车牌识别系统答辩

合集下载

车牌识别答辩PPT课件

车牌识别答辩PPT课件
• 本次设计有待进一步研究和探讨的不足之处: (1)车牌定位运算量虽小,但对图像预处理要求高,否则不 能精确定位 (2)在复杂背景下对车牌信息的识别度不高。
. 16
. 17
放映结束 感谢各位批评指导!
谢 谢!
让我们共同进步
. 18
就是汽车牌照识别技术。
.
3ห้องสมุดไป่ตู้
•车牌识别技术的应用
1、停车场收费管理系统 2、高速公路超速自动化监管系统和高速公路收费管理系统 3、公路布控管理系统 4、城市交通路口的“电子警察” 5、封闭式居民小区物业管理及重要部门的保安管理
. 4
国内外发展现状
• 车牌识别技术研究在国外起步比较早,早在20世纪80年代, 便有一些零零散散的图像处理方法用于车牌识别的某些具 体应用。 到目前,各国均也有适用于本国的车牌识别系 统。各国的车牌识别产品虽然不同,但基本上都是基于车 辆探测器的系统,设备投资都是相当的巨大。
. 6
车牌识别系统
• 车牌识别系统的流程图
车牌图像 采集
车牌图像 预处理
输出识别 结果
字符识别
.
对车牌进 行定位
车牌字符 分割
7
• 图像灰度化 • 因为彩色图像中包含了大量的无用信息,会在定位和识别
中造成干扰,也会拖慢识别的速度,所以就需要将彩色图 像进行灰度化处理,这就是图像灰度化。
. 8
1.车牌图像预处理
• 车牌图像预处理流程图
边 缘 检 测
图 像 腐 蚀
图 像 填 充
形 态 滤 波
. 9
(1)边缘检测
边缘是图像分割、目标区域识 别、区域形状提取等图像分析领域 十分重要的基础,在车牌识别系统 提取车牌位置占了很重要的地位。 所以必须进行边缘检测。

车牌识别设计与实现(毕业论文)

车牌识别设计与实现(毕业论文)

目录摘要 (Ⅰ)Abstract (II)1 绪论 (1)1。

1 课题的来源及意义 (1)1.2 课题主要研究的问题 (2)1。

3 系统设计的目标及基本思路 (2)1.3.1 设计目标 (2)1.3。

2 基本思路 (3)2 图像预处理 (4)2.1 汽车牌照的特征 (4)2。

2 灰度变换 (5)2.3 图像增强 (6)2.4 图像边缘提取及二值化 (7)2。

4。

1 图像边缘提取 (7)2。

4.2 灰度图像二值化 (14)2。

5 形态学滤波 (15)3 车牌定位方法研究 (19)3.1 车牌定位常用方法介绍 (19)3.1.1 基于纹理特征分析的定位方法 (19)3。

1。

2 基于数学形态学的定位方法 (19)3.1。

3 基于边缘检测的定位方法 (19)3.1。

4 基于小波分析的定位方法 (19)3.1。

5 基于图像彩色信息的定位方法 (20)3。

2 基于行扫描灰度跳变分析的车牌定位方法 (20)4 车牌识别方法研究 (22)4。

1 牌照区域的分割和图像进一步处理 (22)4.1.1牌照区域的分割 (22)4。

1.2车牌进一步处理 (22)4.2 字符的分割与归一化 (23)4.2。

1字符分割 (23)4。

2。

2字符归一化 (24)4.3 字符的识别 (24)5 总结与展望 (27)5。

1 总结 (27)5.2心得体会 (27)5。

3展望 (28)致谢 (29)参考文献 (30)附录一 (31)摘要车牌识别系统作为智能交通系统的一个重要组成部分,在交通监控中占有很重要的地位.车牌识别系统可分为图像预处理、车牌定位和字符识别3个部分,其中车牌定位作为获得车辆牌照图像的重要步骤,是后续的字符识别部分能否正确识别车牌字符的关键环节。

车牌定位系统实现对车辆牌照进行定位的功能,即从包含整个车辆的图像中找到车牌区域的位置,并对该车牌区域进行定位显示,将定位信息提供给字符识别部分。

针对车牌本身固有的特征,本文首先介绍了在车牌定位过程中常用的几种数字图像处理技术:图像的二值化处理、边缘检测和图像增强等。

基于matlab车牌识别毕业论文

基于matlab车牌识别毕业论文

摘要伴随着时代的发展,车辆的逐渐走进千家万户,车辆的管理日益困难,于是车牌识别系统的应用得到了广泛发展。

车牌识别系统主要包括了图像采集、图像预处理、车牌定位、字符分割、字符识别五个核心部分。

本文侧重于介绍图像预处理、车牌定位、字符分割三个模块的实现。

车牌识别系统使车辆管理更智能化,数字化,有效的提升了交通管理的方便性和有效性。

本文的图像预处理环节则采用图像灰度化和用Roberts算子对车牌进行边缘检测。

车牌定位和分割采用的是利用数学形态法来确定车牌位置,然后利用车牌彩色信息的彩色分割法来完成车牌部位分割。

分割后的字符先进行二值化处理,再对垂直投影进行扫描后完成对字符的分割。

本课题是基于Matlab下的环境下对其进行仿真。

关键词:图像预处理图像定位图像分割ABSTRACTWith the development of era, the car gradually into the homes, vehicles management is becoming more and more difficult, so the application of license plate recognition system has been widely developed. License plate recognition system mainly includes image acquisition, image preprocessing, license plate location, character segmentation, character recognition five core part. This paper focuses on the image preprocessing, license plate location, character segmentation, the realization of the three modules. The vehicle license plate recognition system management more intelligent, digital, can effectively enhance the convenience and effectiveness of traffic management. The image grayscale image preprocessing step, the use and license plate with Roberts operator edge detection. License plate location and segmentation is using mathematical morphology method is used to determine the license plate location, license plate color information of color segmentation method is then used to complete the license plate segmentation. After the character segmentation binarization processing first, and then to complete vertical projection after scanning to the segmentation of the characters. This topic is based on carry on the simulation under Matlab environment.Key Words:image preprocessing, license plate localization, character segmentation .目录第1章绪论 (1)1.1本课题的研究背景 (2)1.2本课题研究的意义和目 (2)1.3本课题研究的内容 (2)第2章本课题程序设计 (3)2.1 开发环境............................................................................ . (3)2.1.1设计方案 (3)2.2 图像预处理 (3)2.2.1 图像灰度化 (3)2.2.2 图像边缘检测 (5)2.3 图像的定位和分割 (6)2.3.1车牌定位 (6)2.3.2车牌分割 (9)2.4 对定位后的车牌再处理 (10)2.5 字符的分割与归一化 (11)2.5.1 字符的分割 (12)2.5.2 字符的归一化 (13)3 实验结果与分析 (14)总结 (15)致谢 (16)参考文献 (17)附录................................................................................ .. (18)绪论1.1本课题的研究背景伴随着我国现代化事业的高速发展,人民的生活水平也正逐步提高,车辆的数量也日益增加,给人们的出行带来了便捷的同时,也对公路车辆的管理带来了巨大的压力,人工管理的方式也不能满足实际的需要。

本科毕业论文车牌识别管理系统

本科毕业论文车牌识别管理系统

摘要随着我国道路的迅猛发展,智能交通系统越来越成为现代交通道路管理的强烈需求。

而类区域性的车辆管理更是成为了需求的热点。

不论是小区还是高校,又或则是高速公路的收费站对于车辆管理的智能化都是有着迫切的期望。

本论文研究的主要内容是将高校作为类区域的典型,从高校的安保以及便捷管理出发,设计了一个基于图像识别的车辆管理系统网站。

从网站的功能划分,到网站的重点功能图像识别出发规划出了网站的雏形。

另外为了网站整体的实现,对网站的重点功能车牌识别中的车牌定位编写了一个专门的java程序对车牌识别进行了分析以及实现。

本文所探究的车牌识别,是基于图像识别的大体处理步骤的包括了车牌的定位、分隔、识别。

其中主要是研究车牌的定位,即从图像的灰度、强化边缘最后再到车牌定位。

其中车牌定位后的分割,以及识别,还有与数据库的比对本文并没有涉及。

程序实现结果表明,车牌定位成功效果比较理想,但是还有一些车牌难以定位。

期待根据这个设计做出的智能车辆管理系统。

关键词车辆管理系统图像识别高校安保目录1 前言 (1)1.1 设计背景与意义 (1)1.2 设计目标 (1)2系统开发环境 (2)2.1 系统配置 (2)2.2 图像识别技术简介 (3)2.3 车牌识别技术简介 (3)3 总体设计 (4)4 详细设计 (5)4.1系统功能模块设计 (5)4.2 图像识别功能设计以及实现 (6)4.2.1 灰度化 (6)4.2.2 灰度直方图 (8)4.2.3 图像均衡化 (9)4.2.4 边缘化 (11)4.2.5 找车牌 (13)4.2.6 二值化 (21)4.3 数据库设计 (24)4.4.1 数据库E-R图设计 (24)4.4.2 创建主要数据库 (26)5 运用读取jar包实现车牌号码识别 (27)6 总结与展望 (34)6.1 总结 (34)6.2 展望 (34)致谢 (36)1 前言1.1 设计背景与意义汽车工业产生一百多年来,一直都被当成是工业发达国家的经济指标,在国家的实际成长中发挥着非常重要的作用。

车辆牌照自动识别系统毕设开题答辩

车辆牌照自动识别系统毕设开题答辩

谢谢!
图像灰度化
简单图像增强
图像二值化
3、车牌定位
定位方法的出发点是利用车牌区 域的特征来判断车牌位置。 这需要进一步的图像增强处理, 常见的增强技术有灰度等级直方 图处理、干扰抑制、边缘锐化、 伪彩色处理等。
预处理图像
干抑制
边缘锐化
伪彩色处理
车牌定位
4、字符分割
字符的分割要求能够准确地定位 字符边界,进而将车牌内的所有 字符提取出来。 这里用的字符分割算法为是垂直 投影算法
计算水平投影进行 车牌水平矫正
去掉车牌框架
分析垂直投影找到每 个字符的中心位置
按左右宽度切割出 字符
5、字符识别
把分割好的字符进行识别,最 终组成牌照号码。
切割出的字符送入库中
与数据库的图片相减
常用方法有二: 1、基于模板匹配算法 2、基于人工神经网络算法
分析之差最小的图片是 哪张
字符依次分析显示误差 最小的图片名字
基于MATLAB的 车辆牌照自动识别系统设计 XXX 计算机125班
一、总体设计流程图
读入图像
图像预处理
车牌定位
字符分割
字符识别
1、读入图像 从日常生活中拍摄常见小型汽车牌照照片, 用于实验。
2、图像预处理
导入原始图像
目的是增强效果图像。 图像预处理过程需要把图像转换 成便于定位的二值化图像。需要 经过图像灰度化、图像增强、二 值化操作。

汽车车牌识别系统毕业论文(带外文翻译)解析

汽车车牌识别系统毕业论文(带外文翻译)解析

汽车车牌识别系统---车牌定位子系统的设计与实现摘要汽车车牌识别系统是近几年发展起来的计算机视觉和模式识别技术在智能交通领域应用的重要研究课题之一。

在车牌自动识别系统中,首先要将车牌从所获取的图像中分割出来实现车牌定位,这是进行车牌字符识别的重要步骤,定位的准确与否直接影响车牌识别率。

本次毕业设计首先对车牌识别系统的现状和已有的技术进行了深入的研究,在此基础上设计并开发了一个基于MATLAB的车牌定位系统,通过编写MATLAB文件,对各种车辆图像处理方法进行分析、比较,最终确定了车牌预处理、车牌粗定位和精定位的方法。

本次设计采取的是基于微分的边缘检测,先从经过边缘提取后的车辆图像中提取车牌特征,进行分析处理,从而初步定出车牌的区域,再利用车牌的先验知识和分布特征对车牌区域二值化图像进行处理,从而得到车牌的精确区域,并且取得了较好的定位结果。

关键词:图像采集,图像预处理,边缘检测,二值化,车牌定位ENGLISH SUBJECTABSTRACTThe subject of the automatic recognition of license plate is one of the most significant subjects that are improved from the connection of computer vision and pattern recognition. In LPSR, the first step is for locating the license plate in the captured image which is very important for character recognition. The recognition correction rate of license plate is governed by accurate degree of license plate location.Firstly, the paper gives a deep research on the status and technique of the plate license recognition system. On the basis of research, a solution of plate license recognition system is proposed through the software MATLAB,by the M-files several of methods in image manipulation are compared and analyzed. The methods based on edge map and das differential analysis is used in the process of the localization of the license plate,extracting the characteristics of the license plate in the car images after being checked up for the edge, and then analyzing and processing until the probably area of license plate is extracted,then come out the resolutions for localization of the car plate.KEY WORDS:imageacquisition,image preprocessing,edge detection,binarization,licence,license plate location目录前言 (1)第1章绪论 (2)§1.1 课题研究的背景 (2)§1.2 车牌的特征 (2)§1.3 国内外车辆牌照识别技术现状 (3)§1.4车牌识别技术的应用情况 (4)§1.5 车牌识别技术的发展趋势 (5)§1.6车牌定位的意义 (6)第2章MATLAB简介 (7)§2.1 MATLAB发展历史 (7)§2.2 MATLAB的语言特点 (7)第3章图像预处理 (10)§3.1 灰度变换 (10)§3.2 图像增强 (11)§3. 3 图像边缘提取及二值化 (13)§3. 4 形态学滤波 (18)第4章车牌定位 (21)§4.1 车牌定位的主要方法 (21)§4.1.1基于直线检测的方法 (22)§4.1.2 基于阈值化的方法 (22)§4.1.3 基于灰度边缘检测方法 (22)§4.1.4 基于彩色图像的车牌定位方法 (25)§4.2 车牌提取 (26)结论 (30)参考文献 (31)致谢 (33)前言随着交通问题的日益严重,智能交通系统应运而生。

BP网络车牌识别毕设论文终稿

BP网络车牌识别毕设论文终稿

青岛理工大学毕业设计(论文)题目基于BP网络的车牌识别学生姓名:XXXX指导教师:XXx通信与电子工程学院电子信息工程专业093班2013年6 月15日毕业设计(论文)任务书第2 页第3 页第4 页摘要随着世界各国汽车数量的日益增加,城市交通状况越来越受到人们的关注。

交通管理水平,已经成为衡量政府部门工作标准之一。

汽车牌照的自动识别是关于模式识别技术在智能交通领域应用的重要研究课题之一,是实现交通管理智能化的重要部分。

本论文主要研究的是基于BP神经网络的汽车牌照自动识别系统,该系统主要分为图像预处理、车牌定位、车牌分割、字符分割和字符识别五个部分。

首先,将获得的车牌图像进行灰度化处理,用直方图均衡化进行图像增强,利用Roberts算子进行图像边缘检测。

然后,采用形态学方法进行车牌定位,利用车牌彩色信息的彩色分割法将车牌从背景图像中的分割。

对分割出的车牌进行二值化处理,并进行垂直投影,对垂直投影进行行扫描,完成对车牌字符的分割。

最后,将分割出的字符进行归一化处理,利用BP网络构建车牌识别器,实验证明该方法可也快速、有效地对车牌进行识别,证明了该方法的有效性。

关键词:车牌定位,字符分割,BP神经网络,字符识别ABSTRACTWith the world growing number of cars, urban traffic conditions more and more people's attention. Traffic management level, has become one of the criteria to measure the government sector. Automatic license plate recognition is on the pattern recognition technology in the field of intelligent transportation applications, an important research topic is to achieve an important part of intelligent traffic management.This thesis is based on the BP neural network car license plate recognition system, which consists of image preprocessing, license plate location, license plate segmentation, character segmentation and character recognition five parts. First, get the license plate image gradation processing, histogram equalization for image enhancement using Roberts operator for image edge detection. Then, using morphological methods for plate positioning, the use of color information of the license plate color segmentation method license plate from the background image segmentation. The segmentation of license plate binarization processing and vertical projection of the vertical projection for line scanning, complete the license plate character segmentation. Finally, the segmented character normalization, BP network construction license plate reader, the experiment proved that the method can also quickly and effectively identify the plate proved that the method is effective.KEY WORDS:license plate location, character segmentation, BP neural network,character recognition目录摘要 (I)ABSTRACT........................................................... I I 目录............................................................ I II 前言 (1)第1章绪论 (3)第2章基于BP网络的车牌识别系统总体设计方案 (6)第3章图像预处理 (8)3.1图像预处理 (8)3.1.1图像的灰度化 (9)3.1.2灰度图像的增强 (10)3.1.3 图像的边缘检测 (11)3.2车牌定位 (12)3.3车牌字符分割 (15)3.3.1彩色车牌预处理 (15)3.3.2字符分割 (15)3.3.3字符的归一化处理 (17)第4章车牌字符识别 (18)4.1车牌字符识别 (18)4.1.1神经网络概述 (18)4.1.2 BP神经网络的原理 (19)4.2BP网络的构建 (21)4.2.1 神经网络结构的构建 (21)4.2.2 网络函数和参数的确定 (24)4.3字符识别结果 (27)第5章总结与展望 (28)5.1设计结果分析总结 (28)5.2展望 (29)致谢 (30)参考文献 (31)前言现代的世界已进入信息化的时代,随着通信技术、计算机技术和网络技术的不断进步,自动化信息化水平不断提高和改善。

车牌识别系统的设计与实现毕业设计论文

车牌识别系统的设计与实现毕业设计论文

本科生毕业设计(论文)题目:车牌识别系统的设计与实现毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将字符图像的全部黑色像素的数目的总和作为一个特征, 总共即得到13个特征。
得到一个字符首先把这个字符上下平均分成两部分,然后
毕业感言
即将离开美丽的大学校园, 告别亲爱的老师和同学, 踏入人生的下一个阶段, 心中充满了留恋和不舍, 虽有千言万语, 却不知从何说起, 只好对你们说声:谢谢! 祝老师和同学们身体健康,幸福快乐!
牌照号码自动登记 自动放行
超速违章处罚
车牌识别系统
高速公路收费管理
车辆出入管理
计算车辆旅行时间
车牌识别系统的组成
网络
获得车牌图像 通过局域网或者广域网进行 传输获取到的车牌图像
终端上识别车牌字符并记录
识别车牌信息的过程
打开图像
二值化图像
车牌定位
字符分割
字符识别
车牌识别的算法
打开图像
图像预处理
二值化图像
车牌识别系统的设计与实现
专业: 信息工程 指导老师:吴士泓 制作人: 于强
中国车牌识别系统介绍 车牌识别系统的组成
目录
系统实现的算法
毕业感言
致谢
车牌识别技术(Vehicle License Plate Recognition,VLPR) : 指能够检测到受监控路面的车辆并自动提取车辆牌照信息(含汉字字符、英 文字母、阿拉伯数字及号牌颜色)进行处理的技术。
一幅图像包括目标物体、背景还有噪声, 要想从多值的数字图像中直接提取出目 标物体,最常用的方法就是设定一个阈 值T,用T将图像的数据分成两部分:大 于T的像素群和小于T的像素群。这是研 究灰度变换的最特殊的方法,称为图像 的二值化.
灰度化图像
在RGB模型中,如果R=G=B时,则彩色表示 一种灰度颜色,其中R=G=B的值叫灰度值, 因此,灰度图像每个像素只需一个字节存放 灰度值(又称强度值、亮度值),灰度范围 为0-255。
车牌识别的算法
车牌定位
车牌的颜色
固定的圆角 边框的大小
Hale Waihona Puke 字符的颜色字符的大小
字符之间的距离
车牌识别的算法
车牌分割
字符特征具体取法如下: (1)
车牌识别的算法
字符识别
字符特征获取 字符特征匹配
将库中的模板和需要识别的图像中同样大小的其中一 将这两部分平均分成4份,这样就可以得到8个丌同的区域,对 块区域进行比对。起先,需要识别的图像的左边顶角 这8个区域分别进行字符像素点统计,这样就对这样一个字符 进行了8个特征的提取, 点和库中的模板的相同位置角进行重合,在这片重合 在一起的区域中上下对比,接着向下一个像素位置进 行评议比较,就这样对识别的图像上所有的区域都进 然后将字符图像水平一份为二,两边一样再一分为二,竖 行重叠比较,完成之后与库中模板相差最小的区域就 向方向同样处理,统计所划分竖线上的黑点的像素点个数。 是需要识别出来的物体,可以想象到用这个方法会对 计算机的运算能力要求很高很高。
相关文档
最新文档