数字图像处理车牌识别

合集下载

数字图像处理-车牌识别-课件

数字图像处理-车牌识别-课件

与Sobel算子类似,这也是一种边缘模板,仅是模 板权系数不一样
1 1 1 M 10 0 0
1 2 1
1 0 1 和 M 21 0 2
1 0 1
ቤተ መጻሕፍቲ ባይዱ
11
G i f(jm ,kn)M i(m ,n) m 1n1
输出: g(j,k)maG x 1,G {2}
快速边缘检测
在车牌系统中还常采用一种更简单的模板来提取 边缘(对于有干扰的图像效果不理想)
数字图像处理-车 牌识别
精品
一、车牌识别技术简介
车牌识别是现代交通管理的重要措施,是 智能交通系统的重要环节
内容: 车牌识别系统是采用数字摄像技术和计算 机信息管理技术,对运行车辆实现智能管 理的综合运用技术
理论基础:数字图像处理和模式识别 车牌识别技术具有典型性,容易推广到其
它识别对象
主要应用领域
高斯-拉普拉斯算子法
二阶微分算子 该算子对噪声不敏感(5×5)
2 4 4 4 2 4 0 8 0 4 2 4 8 24 8 4 4 0 8 0 4 2 4 4 4 2
输出: g(j,k)2f(j,k)
哈夫(Hough)变换提取直线
利用图像全局特性将边缘像素连接起来形成区域 封闭边界的一种方法
定位、分割后输出
下步工作是对分割输出进行字符识别
车徽边缘提取与识别
1、彩色图像灰度化
CCD摄像头输出的图像一般是24位真彩色图像,需 进行灰度化,使不同颜色车体统一化,同时实现 快速处理
两种制式都可以采用
PAL制: 亮度 NTSC制:亮度
Y 0 .2R 2 0 .7 2 G 0 0 .0 7B 71 Y 0 .2R 9 0 .5 9 G 7 0 .1 8B 14

数字图像处理-车牌识别技术

数字图像处理-车牌识别技术

实际应用案例二
总结词
停车场管理系统
详细描述
在停车场管理中,车牌识别技术被广泛应用于车辆进出控制和停车位寻找。通过在停车场出入口安装 车牌识别设备,可以快速准确地识别进出车辆的车牌号码,实现自动计时计费、车辆进出记录等功能 ,提高停车场的运营效率和便利性。
实际应用案例三
总结词
智能安防系统
详细描述
车牌识别技术也可以应用于智能安防系统中,如小区、校园、重要场所等。通过 安装监控摄像头和车牌识别设备,可以实时监测和记录车辆进出情况,有效防范 非法入侵和车辆盗窃等安全问题,提高安防系统的可靠性和安全性。
特征提取的目的是降低数据维度,提高分类器的识别效率,同时保留足够的信息以 区分不同的车牌。
支持向量机分类器
支持向量机(SVM)是一种常用 的分类器,用于对车牌进行分类
和识别。
SVM通过找到能够将不同类别 的车牌数据点最大化分隔的决
策边界来实现分类。
在车牌识别中,SVM通常与特 征提取技术结合使用,以实现 对车牌的准确识别。
增强的目标是使车牌区域在图像中更 加突出,同时保持车牌字符清晰可辨。
常见的图像增强技术包括对比度增强、 直方图均衡化、边缘检测等,可以根 据车牌的特点选择适合的增强算法。
图像变换
图像变换是将图像进行几何变换 或频率域变换的过程,以便提取
车牌特征或进行模式识别。
常见的图像变换包括平移、旋转、 缩放、翻转等几何变换,以及傅 里叶变换、小波变换等频率域变
字符识别是车牌识别技术的最 后一步,将分割后的字符与预 定义的字符集进行匹配,以识 别出车牌上的字符。常用的识 别算法包括模板匹配、神经网 络等。
处理识别结果
详细描述
在识别出车牌上的字符后,需 要对识别结果进行处理,如去 除无关字符、合并相邻字符等 ,以提高识别准确率。

基于数字图像处理的车牌识别技术研究

基于数字图像处理的车牌识别技术研究

基于数字图像处理的车牌识别技术研究数字图像处理技术的发展,推动了很多生活领域的发展,其中一个应用领域就是车牌识别技术。

随着机器视觉技术的不断进步和成熟,车牌识别技术也得到了广泛应用,从而改变了人们的生活和工作方式。

本文将从车牌识别技术的发展历程、技术原理和应用领域三个方面进行分析和探讨。

一、车牌识别技术的发展历程车牌识别技术起初主要应用在警务、交通违法处理、停车场管理等方面。

但随着技术的不断进步和应用需求的增加,车牌识别技术开始在一些商业领域得到广泛应用,如门禁系统、智慧停车场、道路收费系统等。

二、车牌识别技术的基本原理车牌识别技术是一项集成计算机视觉和数字图像处理技术的综合性技术,其基本原理为:通过采集、处理和识别车辆行驶过程中的数字图像信息,实现对车辆的追踪、预警、识别、管理、控制等功能。

车牌识别技术的核心技术包括图像采集和预处理、车牌定位和分割、字符识别和数字识别等三个方面。

图像采集和预处理是车牌识别技术中最基本的环节,直接影响后续处理的质量和精度。

采集过程需要保证光线的充足性和图像清晰度,同时要根据不同的场景和车速等因素调整采集参数,如曝光时间、快门速度等。

车牌定位和分割是车牌识别技术中比较重要的步骤,其主要任务是将图像中的车牌区域准确地划分出来。

车牌定位和分割方法主要有颜色阈值法、边缘检测法和形状检测法等。

其中,颜色阈值法是一种比较常用和简单的方法,其基本原理是设定一个基于颜色的阈值,将车牌区域和其他区域分割开来。

字符识别是车牌识别技术中最为核心的环节,其主要任务是对车牌上的字符进行识别。

车牌上的字符由数字和字母组成,因此字符识别主要分为数字识别和字母识别两种类型。

字符识别的主要技术包括模式匹配、神经网络、支持向量机、卷积神经网络等方法。

三、车牌识别技术的应用领域车牌识别技术广泛应用于智慧交通、安防监控、金融服务、互联网营销、智慧城市建设等多个领域。

其中,智慧交通是车牌识别技术的主要应用领域之一。

(完整版)基于数字图像处理的车牌识别本科毕业论文

(完整版)基于数字图像处理的车牌识别本科毕业论文

本科生毕业论文(设计)题目:基于数字图像处理的车牌识别设计**: ***学院: 数理与信息工程学院专业: 电子信息工程班级: 111学号:指导教师:刘纯利职称: 教授2014 年12 月24 日安徽科技学院教务处制目录摘要 ....................................................................关键词 ..................................................................1、设计目的 .............................................................2、设计原理: ............................................................3、设计步骤: ............................................................4、实行方案 .............................................................4.1. 总体实行方案:...................................................4.2. 各模块的实现:...................................................4.2.1输入待处理的原始图像: .......................................4.2.2图像的灰度化并绘制直方图: ...................................4.2.3 边缘检测....................................................4.2.4图像的腐蚀操作:............................................4.2.5平滑图像....................................................4.2.6除去二值图像的小对象 ........................................4.3车牌定位 .........................................................4.4字符的分割与识别..................................................4.4.1.车牌的再处理................................................4.4.2字符分割....................................................4.5车牌识别:........................................................5、总结: ................................................................6、致谢 .................................................................7、参考文献: ............................................................基于数字图像处理的车牌识别设计电子信息工程专业学生周金鑫指导教师刘纯利摘要:车牌识别在人类社会交通系统中担当重要角色,一个设计优良的车牌识别系统会给人们生活带来极大的方便,本文通过运用matlab和数字图像处理的一些知识简单通过图像预处理,车牌定位,字符分割,采用模板匹配法实现车牌字符的识别。

基于数字图像处理的车牌识别技术研究报告

基于数字图像处理的车牌识别技术研究报告

基于数字图像处理的车牌识别技术研究报告随着计算机和视频技术的发展,车牌自动识别系统己成为智能交通系统的重要组成部分,并已广泛应用于车辆追查和跟踪、车辆出入控制、公路收费监控等领域。

完整的车牌自动识别系统由图像采集、图像处理、模糊识别等模块组成,其中对一幅已知车辆数字图像进行预处理、车牌定位、二值转换、车牌分类、车牌分割、字符识别、结果优化的过程简称车牌模糊识别。

目前国内已有众多单位开展了车牌识别技术研发,虽然各家都取得一定的成功,但车牌识别技术本身毕竟要符合实战要求,为此笔者综观各家实际车牌识别系统后提出了车牌识别系统的几点不足之处和改进方法,供该领域的专业人士和领导参考。

一、图像预处理根据三基色原理,世界上任何色彩都可以由红绿蓝(RGB)三色不同比例的混合来表示,如果红绿蓝(RGB)三个信号分别由一个字节表示,则该图像颜色位数就达到二十四位真彩,也就是说在二十四位真彩的数字图像中每个像素点由三个字节来表示,根据数字图像水平和垂直方向像素点数(即图像分辨率)可计算出一幅图像实际位图大小。

事实上,在车牌自动识别系统中车辆图像是通过图像采集卡将运动的车辆图像抓拍下来,并以位图的格式存放在系统内存中。

这时的车辆数字图像虽然没有被人为损伤过,但在实际道路上行驶的车辆常会因为各种各样的原因使得所拍摄的车辆图像效果不理想,如外界光线对车牌的不均匀反射、极强阳光形成的车牌处阴影、摄像机快门值设置过大而引起的车辆图像拖影、摄像头聚焦或后背焦没有调整到位而形成的车辆图像不清晰、由于视频传输线而引起的图像质量下降、所拍摄图像中存在的噪声干扰、所安装的车牌不规范或车辆行驶变形等等。

这些都给车牌的模糊识别增加了难度,在现有的技术条件下任何优秀、先进的车牌识别软件也是无法达到百分之百车牌正确识别率。

但我们可以对车辆图像根据不同应用特点进行识别前的预处理,尽最大可能提高车牌正确识别率,这些图像预处理包括图像平滑、倾斜校正、灰度修正等。

《数字图像处理》大作业:车牌识别

《数字图像处理》大作业:车牌识别

将图中字符分割出来 将每个字符单独分割出来进行操作方便字 符识别 用d=bwareaopen(d,150);将第二个 和第三个字符中间的点去除点。
分割第一个字符的程序
wide1 = 0 while sum(d(:,wide1+1))<3 && wide1 <= n-2 wide1 = wide1 + 1; end wide2 = wide1; while sum(d(:,wide2+1))>2 && wide2 <= n-2 wide2 = wide2 + 1; end % temp = imcrop(d, [wide1 1 wide2-wide1 m]); % figure;imshow(temp); % tp=3;bottm=m-5; while sum(d(tp,wide1:wide2))==0 tp = tp + 1; end while sum(d(bottm,wide1:wide2))==0 bottm = bottm - 1; end e1 = imcrop(d, [wide1 tp wide2-wide1 bottm-tp]);
%求出一列中满足蓝色区域点的个数
%找出车牌区域左右边界
车牌字符处理
首先要对定位好的车牌图像进行处理,再将车牌 上的字符分割出来,方便后续识别操作。ຫໍສະໝຸດ 图像灰度化图像二值化
图像滤波处理
车牌图像处理
图像处理部分程序
X = im2bw(Plate); 像 [H, L] = size(X); X = imcrop(X, [5 5 L-10 H-10]); %im2bw使用阈值变换法把灰度图 转换成二值图像。

数字图像处理-车牌识别系统附程序

数字图像处理-车牌识别系统附程序

数字图像处理车牌识别系统目录1 方案设计............................................................................................................... .. (4)1.1 基本原理 (4)1.2 总体设计方案 (4)2 各模块的实现 (5)2.1 图象的采集与转换 (5)2.2 灰度校正 (6)2.3 平滑处理 (7)2.4 提取的边缘 (7)3 牌照的定位和分割 (7)3.1 牌照区域的定位 (8)3.2 牌照区域的分割 (9)4 字符处理 (9)4.1 字符分割 (10)4.2 字符归一化 (10)4.3 字符的识别 (10)5 总结 (11)参考文献 (12)附录 (13)摘要随着公路逐渐普及,我国的公路交通事业发展迅速,所以人工管理方式已经2不能满着实际的需要,微电子、通信和计算机技术在交通领域的应用极大地提高了交通管理效率。

汽车牌照的自动识别技术已经得到了广泛应用。

汽车牌照自动识别整个处理过程分为预处理、边缘提取、车牌定位、字符分割、字符识别五大模块,其中字符识别过程主要由以下3个部分组成:①正确地分割文字图像区域;②正确的分离单个文字;③正确识别单个字符。

用MATLAB软件编程来实现每一个部分,最后识别出汽车牌照。

在研究的同时对其中出现的问题进行了具体分析处理。

1方案设计1.1基本原理由于车辆牌照是机动车唯一的管理标识符号,在交通管理中具有不可替代的作用,因此车辆牌照识别系统应具有很高的识别正确率,对环境光照条件、拍摄位置和车辆行驶速度等因素的影响应有较大的容阈,并且要求满足实时性要求。

图1 牌照识别系统原理图该系统是计算机图像处理与字符识别技术在智能化交通管理系统中的应用,它主要由牌照图像的采集和预处理、牌照区域的定位和提取、牌照字符的分割和识别等几个部分组成,如图1 所示。

基于数字图像处理的车牌识别系统

基于数字图像处理的车牌识别系统

基于数字图像处理的车牌识别系统基于数字图像处理的车牌识别系统1.车牌识别系统研究⽬的及意义车牌识别系统的主要任务是分析和处理摄取到的复杂背景下的车辆图像,定位分割牌照,最后⾃动识别汽车牌照上的字符,LPR是利⽤车辆牌照的唯⼀性来识别和统计车辆,它是以数字图像处理、模式识别、计算机视觉等技术为基础的智能识别系统在现代化交通发展中车牌识别系统是制约交通系统智能化、现代化的重要因素,LPR系统应该能够从⼀幅图像中⾃动提取车辆图像,⾃动分割牌照图像,对字符进⾏正确识别,从⽽降低交通管理⼯作的复杂度。

2.车牌图像预处理为了便于车牌的分割识别,摄像机摄下的原始图像应具有适当的亮度和对⽐度。

但通常经输⼊系统获取的车牌图像信息由于光照条件、牌照的整洁度、摄像机的状态(焦距、⾓度和镜头的光学畸变)以及车速的不稳定等因素都会使图像含有各种各样的噪声与畸变。

例如由于光照度不均匀造成图像灰度过于集中;由摄像头获得的图像经过AD转换、线路传送都会产⽣噪声污染;车牌的字符部分受到磨损或是被污迹覆盖等等。

这些主客观因素不可避免地影响车牌图像的清晰程度,降低图像质量,轻者表现为图像不⼲净,难以看清细节,重者表现为图像模糊不清、歪斜或缺损,车牌字符边界模糊、细节不清、⽐划断开、粗细不均等现象。

这势必会影响车牌区域分割,降低车牌字符识别的准确度。

因此,在对车牌图像进⾏分析之前,必须要对车牌图像进⾏预处理。

对车牌图像的预处理主要包括以下三个⽅⾯:(l)图像对⽐度增强。

由于车牌识别系统需要全天候⼯作,⾃然光照度的昼夜变化会引起车辆图像对⽐度的严重不⾜,所以增强图像是很有必要的。

(2)图像去噪。

通常得到的汽车图像会有⼀些污点,为了保证识别的效果,需要对图像进⾏去噪处理。

(3)倾斜矫正。

摄像机的位置、车辆的运动等因素经常使拍摄出来的汽车图像有⼀定的倾斜,这就需要对图像进⾏倾斜矫正,或在分割出车牌区域之后对字符倾斜矫正2.1图像的灰度化通常情况下,实际的车牌识别系统中由摄像机采集到的原始图像是彩⾊图像,所有的彩⾊图像都是由红(R)、绿(G)、蓝(B)三基⾊组合⽽成,在数字图像中每⼀个基⾊都被分为256个等级,即0~255。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定位、分割后输出
下步工作是对分割输出进行字符识别
车徽边缘提取与识别
1、彩色图像灰度化
CCD摄像头输出的图像一般是24位真彩色图像,需 进行灰度化,使不同颜色车体统一化,同时实现 快速处理
两种制式都可以采用
PAL制: 亮度 NTSC制:亮度
Y 0 .2R 2 0 .7 2 G 0 0 .0 7B 71 Y 0 .2R 9 0 .5 9 G 7 0 .1 8B 14
二、车牌定位与分割
车牌定位:通过车牌区域的特征来判别牌 照的位置,将车牌从图像中分割出来
步骤: (1)彩色图像灰度化 (2)图像增强 (3)边缘检测 (4)模板匹配 (5)输出牌照子图像
CCD 输出
CCD捕获的汽车图像
灰度图像
彩色图像灰度化
灰度增强
灰度增强改变对比度
边缘提取(方法多种)
F(j,k)
f(j,k+1)
F(j+1,k)
边缘模板法
边缘模板是一种算子,常用的有Sobel算子 Sobel算子是一种由两个卷积构成的梯度模板
1 2 1 M 10 0 0
1 2 1
1 0 1 和 M 22 0 2
1 0 1
分别检测水平边缘和垂直边缘,运算结果是一幅 边缘图像
Prewitt算子边缘提取
白底黑字
定位分割难点
抓拍图像受环境因素干扰,特别环境光的 干扰,环境光太强时,图像淡薄,对比度 变差;
车尾有其它字符,使车牌定位困难; 车牌大都存在污染而变脏; 车牌部分被遮挡; 车牌图像为运动图像,拍摄时产生失真。
环境光太强
车牌图像太弱
文字干扰
其他字符干扰
车牌污染
车牌被污染
部分被挡
图像模式识别应用
专题:车牌识别技术 图像分析处理技术的综合应用
一、车牌识别技术简介
车牌识别是现代交通管理的重要措施,是 智能交通系统的重要环节
内容: 车牌识别系统是采用数字摄像技术和计算 机信息管理技术,对运行车辆实现智能管 理的综合运用技术
理论基础:数字图像处理和模式识别 车牌识别技术具有典型性,容易推广到其
与Sobel算子类似,这也是一种边缘模板,仅是模 板权系数不一样
1 1 1 M 10 0 0
1 2 1
1 0 1 和 M 21 0 2
1 0 1
11
G i f(jm ,kn)M i(m ,n) m 1n1
输出: g(j,k)maG x 1,G {还常采用一种更简单的模板来提取 边缘(对于有干扰的图像效果不理想)
它识别对象
主要应用领域
主要应用场合 (1) 公安卡口 (2) 高速公路收费管理 (3) 城市道路监控系统(电子警察) (4) 海关车辆管理 (5) 停车场管理 (6) 车辆流量统计
车牌识别技术现状
完整的车牌自动识别系统由图像釆集、图像处理、 模糊识别等模块组成;
在现有的技术条件下,车牌识别系统均无法达到 100%的识别率,好的识别系统可达95%以上;
2、对比度增强
利用灰度变换增强对比度,突出车牌区 一般采用截取式变换 :
c,
f(j,k)a
g(j,k)cd, bdacf(j,k, )aff((jj,,kk)b)b
常采用下式
0,
f(j,k)a
g(j,k)2255,55f(bj,aka) ,
af(j,k)b f(j,k)b
3、边缘检测
主要方法 (1) 对图像进行直分析处理 (2) 提取车牌区域边界 (3) 灰度点运算 (4) 模板匹配 (5) 算子法 (6) 形态学处理 (7) 其它边缘提取方法
车牌图像的组成
组成:省份汉字(或其他汉字)+字母或阿拉伯数字, 共7位,即 X1X1•X3X4X5X6X7 例:川A•K0387
尺寸:宽 45mm、高 90mm、间隔符宽10mm、单元 间隔 12mm
字符笔画在竖直方向是连通的 牌底与字符颜色对照大,边缘非常丰富 四类:蓝底白字、黄底黑字、黑底白字、
特点:运算速度快,车牌笔画轮廓突出,而车体 其他部分轮廓不突出
0 0 0 M 11 1 0
0 0 0
0 1 0 和 M20 1 0
0 0 0
掩模匹配法
锐化:罗比逊模板、普雷外特模板、柯赤模板 上述三种模板均可用于边缘提取,车牌检测常用
柯赤(Krisch)模板,由8个算子组成
5 5 5 3 5 5 3 3 5 3 3 3 3 0 3 3 0 5 3 0 5 3 0 5 3 3 3 3 3 3 3 3 5 3 5 5 3 3 3 3 3 3 5 3 3 5 5 3 3 0 3 5 0 3 5 0 3 5 0 3 5 5 5 5 5 3 5 3 3 3 3 3
系统组成
车牌识别系统组成
识别流程
主要由三部分组成
图像捕获一般采用CCD摄像头,包括整车图像或牌 照(一般为彩色图像)
后两步由计算机实现 关键部分是第三步:字符识别(OCR)
识别步骤
具体识别步骤如下(不是唯一的): (1) 获取整车或局部图像; (2) 对获取车辆数字图像进行预处理; (3) 车牌定位; (4) 二值转换; (5) 车牌分类; (6) 车牌分割; (7) 字符识别; (8) 结果优化(车牌模糊识别)。
车牌字符下边被遮挡
运动失真
车牌字符因运动失真
梯度法边缘提取
梯度法(一阶偏微分)又称 Roberts算子 一种利用局部差分法提取边缘(锐化)的方法
g f ( j , k ) f ( j , k ) f ( j 1 , k ) 2 f ( j , k ) f ( j , k 1 ) 2
车牌图像特征
车牌定位与分割的理论与方法是根据车牌图像的 特点来确定的
车牌图像主要特征有: (1) 车牌区域内的边缘灰度直方图统计特征 (2) 车牌的几何特征 (3) 车牌区域的灰度分布特征 (4) 车牌区域的水平、垂直投影特征 (5) 车牌形状特征和字符排列格式特征 (6) 车牌的形态学特征 (7) 频谱特征
先进识别系统的识别时间在一百毫秒以下; 基于视频技术的识别系统,可方便地进行图像回
放、检索; 其它识别系统:条形码识别、射频标识识别等。
有关识别率的统计数据
各环节的识别率: (1)牌照定位 98% (2)单字分割 97.8% (3)车牌识别 95%
从上面统计情况可看出,目前单项识别率 均达到95%以上,但总识别率仅能达 91%以 上,仍需进一步提高。
相关文档
最新文档