比例方向控制回路中的压力补偿
电液比例控制基本回路

这里告诉我们哪一种 方案好
三者比较:先导式比例压力调压回路有两种方式:左图是利用小型直动式比例压力阀对
普通压力阀进行控制。这种是将比例阀作为先导级。
中图是先导式溢流阀、减压阀或顺序阀的遥控口通过管道相连接。这种方式的优点是,只 要采用一个小型的直动式比例溢流阀就可以对系统或支路上的压力作比例控制或者远程控 制。但是由于增加了连接管道,使控制容积增加,以及还受主阀的性能限制。因此控制性 能左图不如中图。
三通减压阀
当泵的出口压力升高时,减压阀的 右位被推入控制油路使其部分溢流, 这样就使变量泵右侧弹簧腔压力降 低,变量泵的左腔压力高就把定子 向右推,使偏心距减小直至为0,最 终泵出口流量为0,致使压力无法升 高。
我们前面讲过三通 减压阀在容积调速 中的应用。
2)比例容积式调压回路 图3-3 比例压力调节变量叶片泵原理图(相当于限压式变量 泵)
P1
→使泵出口P无溢流量即P↑,即
比例节流阀两端压差保持不变。 ② P1↓→三通减压阀左腔P左↓
P
→右位接入且增加溢流→即P↓, P左
节流阀两端压差保持不变。
容积节流采用的一定是变量叶片
泵,只能用于中小功率的液压系
统,控制精度与比例节流控相当。
阀与泵安装成一个整体
② 比例流量调节容积--节流调速回路
积—节流调速)
限压式变量泵
1、 流量适应控制流量敏感型变量泵
恒压变量泵
容积泵的基本控制方法2、
压力适应控制定流差量溢敏流感型型压稳力流控变制量泵
3、
4、
功率适应控制功压率差适反应馈变式量稳泵流量变量泵 恒功率控制
采用比例排量调节变量泵与定量 执行器(变量泵—定量马达), 或定量泵与比例排量调节马达等 的组合来实现(定量泵—变量马 达)。通过改变泵或马达的排量 实现调速。
几种压力控制回路原理介绍

液压基本回路
任何液压系统都是由一些基本回路组成。所谓液压基
本回路是指能实现某种规定功能的液压元件的组合。
基本回路按在液压系统中的功能可分:
压力控制回路— 控制整个系统或局部油路的工作压力; 速度控制回路— 控制和调节执行元件的速度; 方向控制回路— 控制执行元件运动方向的变换和锁停; 多执行元件控制回路— 控制几个执行元件间的工作循环。
防止缸 5 的压力受主油路的干扰。
二级减压回路 在先导型减
压阀遥控口接入远程调压阀和 二位二通电磁阀。
增压回路
• 功用 使系统的局部支路获得比系 统压力高且流量不大的油液供应。
• 实现压力放大的元件主要是增压 器,其增压比为增压器大小活塞 的面积比。注意:压力放大是在 降低有效流量的前提下得到的。
压力控制回路
• 压力控制回路是利用压力控制阀来控制整个系统或局 部支路的压力,以满足执行元件对力和转矩的要求。
• 包括:
– 调压回路 – 卸载回路 – 减压回路 – 增压回路 – 平衡回路 – 保压回路 – 泄压回路
调压回路
功用 调定和限制液压系统的最高工作压力,或者使执行机构
在工作过程不同阶段实现多级压力变换。一般用溢流阀来实现这 一功能。
它不但具有很好的密封性,能
起到长时间的闭锁定位作用,
还能自动适应不同负载对背压 的要求。
保压回路
• 功用 使系统在缸不动或因工件变形而产生微小位移的工况保持 稳定不变的压力。保压性能有两个指标:保压时间和压力稳定性。
采用液控单向阀的保压回路
适用于保压时间短、对保压稳定
性要求不高的场合。
液压泵自动补油的保压回
单作用增压器的增压回路
力士乐闭中心负载敏感压力补偿挖掘机液压系统

力士乐闭中心负载敏感压力补偿挖掘机液压系统主要内容介绍了力士乐闭中心负载敏感压力补偿挖掘机液压系统组成及其工作原理、特性。
重点分析了多路阀液压系统、液压泵控制系统、各主要液压作用元件液压回路及多路阀先导操纵系统等。
目前液压挖掘机有两种油路: 开中心直通回油六通阀系统和闭中心负载敏感压力补偿系统, 我国国产液压挖掘机大多采用”开中心”系统, 而国外著名的挖掘机厂家基本上都采用”闭中心”系统。
闭中心具有明显的优点, 但价格较贵。
国内厂家对开中心系统比较熟悉, 而对闭中心系统不太了解,因此有必要来介绍一下闭中心系统, 本文重点分析力士乐闭中心负载敏感压力补偿(LUDV) 挖掘机油路。
LUDV 意为与负载无关的分配阀。
LUDV系统力士乐挖掘机液压系统可以看作由以下4 部分组成:①多路阀液压系统(主油路) ;②液压泵控制液压系统(包括与发动机综合控制) ;③各液压作用元件液压子系统, 包括动臂、斗杆、铲斗、回转和行走液压系统, 还包括附属装置液压系统;④多路阀操纵和控制液压系统。
LUDV系统是力士乐等公司在改进负荷传感技术的基础上发展起来的,它是不受负载影响的流量分配系统,它将常开式压力补偿改为常闭式,泵所提供的流量与负载所需相匹配,避免了不必要的空流和节流损失。
即使泵的流量小于系统复合动作所需的流量,各动作的相对速度也不会发生变化,从而保证动作的协调性,避免动作冲击。
1 多路阀液压系统多路阀液压系统是液压挖掘机的主油路, 它确定了液压泵如何向各液压作用元件的供油方式, 决定了液压挖掘机的工作特性。
力士乐采用的闭中位负载敏感压力补偿多路阀液压系统的工作原理见图1 (因换向阀不影响原理分析, 故未画出) 。
图1 挖掘机力士乐主油路简图挖掘机力士乐主油路由工装油路和回转油路二个负载敏感压力补偿系统组成。
1.1 工装油路工作装置和行走油路(除回转外) 简称工装油路,用阀后补偿分流比负载敏感压力补偿(LUDV)系统, 具有抗饱和功能。
电液比例换向阀在压力补偿回路中的应用

CFHI TECHNOLOGY电液比例换向阀是一种通过控制阀芯位移与输入电信号成正比,连续、按比例地控制油液流动方向和流量大小的换向阀。
在大流量控制场合(50L/min 以上),比例换向阀一般采用二级或多级结构以克服阀芯上的液动力干扰,其中先导级实现“电-液”比例转换[1]。
众所周知,经由节流阀口的流量受节流口前后压差和节流口面积的影响。
如果节流口出口负载或进口压力发生变化,通过阀口的流量也将发生变化,这就是人们所说的“负载效应”[2]。
在比例换向阀前串联进口压力补偿器,使比例阀前后压差为常数,是克服上述“负载效应”的常用手段,该种形式的压力补偿回路在冶金设备液压控制系统中应用广泛。
本文中针对某热轧板带生产线推钢机在运行中液压控制回路出现的故障进行分析,研究解决方案,现场整改。
1推钢机工况与故障1.1推钢机工况推该钢机是热轧板带生产线炉区重要设备,主要由液压缸、升降装置、推钢杆和齿轮齿条结构组成(见图1)。
在工作中,由液压缸驱动升降装置,托起推钢杆,将加热炉上料辊道上的钢坯举起,再由电动机或液压缸驱动齿轮齿条机构,将推钢杆连同钢坯送入炉内,延伸至特定位置,液压缸活塞杆回缩,推钢杆随升降装置下落,将钢坯放至炉内横梁上,推钢杆继续下降至最低位,由齿轮齿条机构将推钢杆拉出加热炉,等待下一次操作。
推钢机的关键结构参数包括推钢杆长度、质量、行程,以及液压缸尺寸等(见表1)。
由于推钢杆的自重大,推钢机负载重且变化范围大,加之炉内特殊的维护条件,要求推钢机工作中运行平稳、冲击小,随生产节奏变化运行速度可调。
由此,以电磁比例换向阀和进口压力补偿器为1.一重集团大连工程技术有限公司工程师,辽宁大连116600电液比例换向阀在压力补偿回路中的应用孟旭兵1摘要:针对某热轧板带生产线推钢机工作中出现抖动和液压阀台发生异响现象,通过对电磁比例换向阀与进口压力补偿器结构及工作原理,以及对压力补偿回路控制原理的分析,最终确定故障原因,现场整改后故障被消除。
比例换向阀工作原理

比例换向阀工作原理
比例换向阀是一种常用于液压系统中的控制元件,它能够根据输入信号的大小来调节液压系统中的流量和压力。
该阀的工作原理主要基于比例调节的原理。
比例换向阀主要由阀体、阀芯、电磁铁和弹簧等部件组成。
当电磁铁通电时,产生磁场,吸引阀芯与弹簧分离,并打开阀门;当电磁铁断电时,磁场消失,弹簧将阀芯复位,并关闭阀门。
在正常工作状态下,电磁铁会周期性地通电和断电,从而实现对阀门的控制。
当输入信号(通常为电压或电流信号)的大小改变时,阀芯的位置也会相应地改变,这会影响阀门的开度,从而调节液体的流量和压力。
比例换向阀的工作原理可以简单概括为:输入信号-->电磁铁
通电和断电-->阀芯位置改变-->阀门开度改变-->流量和压力调节。
总结起来,比例换向阀通过控制阀芯的位置来调节液压系统中的流量和压力,使其按照输入信号的比例进行变化。
这种阀门具有响应速度快、调节精度高的特点,广泛应用于各种工业设备和机械系统中。
1(压力控制回路)

一、压力控制回路 调压回路的作用
➢ 使液压系统整体或部分的压力保持恒定或不超过某个数值。 ➢ 在定量泵系统中,液压泵的工作压力可以通过溢流阀来调节。 ➢ 在变量泵中,用安全阀来限定系统的最高压力,防止系统过载。 ➢ 若系统中需要二种以上的压力,则可采用多级调压回路。
8
液压缸
一、压力控制回路 单级调压回路
27
三位四通电液 动换向阀
一、压力控制回路 换向阀卸荷回路
M、H和K型中位机 能的三位换向阀处于中位 时,泵即卸荷。
如图所示回路切换时 压力冲击小,但回路中必 须设置单向阀,以使系统 能保持 0.3MPa 左右的压 力,供操纵控制油路之用。
利用换向阀中位卸荷
28
一、压力控制回路 换向阀卸荷回路
29
37
一、压力控制回路 定压泵保压回路
38
一、压力控制回路 定压泵保压回路
39
一、压力控制回路 变压泵保压回路
40
一、压力控制回路 变压泵保压回路
41
一、压力控制回路 蓄能器保压回路
42
一、压力控制回路 蓄能器保压回路
43
电接触式 压力表
一、压力控制回路 自动补油保压回路
液控 单向阀
该回路能自动保 持液压缸上腔的 压力在某一范围 内,保压时间长, 压力稳定性高, 适用于液压机等 保压性能要求高 的液压系统。
先导式溢流阀
一、压力控制回路 先导式溢流阀卸荷回路
使先导式溢流阀的远程 控制口直接与二位二通电磁 阀相连,便构成一种用先导 型溢流阀的卸荷回路,这种 卸荷回路卸荷压力小,切换 时冲击也小。
30
一、压力控制回路 先导式溢流阀卸荷回路
31
液控顺序阀
液压基本回路1-压力控制回路

优点 提供稳定的压力输出
可根据需求调节流量
灵活性高,可控制多 个执行器
缺点 系统复杂性较高
压力变化对流量的影 响较大 系统响应时间较长
结论和建议
压力控制回路在液压系统中起着重要的作用,可以满足不同应用场景的需求。
在设பைடு நூலகம்液压系统时,需要综合考虑系统的需求、成本和性能,选择合适的压 力控制回路。
优点
• 提供稳定的压力输出 • 精度高,可根据需要进行精确调节 • 适用于多种应用场景
缺点
• 系统复杂性较高 • 成本相对较高 • 对液压系统的稳定运行有一定依赖性
压力控制回路与其他回路的比较
回路类型 压力控制回路 流量控制回路 方向控制回路
功能
控制液压系统中的压 力
控制液压系统中的流 量
控制液压系统中的流 向
压力控制回路应用场景
1 液压机械
在液压机械中,压力控制 回路用于控制系统中的压 力,确保机械正常运行。
2 工业生产线
3 汽车制造
工业生产线中的液压系统 通常需要对压力进行控制, 以保证生产过程的稳定和 安全。
在汽车制造过程中,液压 系统的压力控制回路用于 控制液压传动系统的压力 和速度。
压力控制回路优缺点
液压基本回路1-压力控制回路
欢迎大家来到本次液压基本回路系列的第一节:压力控制回路。
压力控制回路简介
压力控制回路是液压系统中一种常用的回路,用于控制液压系统中的压力。 该回路通过调节液压系统中的压力,确保系统在所需的运行范围内,提供稳定可靠的输出。
压力控制回路组成要素
压力传感器
用于检测液压系统中的压力,并将其转换为电信号。
比例阀
根据压力传感器的信号,调节液压系统中的液压流量,以控制系统的压力。
德国力士乐比例换向阀工作原理2011

德国力士乐比例换向阀工作原理2011-1-14 来源:上海颖哲工业自动化设备有限公司第五营业部>>进入该公司展台德国力士乐比例换向阀工作原理,REXROTH比例换向阀作用,力士乐换向阀应用德国REXROTH比例换向阀是一种中高压整体式两路换向阀。
可按客户要求在阀上设溢流阀、过载阀、单向阀、补油阀等。
溢流阀可调节系统压力、过载阀控制单个油腔工作压力,单向阀防止油液倒流,换向阀滑阀机能有A、O、Y、P等,可任意组合。
换向手柄有两种安装形式,便于不同方向的操作。
该阀采用并联油路,设计有压力输出口与其它液压元件相接提供动力源。
经过特殊设计的密封方式,使阀的密封性能卓越。
该阀泛用于叉车、环卫车辆、小型装载机等工程机械的液压系统。
液压换向阀,由左右驱动阀组成,驱动阀包括驱动阀阀体和阀芯,其特征是:所述驱动阀阀体上设有过载保护阀,过载保护阀与阀体的进出油口连接,所述过载保护阀包括主阀体、副阀体、阀针和单向阀芯,所述主阀体后端螺接有副阀体,所述副阀体内腔置有阀针,阀针后端套接复位弹簧,锥形阀针与副阀体前端的油孔触接,所述单向阀芯前端设有圆孔,圆孔与节流阀芯滑动配合,所述中心设有节流孔的节流阀芯后端设有弹簧,所述副阀体前端与单向阀芯内腔之间形成卸压腔。
有益效果:实现了微动效果;增加过载保护阀,使工作系统传过来的瞬时高压在系统的溢流阀卸荷之前开启,去除峰值压力,有效保护了液压件及结构件免受到破坏性冲击,换向阀是管路流体输送系统中控制部件,它是用来改变通路断面和介质流动方向,具有导流、截止、调节、节流、止回、分流或溢流卸压等功能。
REXROTH比例换向阀原理主要用来控制流体。
例1个活塞向1个方向移动。
要向1端充流体,另1端排流体,进的1端是高压流体,出的1端回到油箱。
这1个动作要求进端阀打开,排(回)流阀关闭,另1端进端阀关闭,打开排(回)流阀关闭。
活塞材能向1个方向移动。
目前现成产品有2位3通,2位4通,3位5通等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4期(总第94期)2002年8月
藏压气动与密封
H蜘.Pneum.&Seals
No4(SerialNo.94)
Aught,2002比例方向控制回路中的压力补偿
王明兴
擅耍本文简要分析了液压缸一比例方向阁控制系统中舶腭流量隧负载压力渡动而变化的机理,提出了对比例罔闷口压差进行进口压力补偿的几种设计方法及注意的一些问题。
美t诩比倒方向罔流量控制压力补偿
中圈分类号:耶27文献标识码:B文章■号:1008.0813(2002)4—30.02
1引言
作为近十几年发展起来的一种新型液压元件,比例阀具有成本低、耐油液污染能力强、可对输出压力和流量进行连续控制等优点而广泛应用于对执行元件进行速度控制。
通过比例阀的流量可由下列公式得出:
Q:∞√学(1)
YⅣ
其中:Q为通过阀的流量;Cd为流量系数;A为孔口面积;p为油液密度;Ap为阀前后压差;
可知:在面积A一定,即比例阀给定电信号为一定值时,通过阀的流量与△p有关。
只有负载压力波动不大或几乎不波动时,节流阀才能起到流量控制作用。
如图l所示为典型的比例阀流量——压力特性曲线簇,由
△尸口=Ps—Pt(2)其中:Ps为系统压力;P。
为比例阀回油口背压;△Pv为比例阀进出口压差。
在油缸——比例方向阀系统中,有:
Ps=Pv+P,+R公式(3)其中Pv为比倒阀前后压差,P。
为负载压力
由公式(2)、公式(3)联立可知:
APv=n+△P,=A+z3Pt=常量
即Pv在油泵出口压力Ps和比例阀出口背压压力Pt为常量时与负载直接有关。
因此在比例阀控制回路中,上述的负载效应必须通过适当手段进行校正。
其目的就是保证Pv为一近似定值,不随负载压力的波动丽改变,从而保证通过比例阀的流量与输入的电信号成比例地变化。
2控制方案
2.1二通进口压力补偿
见油路实例图2和油路原理图3。
图3所示,二通压力补偿器的阀芯左边作用着比倒阀进口压力P,右边作用着比例阀后压力P2及
体积蠢量OL/mln
2∞
t60
t20
ao
40
OIo203040606070BOgo'∞
展定值%
阀压降lobar时公稚童量为64LInln
l却t;lobar常鼓
24p,=铷妇毒藏
34“=3口b口1|敦8
4却,=鲫Ⅳ常敷
5却.=100bat常数“^
4p-=P,-/’。
r
圈1比例闷流量一压力曲线簇
b
图2二通压力补偿器油路实例
弹簧力,当略去液动力、阀芯处于平衡位置时可知:
P*A^=P2*A^+B公式(4)则有:AP=P~P2=FF/~≈常数
当弹簧较软、调节位移又比较小时,压力差近似为常数。
只要P。
一P2大于FF/AK,弹簧即被压缩,比例阀可起到流量调节作用。
2.2三通进口压力补偿
万方数据
2002年8月王明兴:比例方向控制回路中的压力补偿31
图5三通压力补偿器油路原理圈
在该回路中的固定油口A2与压力补偿器控制的调节油口A1并联。
A1同时作为油泵的回油管路的出油1:1。
同样当该阀阀芯处于平衡位置时,不考虑摩擦力和液动力时,可得到如下公式:
p,A^=P2A^+FF公式(5)则有△P=P1一P2=FF/A^≈常数
这样在阀口的压力差可近似保持恒定,并使通过比倒阀的流量与给定的电信号成正比而与负载的变化无关。
2.3使用进口压力补偿器的比较
在使用二通进口压力补偿器时,油泵始终需提供由溢流阀调定系统最高压力。
而使用三通进口压力补偿器时进口工作压力仅需比负载压力高Ap值即可,因而功率损失相对较少。
2.4使用进口压力补偿器的限制
2.4.1配置进口压力补偿器,当油缸制动减速过程中,特别是当负载压力高于弹簧设定的进口检测阀口处的压差时,由公式(3)可知:
有只一P1=尸。
+P,=FF/A^+P,≈常数当只一Pl≤FF/.4^时,调节阀口全部打开,因而压力补偿器失去调节作用。
2.4.2对于双向控制使用梭阀的回路,如图三示,在减速过程中,与压力补偿器弹簧腔相通的油压不再来自A而是B口。
在此工况下,B侧压力较高,可将压力补偿器打开,通过压力补偿器的流量增加。
此时传动装置试图加速,而比例阀阀芯向关闭的方向运动。
这样会有效地减缓在油缸进油管路的气蚀。
因此传动装置是通过简单的节流作用而非流量控制作用,减速到静止状态。
如没有梭阀,由于进口压差保持不变,在油路上就会出现气蚀现象而引起油缸动作速度不稳定。
因此必须在油缸两端加装压力控制闽防止超压,使油缸平稳制动。
如果没有设置压力控制阀,进口压力补偿器就只能限制在负载仅作用在一个方向的系统中使用。
2.5结语
使用进口压力补偿器可有效地改善比例阀阀日的节流特性,从而提高了比例阀输出随输入信号变化的线性性能。
但如前所述采用进口压力补偿器会在有杆腔出现增压的现象,因而必须设置限压装置。
参考文献
[1]置天觉主编液压工程手册机械工业出版社1990年4月
[2]林建亚、何存兴主编液压元件机械工业出版社1988年1月
[3]曼内斯曼力士乐公司液压传动教程比例阀与伺服阀技术,翻译:浙江大学流体传动及控制研究所.吴根茂
等.
(作者:王明兴.男,工程师,邯郸钢铁集团公司中板厂,056015)
(收稿日期:2001—10—30)万方数据。