及应用介绍机械能守恒定律是物理学中一个重要的基本原理,它简要地表达了能量守恒的概念。

本文将深入探讨机械能守恒定律的理解和应用,包括定义、表达式、假设条件以及一些重要的应用实例。

机械能守恒定律的定义在物理学中,机械能是指由物体的位置和运动状态所具有的能量。

机械能由两部分组成:动能和势能。

动能是由物体的运动所带来的能量,而势能是由物体的位置所带来的能量。

机械能守恒定律指的是,在没有外力做功和没有能量转换的情况下,一个系统的机械能保持不变。

这意味着,系统中的动能和势能之和在任意时间点都是一个常量。

机械能守恒定律的表达式根据机械能守恒定律的定义,可以得到它的数学表达式:E = K + U其中,E表示机械能,K表示动能,U表示势能。

根据动能和势能的具体定义,可以将它们进行展开:K = (1/2)mv^2U = mgh其中,m表示物体的质量,v表示物体的速度,g表示重力加速度,h表示物体的高度。

将动能和势能代入机械能的表达式,可以得到简化后的机械能守恒定律的表达式:E = (1/2)mv^2 + mgh机械能守恒定律的假设条件在应用机械能守恒定律时,需要满足一些假设条件。

这些条件包括:1.忽略空气阻力:在实际情况下,空气阻力会导致能量的损失,但在应用机械能守恒定律时,通常忽略空气阻力的影响。

2.无能量转换:假设在系统中没有能量的转换,即没有能量从一个形式转变为另一个形式。

这些假设条件在一些具体情况下可能不适用,但通常情况下可以作为近似使用,从而简化问题的分析。

机械能守恒定律的应用实例机械能守恒定律在物理学中有广泛的应用。

以下是一些重要的应用实例:1.自由落体问题:当一个物体从一定高度自由落下时,可以使用机械能守恒定律来求解物体的速度和位置随时间的变化。

根据机械能守恒定律,物体的势能转化为动能,从而可以得到物体的速度和位置随时间的关系。

2.弹性碰撞问题:在弹性碰撞中,机械能守恒定律可以用来求解物体的速度和动量变化。

机械能守恒定律及应用

机械能守恒定律及应用
0 4
例、人和雪橇的总质量为75kg,沿倾角θ=37°且足 够长的斜坡向下运动,已知雪橇所受的空气阻力与速 度成正比,比例系数k未知,从某时刻开始计时,测 得雪橇运动的v-t图象如图中的曲线AD所示,图中AB 是曲线在A点的切线,切线上一点B的坐标为(4, 15),CD是曲线AD的渐近线,g取10m/s2,试回答 和求解: ⑴雪橇在下滑过程中,开始做什么运动,最后做什么 V/ms-1 运动? B 15 ⑵当雪橇的速度为5m/s时,雪橇 D 10 C 的加速度为多大? ⑶雪橇与斜坡间的动摩擦因数μ多大? 5 A t/s
5.如图所示,倾角为θ的直角斜面体固定在水平地面上,其 顶端固定有一轻质定滑轮,轻质弹簧和轻质细绳相连,一端 接质量为m2的物块B,物块B放在地面上且使滑轮和物块间 的细绳竖直,一端连接质量为m1的物块A,物块A放在光滑 斜面上的P点保持静止,弹簧和斜面平行,此时弹簧具有的 弹性势能为Ep.不计定滑轮、细绳、弹簧的质量,不计斜面、 滑轮的摩擦,已知弹簧劲度系数为k,P点到斜面底端的距离 为L.现将物块A缓慢斜向上移动,直到弹簧刚恢复原长时的 位置,并由静止释放物块A,当物块B刚要离开地面时,物 块A的速度即变为零,求: (1)当物块B刚要离开地面时,物块A的加速度; (2)在以后的运动过程中物块A最大速度的大小.
2 3
3.如图为一固定在地面上的楔形木块,质量 分别为m和M两个物体, 用轻质细绳相连跨过 固定在斜面顶端的定滑轮, 已知斜面的倾角为 α, 且M>m sinα。用手托住物体M, 使之距地 面高为h时,物体m恰停在斜面的底端,细绳 恰好绷直,并且与斜面的斜边平行,如果突 然释放物M,不计一切摩擦,物体m能沿斜 面滑行的最大距离是多少? 设斜面足够长。
机械能守恒定律及其应用

机械能守恒定律

机械能守恒定律

机械能守恒定律机械能守恒定律(1)机械能包括动能、重力势能和弹性势能. 其中,重力势能的大小和零势面的选取有关,可正可负,是个标量;弹性势能是物体由于发生形变而具有的能,如果一个弹簧的形变量不变,那么它的弹性势能也不变.(2)机械能守恒定律:在只有重力或弹力做功的物体系统内,动能与势能可以互相转化,而总的机械能保持不变.k p k p E E E E ''+=+,或k p E E ∆=∆(3)机械能守恒定律的应用①条件:对某一物体,若只有重力(或弹簧弹力)做功,其他力不做功(或其他力做功的代数和为零),则该物体机械能守恒;对某一系统,物体间只有动能和重力势能及弹性势能的相互转化,系统和外界没有发生机械能的传递,机械能也没有化为其他形式的能,则系统机械能守恒.②判断机械能守恒:若物体或系统只有重力或系统内弹力做功,则机械能守恒;若物体或系统中只有动能和势能的相互转化,则机械能守恒;物体间发生非弹性碰撞(除特别说明)时,机械能不守恒.③机械能守恒定律与动能定理的比较:机械能守恒定律反映的是物体初末状态的机械能间的关系,这种守恒是有条件的;动能定理反映了物体动能变化与合外力做功的关系,这个关系总是成立的.④应用机械能守恒定律时,要先明确研究对象,根据研究对象经过的物理过程,进行受力和做功分析,判断机械能是否守恒,若守恒,再恰当地选取参考平面,确定研究对象在初末态的机械能,最后列方程求解. ⑤重力做了多少功,物体的重力势能就改变了多少,即G p W E =-.⑥若机械能不守恒,那么除了重力及系统内弹力之外的其它力所做的功就是机械能的改变量.【诊断自测】1. 朝诗人杜甫的《登高》中有这样两句诗:“无边落木萧萧下,不尽长江滚滚来。

”从物理学的角度来说,“落木萧萧下”的过程是 能转化为 能;而“滚滚来”的长江水蕴含丰富的 能。

2. 如图所示,长为L 的匀质链条,对称地悬挂在光滑的小滑轮上.若链条因受到微扰而滑动,则链条刚脱离滑轮时的速度为 。

机械能守恒定律及其应用

机械能守恒定律及其应用

§3 机械能守恒定律及其应用一、机械能守恒定律1.机械能守恒定律的两种表述(1)在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。

(2)如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。

2.对机械能守恒定律的理解:(1)机械能守恒定律的研究对象一定是系统,至少包括地球在内。

通常我们说“小球的机械能守恒”其实一定也就包括地球在内,因为重力势能就是小球和地球所共有的。

另外小球的动能中所用的v,也是相对于地面的速度。

(2)当研究对象(除地球以外)只有一个物体时,往往根据是否“只有重力做功”来判定机械能是否守恒;当研究对象(除地球以外)由多个物体组成时,往往根据是否“没有摩擦和介质阻力”来判定机械能是否守恒。

(3)“只有重力做功”不等于“只受重力作用”。

在该过程中,物体可以受其它力的作用,只要这些力不做功,或所做功的代数和为零,就可以认为是“只有重力做功”。

【例1】如图物块和斜面都是光滑的,物块从静止沿斜面下滑过程中,物块机械能是否守恒?系统机械能是否守恒?3.解题步骤⑴确定研究对象和研究过程。

⑵判断机械能是否守恒。

⑶选定一种表达式,列式求解。

4.应用举例【例2】 如图所示,半径为R 的光滑半圆上有两个小球B A 、,质量分别为M m 和,由细线挂着,今由静止开始无初速度自由释放,求小球A 升至最高点C 时B A 、两球的速度?【例3】如图所示,均匀铁链长为L ,平放在距离地面高为L2的光滑水平面上,其长度的51悬垂于桌面下,从静止开始释放铁链,求铁链下端刚要着地时的速度?二、机械能守恒定律的综合应用【例4】 质量为0.02 kg 的小球,用细线拴着吊在沿直线行驶着的汽车顶棚上,在汽车 距车站15 m 处开始刹车,在刹车过程中,拴球的细线与竖直方向夹角θ=37°保持不变,如图所示,汽车到车站恰好停住.求:(1)开始刹车时汽车的速度;(2)汽车在到站停住以后,拴小球细线的最大拉力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

答案:C
4.如图所示,细绳跨过定滑轮悬挂两物体M和m,且M>m,不计 摩擦,系统由静止开始运动过程中( )
A.M、m各自的机械能分别守恒 B.M减少的机械能等于m增加的机械能 C.M减少的重力势能等于m增加的重力势能 D.M和m组成的系统机械能守恒 答案:BD
解析:M下落过程,绳的拉力对M做负功,M的机械能不守恒,机 械能减少;m上升过程,绳的拉力对m做正功,m的机械能增 加,A错误;对M、m组成的系统,机械能守恒,易得B、D正 确;M减少的重力势能并没有全部用于m重力势能的增加, 还有一部分转变成M、m的动能,所以C错误.
机械能不守恒 D.若把斜面从C点锯断或弯成圆弧状,物体都不能升高h ,但机
械能仍守恒 答案:D
解析:若把斜面从C点锯断,物体将从C点做斜上抛运动,到最高 点速度不为零,据机械能守恒定律,物体不能升高到h;若弯
疑难精讲
疑难点一.我们常用哪些方法判断机械能是否守恒? 名师在线:1.利用机械能的定义判断:分析动能与势能的和是
否变化. 如:匀速下落的物体动能不变,重力势能减少,物体的机械能必
减少. 2.用能量转化来判断:若物体系统中只有动能和势能的相互转
化,而无机械能与其他形式的能的转化,则物体系统的机械 能守恒.
答案:BC
2.下列关于机械能是否守恒的论述,正确的是能一定守恒 C.合外力对物体做功等于零时,物体的机械能一定守恒 D.只有重力对物体做功时,机械能一定守恒
解析:判断机械能是否守恒,就要依据机械能守恒的条件来分 析.要看是不是只有重力(或系统内弹簧的弹力)做功,而不 是看物体如何运动.物体做变速曲线运动,机械能可能守恒, 如平抛运动,A对;合外力做功为零,只是动能不变,势能的变 化情况不确定,机械能不一定守恒,如物体匀速下落,机械能 减少,C错;沿水平面运动的物体,重力势能不变,如果不是匀 速,动能发生变化,机械能就不守恒,B错.只有重力对物体做 功时,机械能一定守恒,D对.
平面时所减小的重力势能相等 D.在地面上的物体,它具有的重力势能一定等于零
解析:重力势能具有相对性,重力势能为零的物体,也可以对别 的物体做功,例如规定地面处的水桶重力势能为零,它也可 以对水井内的水做功,A项错.势能属于系统能量,重力势能 是地球和物体共有的,B项正确.重力势能的改变与路径无 关,只与物体重力大小和初末位置的高度差有关,C项正确. 零势能参考面选择的不同,物体的重力势能值就不同,D项 错.
答案:AD
3.有三个质量都为m的小球a、b、c,以相同的速度v0在空中同 一位置分别竖直向上、水平和竖直向下抛出(忽略空气阻 力),三球落地时( )
A.动能不同
B.重力做功不同
C.机械能相同D.重力势能变化量不同
解析:三球抛出时的动能和重力势能均相同,机械能相同,抛出 后只有重力做功,机械能守恒,C正确,A错.因重力做功与路 径无关,所以B、D错.
3.对于一些绳子突然绷紧、物体间非弹性碰撞等问题,机械能 一般不守恒,除非题中有特别说明或暗示.
名师提示:判断机械能守恒时,应注意理解机械能守恒的条件, 不要把“只有重力和弹力做功”理解为只受重力和弹力, 也不要把“其他力不做功”理解为物体受的合力为零.
疑难点二.请试着比较机械能守恒定律和动能定理的区别. 名师在线:1.机械能守恒定律的适用是有条件的,而动能定理
3.弹性势能 (1)概念:物体由于发生弹性形变而具有的能. (2)大小:弹性势能的大小与形变量及劲度系数有关,弹簧的形
变量越大,劲度系数越大,弹簧的弹性势能越大. (3)弹力做功与弹性势能变化的关系:弹力做正功,弹性势能减
少;弹力做负功,弹性势能增加.即弹簧恢复原长过程中弹力 做正功,弹性势能减少,形变量变大的过程中弹力做负功,弹 性势能增加.
二、机械能守恒定律 1.内容:在只有重力(或弹簧的弹力)做功的物体系统内,动能与
重力势能(或弹性势能)可以相互转化,而总的机械能保持不 变. 2.表达式:Ek1+Ep1=Ek2+Ep2. 3.机械能守恒的条件:只有重力或系统内的弹簧弹力做功.
双基精练
1.下列关于重力势能的说法正确的是( ) A.重力势能等于零的物体,不可能对别的物体做功 B.重力势能是地球和物体共有的,而不是物体单独具有的 C.在同一高度将物体以初速度v0向不同方向抛出,落到同一水
比它在参考平面上大还是小,这与功的正、负的物理意义不 同.
(3)重力势能是物体和地球共有的.重力势能具有相对性,重力 势能的大小与参考平面的选取有关.重力势能的变化是绝 对的,与参考平面的选择无关 .
(4)重力做功与重力势能变化的关系:重力做正功时,重力势能 减少;重力做负功时,重力势能增加;重力做多少正(负)功,重 力势能就减少(增加)多少,即:WG=-ΔEp.
易错点拨
易错点一由于对到达最高点时速度认识不清导致出错
自我诊断1如图所示,一物体以初速度v0冲向光滑斜面AB,并 能沿斜面升高h,下列说法中正确的是( )
A.若把斜面从C点锯断,由机械能守恒定律知,物体冲出C点后 仍能升高到h
B.若把斜面弯成圆弧形,物体仍能沿AB'升高h C.若把斜面从C点锯断或弯成圆弧状,物体都不能升高h,因为
具有普适性.
2.机械能守恒定律反映的是物体初、末状态的机械能间的关 系,而动能定理揭示的是物体的动能变化与引起这种变化 的合外力的功的关系,既要考虑初、末状态的动能,又要认真 分析对应这两个状态间经历的过程中各力做功情况.
3.动能定理侧重于解决一个研究对象受合外力做功的影响,而 引起自身动能的变化,即外界因素与自身变化的关系;而机 械能守恒定律是排除外界因素对系统的影响,研究系统内 两个或多个研究对象之间动能和势能相互转化的规律.
§5.3 机械能守恒定律及其应用
知识精要
一、机械能 1.重力做功的特点 重力做功与运动路径无关,只与初末位置的高度差有关,大
小:WG=mgΔh. 2.重力势能 (1)概念:物体的重力势能等于它所受重力与所处高度的乘积.
公式:Ep=mgh. (2)重力势能是标量,但有正、负,其意义是表示物体的重力势能
相关文档
最新文档