河南省驻马店市平舆县2020-2021学年八年级下学期期中数学试题
2020-2021学年八年级下期中考试数学试卷及答案

2020-2021学年八年级下学期期中考试数学试卷一.选择题(共8小题,满分24分,每小题3分)1.下列调查,应采用全面调查的是()A.对我市七年级学生身高的调查B.对我国研制的“C919”大飞机零部件的调查C.对我市各乡镇猪肉价格的调查D.对我国“东风﹣41”洲际弹道导弹射程的调查2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是()A.必然事件B.不可能事件C.随机事件D.无法确定4.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分5.在同一直角坐标系中,函数y=kx+1和函数y=kx(k是常数且k≠0)的图象只可能是()A.B.C.D.6.若反比例函数y=kx的图象经过(﹣1,3),则这个函数的图象一定过()A .(﹣3,1)B .(−13,3)C .(﹣3,﹣1)D .(13,3) 7.如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,连接BB ′,若AC ′∥BB ′,则∠CAB ′的度数为( )A .45°B .60°C .70°D .90°8.将矩形OABC 如图放置,O 为原点,若点A 的坐标是(﹣1,2),点B 的坐标是(2,72),则点C 的坐标是( )A .(4,2)B .(2,4)C .(32,3)D .(3,32) 二.填空题(共9小题)9.在一个不透明的袋子中有1个红球,2个绿球和3个白球,这些球除了颜色外完全一样,摇匀后,从袋子中任意摸出1个球,你认为取出 颜色的球的可能性最大.10.在整数20180419中,数字“1”出现的频率是 .11.已知反比例函数y =3x ,x >0时,y 0,这部分图象在第 象限,y 随着x值的增大而 .12.在平行四边形ABCD 中,连接AC ,∠CAD =40°,△ABC 为钝角等腰三角形,则∠ADC的度数为 度.13.如图,菱形ABCD 的两条对角线AC ,BD 相交于点O ,E 是AB 的中点,若AC =6,BD=8,则OE 的长为 .14.已知y与x+1成反比例函数,且当x=1时,y=2,则当x=0时,y=.15.如图,正方形ABCD,∠EAF=45°,当点E,F分别在对角线BD、边CD上,若FC =6,则BE的长为.16.点P,Q,R在反比例函数y=kx(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S1+S3=27,则S2的值为.17.如图,反比例函数y=kx位于第二象限的图象上有A,B两点,过A作AD⊥x轴于点D,过点B作BC⊥y轴于点C.已知,S△OCD=32,S△OAB=12,则反比例函数解析式为.三.解答题(共6小题,满分46分)18.(7分)某校绿色行动小组组织一批人参加植树活动,完成任务的时间y(h)是参加植树人数x(人)的反比例函数,且当x=20人时,y=3h.(1)若平均每人每小时植树4棵,则这次共计要植树棵;(2)当x=80时,求y的值;(3)为了能在1.5h内完成任务,至少需要多少人参加植树?19.(8分)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A、1.5小时以上;B、1~1.5小时;C、0.5~1小时;D、0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在1小时以下.20.(12分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)将△ABC绕坐标原点O逆时针旋转90°.画出图形,直接写出点B的对应点的坐标;(2)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.21.(6分)如图,在矩形ABCD中,AB=6,BC=10.(1)如图1,若点H在边BC上,且AH=AD,DG⊥AH,求DG的长.(2)如图2,连接BD,作BD的垂直平分线与边AD.BC分别相交于E、F,连接BE、DF.求证:四边形EBFD是菱形.22.【阅读】如图1,四边形OABC中,OA=a,OC=8,BC=6,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC 的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].【理解】若点D与点A重合,则这个操作过程为FZ[45°,8];【尝试】(1)若点D与OA的中点重合,则这个操作过程为FZ[,];(2)若点D恰为AB的中点(如图2),求θ的值;【应用】经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,直线l 与AB相交于点F,试画出图形并解决下列问题:①求出a的值;②若P为边OA上一动点,连接PE、PF,请直接写出PE+PF的最小值.(备注:等腰直角三角形的三边关系满足1:1:√2或√2:√2:2)23.(13分)【问题背景】(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D.【简单应用】(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度数.(可直接使用问题(1)中的结论)【问题探究】(3)如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A =30°,∠C=18°,则∠P的度数为.【拓展延伸】(4)在图4中,若设∠C=x,∠B=y,∠CAP=14∠CAB,∠CDP=14∠CDB,试问∠P与∠C、∠B之间的数量关系为.(用x、y表示∠P)(5)在图5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P与∠A、∠C的关系,直接写出结论.2020-2021学年八年级下学期期中考试数学试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.下列调查,应采用全面调查的是()A.对我市七年级学生身高的调查B.对我国研制的“C919”大飞机零部件的调查C.对我市各乡镇猪肉价格的调查D.对我国“东风﹣41”洲际弹道导弹射程的调查【解答】解:A、对我市七年级学生身高的调查,因范围较广,不宜采用全面调查,故A 不符合题意;B、对我国研制的“C919”大飞机零部件的调查,因涉及安全问题,宜采用全面调查,故B符合题意;C、对我市各乡镇猪肉价格的调查,因范围较广,不宜采用全面调查,故C不符合题意;D、对我国“东风﹣41”洲际弹道导弹射程的调查,因破坏性较强,宜采用抽样调查,故D不符合题意;故选:B.2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.3.“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是()A.必然事件B.不可能事件C.随机事件D.无法确定【解答】解:“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是必然事件,故选:A.4.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线互相垂直平分【解答】解:A、平行四边形、矩形、菱形、正方形的对角线都互相平分,故本选项正确;B、只有矩形,正方形的对角线相等,故本选项错误;C、只有菱形,正方形的对角线互相垂直,故本选项错误;D、只有菱形,正方形的对角线互相垂直平分,故本选项错误.故选:A.5.在同一直角坐标系中,函数y=kx+1和函数y=kx(k是常数且k≠0)的图象只可能是()A.B.C.D.【解答】解:当k>0时,一次函数过一二三象限,反比例函数过一三象限;当k<0时,一次函数过一二四象限,反比例函数过二四象限;故选:B.6.若反比例函数y=kx的图象经过(﹣1,3),则这个函数的图象一定过()A.(﹣3,1)B.(−13,3)C.(﹣3,﹣1)D.(13,3)【解答】解:∵反比例函数y=kx的图象经过(﹣1,3),∴k=﹣1×3=﹣3,∴反比例函数解析式为y=−3 x.当x =﹣3时,y =−3−3=1, ∴反比例函数y =−3x 的图象经过点(﹣3,1),反比例函数y =−3x 的图象不经过点(﹣3,﹣1);当x =−13时,y =−3−13=9, ∴反比例函数y =−3x 的图象不经过点(−13,3);当x =13时,y =−313=−9,∴反比例函数y =−3x 的图象不经过点(13,3).故选:A .7.如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,连接BB ′,若AC ′∥BB ′,则∠CAB ′的度数为( )A .45°B .60°C .70°D .90°【解答】解:∵将△ABC 绕点A 按逆时针方向旋转120°得到△AB ′C ′,∴∠BAB ′=∠CAC ′=120°,AB =AB ′,∴∠AB ′B =12(180°﹣120°)=30°,∵AC ′∥BB ′,∴∠C ′AB ′=∠AB ′B =30°,∴∠CAB ′=∠CAC ′﹣∠C ′AB ′=120°﹣30°=90°.故选:D .8.将矩形OABC 如图放置,O 为原点,若点A 的坐标是(﹣1,2),点B 的坐标是(2,72),则点C 的坐标是( )A .(4,2)B .(2,4)C .(32,3)D .(3,32)【解答】解:如图:过点A 作AE ⊥x 轴于点E ,过点B 作BF ⊥⊥x 轴于点F ,过点A 作AN ⊥BF 于点N ,过点C 作CM ⊥x 轴于点M ,∵∠EAO +∠AOE =90°,∠AOE +∠MOC =90°, ∴∠EAO =∠COM , 又∵∠AEO =∠CMO , ∴∠AEO ∽△COM , ∴EO AE=CM MO=12,∵∠BAN +∠OAN =90°,∠EAO +∠OAN =90°, ∴∠BAN =∠EAO =∠COM , 在△ABN 和△OCM 中 {∠BNA =∠CMO ∠BAN =∠COM AB =OC, ∴△ABN ≌△OCM (AAS ), ∴BN =CM ,∵点A (﹣1,2),点B 的纵坐标是72,∴BN =32, ∴CM =32,∴MO =3,∴点C 的坐标是:(3,32).故选:D .二.填空题(共9小题)9.在一个不透明的袋子中有1个红球,2个绿球和3个白球,这些球除了颜色外完全一样,摇匀后,从袋子中任意摸出1个球,你认为取出 白 颜色的球的可能性最大. 【解答】解:∵一只不透明的袋子中有1个红球,2个绿球和3个白球,这些球除颜色外都相同,∴P (红球)=16,P (绿球)=26=13,(白球)=36=12, ∴摸到白球的可能性最大. 故答案为:白.10.在整数20180419中,数字“1”出现的频率是14.【解答】解:∵在整数20180419中,数字“1”出现了2次, ∴数字“1”出现的频率是28=14;故答案为:14.11.已知反比例函数y =3x ,x >0时,y > 0,这部分图象在第 一 象限,y 随着x 值的增大而 减小 .【解答】解:反比例函数y =3x ,x >0时,y >0,这部分图象在第一象限,y 随着x 值的增大而减小.故答案为:>;一;减小.12.在平行四边形ABCD 中,连接AC ,∠CAD =40°,△ABC 为钝角等腰三角形,则∠ADC 的度数为 100或40 度.【解答】解:∵四边形ABCD 是平行四边形, ∴∠BCA =∠CAD =40°, ①如图1,∠BAC =∠BCA =40°, ∠B =180°﹣40°×2=100°, 则∠ADC =100°;②如图2,∠B=∠BCA=40°,则∠ADC=40°.综上所述,∠ADC的度数为100或40度.故答案为:100或40.13.如图,菱形ABCD的两条对角线AC,BD相交于点O,E是AB的中点,若AC=6,BD =8,则OE的长为 2.5.【解答】解:∵四边形ABCD是菱形,AC=6,BD=8,∴AO=OC=3,OB=OD=4,AO⊥BO,又∵点E是AB中点,∴OE是△DAB的中位线,在Rt△AOD中,AB=√OA2+OB2=√32+42=5,则OE=12AB=2.5.故答案为:2.5.14.已知y与x+1成反比例函数,且当x=1时,y=2,则当x=0时,y=4.【解答】解:设反比例函数解析式为y=kx+1(k≠0),∵当x=1时,y=2,∴2=k1+1,解得k =4,∴反比例函数解析式为y =4x+1, 把x =0代入y =4x+1得:y =4, 故答案为:4.15.如图,正方形ABCD ,∠EAF =45°,当点E ,F 分别在对角线BD 、边CD 上,若FC =6,则BE 的长为 3√2 .【解答】解:作△ADF 的外接圆⊙O ,连接EF 、EC ,过点E 分别作EM ⊥CD 于M ,EN ⊥BC 于N (如图) ∵∠ADF =90°, ∴AF 为⊙O 直径,∵BD 为正方形ABCD 对角线, ∴∠EDF =∠EAF =45°, ∴点E 在⊙O 上, ∴∠AEF =90°,∴△AEF 为等腰直角三角形, ∴AE =EF ,在△ABE 与△CBE 中{AB =CB∠ABE =∠CBE BE =BE ,∴△ABE ≌△CBE (SAS ), ∴AE =CE , ∴CE =EF , ∵EM ⊥CF ,CF =6, ∴CM =12CF =3,∵EN ⊥BC ,∠NCM =90°,∴四边形CMEN 是矩形, ∴EN =CM =3, ∵∠EBN =45°, ∴BE =√2EN =3√2, 故答案为:3√2.16.点P ,Q ,R 在反比例函数y =kx (常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=27,则S 2的值为275.【解答】解:∵CD =DE =OE , ∴可以假设CD =DE =OE =a , 则P (k 3a,3a ),Q (k2a,2a ),R (ka,a ),∴CP =k3a ,DQ =k2a ,ER =ka , ∴OG =AG ,OF =2FG ,OF =23GA , ∴S 1=23S 3=2S 2, ∵S 1+S 3=27,∴S 3=815,S 1=545,S 2=275, 故答案为275.17.如图,反比例函数y =k x位于第二象限的图象上有A ,B 两点,过A 作AD ⊥x 轴于点D ,过点B 作BC ⊥y 轴于点C .已知,S △OCD =32,S △OAB =12,则反比例函数解析式为 y =−9x .【解答】解:作BE ⊥x 轴于E , 设A (m ,km ),∵S △OCD =32,∴12OD •OC =32,即12(﹣m )•OC =32,∴OC =−3m, ∴B (−mk 3,−3m), ∵S △OAB =12,∴S 梯形ABED =S △OAB ﹣S △AOD +S △BOE =12, ∴12(k m−3m)(m +mk3)=12, 解得k =±9,∵反比例函数y =kx 位于第二象限. ∴k =﹣9,∴反比例函数的解析式是y =−9x, 故答案为y =−9x .三.解答题(共6小题,满分46分)18.(7分)某校绿色行动小组组织一批人参加植树活动,完成任务的时间y(h)是参加植树人数x(人)的反比例函数,且当x=20人时,y=3h.(1)若平均每人每小时植树4棵,则这次共计要植树240棵;(2)当x=80时,求y的值;(3)为了能在1.5h内完成任务,至少需要多少人参加植树?【解答】解:(1)由题意可得:20×4×3=240;故答案为:240;(2)设y与x的函数表达式为:y=kx(k≠0),∵当x=20时,y=3.∴3=k 20∴k=60,∴y=60 x,当x=80时,y=6080=34;(3)把y=1.5代入y=60x,得1.5=60 x,解得:x=40,根据反比例函数的性质,y随x的增大而减小,所以为了能在1.5h内完成任务,至少需要40人参加植树.19.(8分)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A、1.5小时以上;B、1~1.5小时;C、0.5~1小时;D、0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在1小时以下.【解答】解:(1)读图可得:A类有60人,占30%,则本次一共调查了60÷30%=200人,因此本次一共调查了200名学生.(2)“B”有200﹣60﹣30﹣10=100人,如图1所示.(3)每天参加体育锻炼在1小时以下占15%,每天参加体育锻炼在0.5小时以下占5%,则3000×(15%+5%)=3000×20%=600人,因此学校有600人平均每天参加体育锻炼在1小时以下.20.(12分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)将△ABC绕坐标原点O逆时针旋转90°.画出图形,直接写出点B的对应点的坐标;(2)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.【解答】解:(1)如图所示,△A′B′C′即为所作;点B的对应点B'的坐标的坐标为(0,﹣6);(2)如图所示,点D的坐标为(﹣5,﹣3)或(﹣7,3)或(3,3).21.(6分)如图,在矩形ABCD中,AB=6,BC=10.(1)如图1,若点H在边BC上,且AH=AD,DG⊥AH,求DG的长.(2)如图2,连接BD,作BD的垂直平分线与边AD.BC分别相交于E、F,连接BE、DF.求证:四边形EBFD是菱形.【解答】解:(1)∵四边形ABCD 是矩形, ∴AD ∥BC , ∴∠DAG =∠AHB , 在△ADG 和△HAB 中, {∠DAG =∠AHB ∠DGA =∠B AD =AH, ∴△ADG ≌△HAB (AAS ), ∴DG =AB =6;(2)∵EF 是BD 的垂直平分线, ∴BO =DO ,BE =DE , ∵AD ∥BC , ∴∠EDO =∠FBO , 在△DEO 和△BFO 中, {∠EDO =∠FBO DO =BO ∠DOE =∠BOF, ∴△DEO ≌△BFO (ASA ), ∴OE =OF ,∴四边形BFDE 是平行四边形, 又∵BE =DE ,∴四边形BFDE 是菱形.22.【阅读】如图1,四边形OABC 中,OA =a ,OC =8,BC =6,∠AOC =∠BCO =90°,经过点O 的直线l 将四边形分成两部分,直线l 与OC 所成的角设为θ,将四边形OABC 的直角∠OCB 沿直线l 折叠,点C 落在点D 处,我们把这个操作过程记为FZ [θ,a ].【理解】若点D与点A重合,则这个操作过程为FZ[45°,8];【尝试】(1)若点D与OA的中点重合,则这个操作过程为FZ[45°,16];(2)若点D恰为AB的中点(如图2),求θ的值;【应用】经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,直线l 与AB相交于点F,试画出图形并解决下列问题:①求出a的值;②若P为边OA上一动点,连接PE、PF,请直接写出PE+PF的最小值.(备注:等腰直角三角形的三边关系满足1:1:√2或√2:√2:2)【解答】解:(1)点D与OA的中点重合,如图1,由折叠得:∠COP=∠DOP=45°,∠C=∠ODP=90°,∴CP=PD,∵OP=OP,∴Rt△OCP≌Rt△ODP(HL),∴OC =OD =8,∵D 为OA 的中点,∴OA =a =16,则这个操作过程为FZ [45°,16];故答案为:45°,16;(2)延长MD 、OA ,交于点N ,如图2.∵∠AOC =∠BCO =90°,∴∠AOC +∠BCO =180°,∴BC ∥OA ,∴∠B =∠DAN .在△BDM 和△ADN 中,{∠B =∠DAN BD =AD ∠BDM =∠ADN,∴△BDM ≌△ADN (ASA ),∴DM =DN .∵∠ODM =∠OCM =90°,∴根据线段垂直平分线的性质可得OM =ON ,∴根据等腰三角形的性质可得∠MOD =∠NOD .由折叠可得∠MOD =∠MOC =θ,∴∠COA =3θ=90°,∴θ=30°;【应用】①过点B作BH⊥OA于点H,如图3.∵∠COA=90°,∠COF=45°,∴∠FOA=45°.∵点B与点E关于直线l对称,∴∠OF A=∠OFB=90°,∴∠OAB=45°,∴∠HBA=90°﹣45°=45°=∠HAB,∴BH=AH.∵CO⊥OA,BH⊥OA,∴CO∥BH.∵BC∥OA,∴四边形BCOH是平行四边形,∴BH=CO=8,OH=CB=6,∴OA=OH+AH=OH+BH=6+8=14.∴a的值为14.②过点B作BH⊥OA于点H,过点F作OA的对称点Q,连接AQ、EQ,OB,如图4,则有∠QAO=∠F AO=45°,QA=F A,∴∠QAF=90°.在Rt△BHA中,AB=√BH2+AH2=8√2.在Rt△OF A中,∠AFO=90°,∠AOF=∠OAF=45°=7√2,∴AF=OF=2∴AQ=AF=7√2.在Rt△OCB中,OB=√OC2+BC2=√82+62=10.在Rt△OFB中,BF=AB﹣AF=8√2−7√2=√2.由折叠可得EF=BF=√2,∴AE=AF﹣EF=7√2−√2=6√2.在Rt△QAE中,EQ2=AE2+AQ2=(6√2)2+(7√2)2=170.根据两点之间线段最短可得:当点E、P、Q三点共线时,PE+PF=PE+PQ最短,最小值为线段EQ长.∴PE+PF的最小值的是√170.23.(13分)【问题背景】(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D.【简单应用】(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度数.(可直接使用问题(1)中的结论)【问题探究】(3)如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A =30°,∠C=18°,则∠P的度数为24°.【拓展延伸】(4)在图4中,若设∠C=x,∠B=y,∠CAP=14∠CAB,∠CDP=14∠CDB,试问∠P与∠C、∠B之间的数量关系为∠P=14(3x+y).(用x、y表示∠P)(5)在图5中,BP平分∠ABC,DP平分∠ADC的外角∠ADE,猜想∠P与∠A、∠C的关系,直接写出结论∠P=90°+12∠C−32∠A.【解答】解:(1)如图1中,∵∠A+∠B+∠AOB=180°,∠C+∠D+∠COD=180°,∠AOB=∠COD,∴∠A+∠B=∠C+∠D.(2)如图2中,设∠BAP =∠P AD =x ,∠BCP =∠PCD =y ,则有{x +∠B =y +∠P x +∠P =y +∠D, ∴∠B ﹣∠P =∠P ﹣∠D ,∴P =12(∠B +∠D )=12(28°+20°)=24°.故答案为24°(3)如图3中,设∠CBJ =∠JBF =x ,∠ADP =∠PDE =y .则有{∠P +x =∠A +y ∠P +180°−x =∠C +180°−y, ∴2∠P =∠A +∠C ,∴∠P =12(30°+18°)=24°.(4)如图4中,设∠CAP =α,∠CDP =β,则∠P AB =3α,∠PDB =3β,则有{∠P +β=∠C +α∠P +3α=∠B +3β, ∴4∠P =3∠C +∠B ,∴∠P =14(3x +y ),故答案为∠P =14(3x +y ).(5)如图5中,延长AB 交PD 于J ,设∠PBJ =x ,∠ADP =∠PDE =y .则有∠A +2x =∠C +180°﹣2y ,∴x +y =90°+12(∠C ﹣∠A ),∵∠P +x +∠A +y =180°,∴∠P =90°−12∠C −12∠A .故答案为∠P =90°−12∠C −12∠A .。
2020-2021学年度第二学期期中质量检测八年级数学试题及答案

2020-2021学年度第⼆学期期中质量检测⼋年级数学试题及答案2020-2021学年度第⼆学期期中质量检测⼋年级数学试题满分:120分,考试时间:100分⼀、选择题(本⼤题共有8⼩题,每⼩题3分,共24分在每⼩题所给的四个选项中,只有⼀项是符合题⽬要求的,请将正确选项的字母代号填涂在答题卡相应位置上.) 1.下列图形中,既是轴对称图形,⼜是中⼼对称图形的有(▲)A .1个B .2个C .3个D .4个 2..菱形不具有的性质是(▲)A.对⾓线互相平分B.对⾓线相等C.对⾓线互相垂直D.每⼀条对⾓线平分⼀组内⾓3.下列各式:()22214151 ,, ,, 232x x y a x x b y π-+--,4x-y 其中分式共有(▲)A .2个B .3个C .4个D .5个4.⼀个不透明的布袋中装有5个⽩球和3个红球,它们除了颜⾊不同外,其余均相同.从中随机摸出⼀个球,摸到红球的概率是(▲)A .13 B .15 C .38 D .585.关于反⽐例函数xy 1=的图像,下列说法不正确的是(▲)A .图像在第⼀、三象限B .图像经过点(1,1)C .当0D .当1>x 时,10<6.如图,菱形纸⽚ABCD 中,∠A=60°,折叠菱形纸⽚ABCD ,使点C 落在DP(P 为AB 中点)所在的直线上,得到经过点D 的折痕DE .则∠DEC 的⼤⼩为( ▲ )A .78°B .75°C .60°D .45°学校_______班级_______考试学_______姓名_________………………………………密……………………………………封………………………………………线…………………………………………7.设有反⽐例函数=y -x2,),(11y x 、),(22y x 、()33,y x 为其图像上的三个点,210x x <<<3x ,则下列各式正确的是(▲)A .321y y y <<B .132y y y <<C .123y y y <<D .231y y y << 8.如图,在Rt △ABC 中,∠C=90°,AC=BC =6cm ,点P 从点B 出发,沿BA ⽅向以每秒 2 cm 的速度向终点A 运动;同时,动点Q 从点C 出发沿CB ⽅向以每秒2cm 的速度向终点B 运动,将△BPQ 沿BC 翻折,点P 的对应点为点P ′,设Q 点运动的时间t 秒,若四边形QPBP ′为菱形,则t 的值是(▲)A .1.5B . 2C .2 2D .3⼆、填空题(本⼤题共10⼩题,每⼩题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上) 9.当分式6562---x x x 的值为0时,x 的值为▲ .10.下列命题:①⼀组对边平⾏,另⼀组对边相等的四边形是平⾏四边形;②对⾓线互相平分的四边形是平⾏四边形;③在四边形ABCD 中,AB =AD ,BC =DC ,那么这个四边形ABCD 是平⾏四边形;④⼀组对边相等,⼀组对⾓相等的四边形是平⾏四边形.其中正确的命题是▲.(将命题的序号填上即可).11.已知反⽐例函数25ky -=(k-1)x ,那么k 的值是▲ .12. 已知y 与x ?3成反⽐例,当x=4时,y=?1;那么y 与x 的函数关系可以表⽰为y= ▲__.13.从形状、⼤⼩相同的9张数字卡⽚(分别标有数字1,2,3,4,5,6,7,8,9)中任意抽1张,抽出的恰好是:①偶数;②⼩于6的数;③不⼩于9的数,这些事件按发⽣的可能性从⼤到⼩排列是▲(填序号)14.⽤反证法证明“等腰三⾓形的底⾓是锐⾓”时,⾸先应假设▲. 15.下列4个分式:①332++a a ;②22y x y x --;③n m m 22;④1m 2+,中最简分式有▲个.16. 若关于x 的⽅程221--=-x mx x ⽆解,则m 的值是___▲_____. 17.如图,在平⾯直⾓坐标系中,直线y =﹣kx +m 与双曲线y =(x >0)交于A 、B 两点,点A 的横坐标为1,点B 的横坐标为4,则不等式﹣kx +m >的解集为 _▲_ .18.如图,在△ABC 中,AB=3cm ,AC=4cm ,BC=5cm,M 是BC 边上的动点,MD ⊥AB ,ME ⊥AC ,垂⾜分别是D 、E.线段DE 的最⼩值是 _▲_ cm.三、解答题(本⼤题共9⼩题,共66分.请在答题卡指定区域内作答,解答时应写出⽂字说明,推理过程或演算步骤)19. (本题满分6分)计算(1)22x x y x y-++ (2)22214()244x x x x x x x x +---÷--+ 20.(本题满分6分)解⽅程:(1)21122x x x =--- (2) 3911332-=-+x x x 21.(本题满分6分))先化简:)112(1222xx x x x x --÷+-+,再从﹣2<x <3的范围内选取⼀个你喜欢的x 值代⼊求值.22. (本题满分8分已知21y y y +=,y1与x 成正⽐例,2y 与2x 成反⽐.当x =1时,y =﹣12;当x =4时,y =7.(1)求y 与x 的函数关系式和x 的取值范围;(2)当x =41时,求y 的值. 23.(本题满分8分)△ABC 在平⾯直⾓坐标系xOy 中的位置如图所⽰.(1)作△ABC 绕点O 逆时针旋转90°后的△A 1B 1C 1.(2)将△ABC 向右平移3个单位,作出平移后的△A 2B 2C 2.(3)若点M 是平⾯直⾓坐标系中直线AB 上的⼀个动点,点N 是x 轴上的⼀个动点,且以O 、A 2、M 、N 为顶点的四边形是平⾏四边形,请直接写出点N 的坐标.24.(本题满分8分)准备⼀张矩形纸⽚,按如图操作:将△ABE 沿BE 翻折,使点A 落在对⾓线BD 上的M 点,将△CDF 沿DF 翻折,使点C 落在对⾓线BD 上的N 点.(1)求证:四边形BFDE 是平⾏四边形;(2)若四边形BFDE 是菱形,BE =2,求菱形BFDE 的⾯积.25.(本题满分8分)某⼀⼯程,在⼯程招标时,接到甲,⼄两个⼯程队的投标书.施⼯⼀天,需付甲⼯程队⼯程款1.2万元,⼄⼯程队⼯程款0.5万元.⼯程领导⼩组根据甲,⼄两队的投标书测算,有如下⽅案:①甲队单独完成这项⼯程刚好如期完成;②⼄队单独完成这项⼯程要⽐规定⽇期多⽤6天;③若甲,⼄两队合做3天,余下的⼯程由⼄队单独做也正好如期完成.试问:规定⽇期是多少天?在不耽误⼯期的前提下,你觉得哪⼀种施⼯⽅案最节省⼯程款?请说明理由.26.(本题满分12分)如图,在平⾯直⾓坐标系中,A 点的坐标为(a ,6),AB ⊥x 轴于点B ,AB 3OB 4,反⽐例函数y=kx 的图象的⼀⽀分别交AO 、AB 于点C 、D .延长AO 交反⽐例函数的图象的另⼀⽀于点E .已知点D 的纵坐标为32.(1)求反⽐例函数的解析式及点E 的坐标; (2)连接BC ,求S △CEB .(3)若在x 轴上的有两点M (m,0)N(-m,0).①以E 、M 、C 、N 为顶点的四边形能否为矩形?如果能求出m 的值,如果不能说明理由。
2020-2021学年八年级下学期期中考试数学试卷及答案

2020-2021学年八年级下学期期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.下列属于最简二次根式的是()A.√8B.√5C.√4D.√1 3【解答】解:A.√8=2√2,不符合题意;B.√5是最简二次根式;C.√4=2,不符合题意;D.√13=√33,不符合题意;故选:B.2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.√3C.2D.√5【解答】解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB=√AC2−BC2=√22−12=√3,故选:B.3.下列各式中,化简后能与√2合并的是()A.√12B.√8C.√23D.√0.2【解答】解:A、√12=2√3,不能与√2合并;B、√8=2√2,能与√2合并;C、√23=√63,不能与√2合并;D、√0.2=√55,不能与√2合并;故选:B.4.下列计算正确的是()A.2√3+3√2=5B.√8÷√2=2C.5√3×5√2=5√6D.√412=2√12【解答】解:A、2√3与3√2不能合并,所以A选项错误;B、原式=√8÷2=2,所以B选项正确;C、原式=25√3×2=25√6,所以C选项错误;D、原式=√92=3√22,所以D选项错误.故选:B.5.下列命题是真命题的是()A.如果a2=b2,那么a=bB.0的平方根是0C.如果∠A与∠B是内错角,那么∠A=∠BD.三角形的一个外角等于它的两个内角之和【解答】解:A、如果a2=b2,那么a=b或a=﹣b,故原题说法错误;B、0的平方根是0,故原题说法正确;C、如果∠A与∠B是内错角,∠A不一定等于∠B,故原题说法错误;D、三角形的一个外角等于与它不相邻的两个内角之和,故原题说法错误;故选:B.6.如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14B.16C.20D.18【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,OB=OD,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,∴DE+CE+CD=BE+CE+CD=BC+CD=10,∴平行四边形ABCD的周长=2(BC+CD)=20;故选:C.7.以下列三个数据为三角形的三边,其中能构成直角三角形的是()A.2,3,4B.4,5,6C.5,12,13D.5,6,7【解答】解:A、22+32≠42,故不能构成直角三角形;B、42+52≠62,故不能构成直角三角形;C 、52+122=132,故能构成直角三角形;D 、52+62≠72,故不能构成直角三角形.故选:C .8.如图,下面不能判断四边形ABCD 是平行四边形的是( )A .AB =CD ,AB ∥CDB .∠A =∠C ,∠B =∠DC .AB =CD ,AD ∥BC D .AB =CD ,AD =BC 【解答】解:A 、∵AB =CD ,AB ∥CD ,∴四边形ABCD 是平行四边形,正确;B 、∵∠A =∠C ,∠B =∠D ,∴四边形ABCD 是平行四边形,正确;C 、∵AB =CD ,AD ∥BC ,不能得出四边形ABCD 是平行四边形,错误;D 、∵AB =CD ,AD =BC ,∴四边形ABCD 是平行四边形,正确;故选:C .9.如图,▱ABCD 中,AC .BD 为对角线,BC =3,BC 边上的高为2,则阴影部分的面积为( )A .3B .6C .12D .24【解答】解:∵▱ABCD 中,AC .BD 为对角线,BC =3,BC 边上的高为2,∴S ▱ABCD =3×2=6,AD ∥BC ,∴OA =OC ,∠OAE =∠OCF ,在△AOE 和△COF 中,{∠OAE =∠OCF OA =OC ∠AOE =∠COF,∴△AOE ≌△COF (ASA ),∴S △AOE =S △COF ,同理:S △EOG =S △FOH ,S △DOG =S △BOH ,∴S阴影=S△ABD=12S▱ABCD=12×6=3.故选:A.10.如图,▱ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=12BC=1,则下列结论:①∠CAD=30°;②BD=√7;③S平行四边形ABCD=AB•AC;④OE=14AD;⑤S△APO=√310中,正确的个数是()A.2B.3C.4D.5【解答】解:①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=12AB=12,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=√12−(12)2=√32,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=12+(32)2=√72,∴BD=2OD=√7,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,∴OE=12AB,∵AB=12BC,∴OE=14BC=14AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=√3 2,∴S△AOE=S△EOC=12OE•OC=12×12×√32=√38,∵OE∥AB,∴EPAP =OEAB=12,∴S△POES△AOP =12,∴S△AOP=23S△AOE=23×√38=√312;故⑤错误;本题正确的有:①②③④,4个,故选:C.二.填空题(共5小题,满分15分,每小题3分)11.计算√3x⋅√13xy(x>0)结果为x√y.【解答】解:原式=√3x⋅13xy=√x2y=x√y.故答案为:x√y.12.若√x−3在实数范围内有意义,则x的取值范围是x≥3.【解答】解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.13.如图,在平行四边形ABCD中,AB=2,BC=5.∠BCD的平分线交AD于点F,交BA 的延长线于点E,则AE的长为3.【解答】解:在平行四边形ABCD中,AB=2,BC=5,∴CD=AB=2,AD=BC=5,AD∥BC,∴∠DFC=∠FCB,∵CE平分∠DCB,∴∠DCF=∠BCF,∴∠DFC=∠DCF,∴DC=DF=2,∴AF=3,∵AB∥CD,∴∠E=∠DCF,又∵∠EF A=∠DFC,∠DFC=∠DCF,∴∠AEF=∠EF A,∴AE=AF=3,故答案为:3.14.如图,小巷左右两侧是竖直的墙.一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7m,顶端距离地面2.4m.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面2m,则小巷的宽度为 2.2m.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2(米).故答案为:2.2.15.如图,在等边△ABC 中,BC =5cm ,射线AG ∥BC ,点E 从点A 出发沿射线AG 以1cm /s的速度运动,点F 从点B 出发沿射线BC 以2cm /s 的速度运动.如果点E 、F 同时出发,设运动时间为t (s ),当t = 53或5 时,以A 、C 、E 、F 为顶点四边形是平行四边形.【解答】解:①当点F 在C 的左侧时,根据题意得:AE =tcm ,BF =2tcm ,则CF =BC ﹣BF =5﹣2t (cm ),∵AG ∥BC ,∴当AE =CF 时,四边形AECF 是平行四边形,即t =5﹣2t ,解得:t =53;②当点F 在C 的右侧时,根据题意得:AE =tcm ,BF =2tcm ,则CF =BF ﹣BC =2t ﹣5(cm ),∵AG ∥BC ,∴当AE =CF 时,四边形AEFC 是平行四边形,即t =2t ﹣5,解得:t =5;综上可得:当t =53s 或5s 时,以A 、C 、E 、F 为顶点四边形是平行四边形.故答案为:53或5. 三.解答题(共8小题,满分75分)16.(8分)计算下列各题(1)(√2+1)(√2−1)+(√3−2)2(2)−12√1024×5.【解答】解:(1)原式=2﹣1+5﹣4√3=6﹣4√3;(2)原式=−12×2×4√5=−4√5.17.(9分)计算题:(1)2√12÷12√50×12√34−35√2;(2)先化简,再求值.(6x √y x +3y √xy 3)﹣(4x √x y +√36xy ),其中x =32,y =27. 【解答】解:(1)原式=2×2×12√12÷50×34−35√2=2×310√2−35√2=35√2−35√2 =0;(2)原式=6x √y x +3y √xy 3−4x √x y −√36xy=6√xy +3√xy −4x y √xy −6√xy =(3−4x y )√xy =3y−4x y √xy , 当x =32,y =27时,原式=81−627√812=252√2.18.(9分)如图,在▱ABCD 中,E 为BC 边上一点,且AB =AE .(1)求证:△ABC ≌△EAD ;(2)若∠B =65°,∠EAC =25°,求∠AED 的度数.【解答】(1)证明:∵在平行四边形ABCD 中,AD ∥BC ,BC =AD ,∴∠EAD =∠AEB ,又∵AB =AE ,∴∠B =∠AEB ,∴∠B =∠EAD ,在△ABC 和△EAD 中,{AB =AE ∠ABC =∠EAD BC =AD,∴△ABC ≌△EAD (SAS ).(2)解:∵AB =AE ,∴∠B=∠AEB,∴∠BAE=50°,∴∠BAC=∠BAE+∠EAC=50°+25°=75°,∵△ABC≌△EAD,∴∠AED=∠BAC=75°.19.(9分)观察下列各式:√1+112+122=1+11−12=112√1+122+132=1+12−13=116√1+132+142=1+13−14=1112请你根据上面三个等式提供的信息,猜想:(1)√1+142+152=1120(2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:√1+1n2+1(n+1)2=1+1n(n+1);(3)利用上述规律计算:√5049+164(仿照上式写出过程)【解答】解:(1)√1+142+152=1+14−15=1120;故答案为:1120;(2)√1+1n2+1(n+1)2=1+1n−1n+1=1+1n(n+1);故答案为:√1+1n2+1(n+1)2=1+1n(n+1);(3)√5049+164=√1+172+182=1156.20.(9分)如图,方格中的点A、B、C、D、E称为格点(格线的交点),以这5个格点中的3点为顶点画三角形,一共可以画多少个?其中,哪些是直角三角形、钝角三角形、锐角三角形?哪些是等腰三角形?【解答】解:如图,一共可以画9个三角形,其中,△ABE,△BCE,△CDE是直角三角形、△ACD,△BCD,ABD是钝角三角形、△ADE,△AEC,△BDE是锐角三角形,△AEC,△CDE是等腰三角形.21.(10分)如图所示,已知O为坐标原点,矩形ABCD(点A与坐标原点重合)的顶点D、B分别在x轴、y轴上,且点C的坐标为(﹣4,8),连接BD,将△ABD沿直线BD翻折至△A′BD,交CD于点E.(1)求点A′坐标.(2)试在x轴上找点P,使A'P+PB的长度最短,请求出这个最短距离.【解答】解:(1)∵点C的坐标为(﹣4,8),∴OD=BC=4,CD=OB=8,连接AA′,与BD交于点G,过A′作A′F⊥OB于点F,由折叠知,A′B=OA=8,OG=A′G,OA′⊥BD,∴S△OBD=12BD⋅OG=12OD⋅OB,∴OG=OD⋅OBBD=√4+8=8√55,∴OA′=2OG=16√5 5,设OF =x ,则BF =8﹣x ,∵OA ′2﹣OF 2=A ′F 2=A ′B 2﹣BF 2,即(16√55)2−x 2=82−(8−x)2, 解得,x =165,即OF =165, ∴A′F =2−OF 2=325,∴A ′(−325,165);(2)作A ′点关于x 轴的对称点A ″,连接BA ″,与x 轴交于点P ,则A 'P +PB =A ″P +PB =A ″B 的值最小,∴A ″(−325,−165),∵B (0,8),∴A″B =√(325)2+(8+165)2=8√655故A 'P +PB 的长度的最短距离为8√655.22.(10分)在平行四边形ABCD 中,以AB 为边作等边△ABE ,点E 在CD 上,以BC 为边作等边△BCF ,点F 在AE 上,点G 在BA 延长线上且FG =FB .(1)若CD =6,AF =3,求△ABF 的面积;(2)求证:BE =AG +CE .【解答】(1)解:∵△ABE是等边三角形,∴∠BAF=60°,AB=AE,∵四边形ABCD是平行四边形,∴AB=CD=6,∴AE=AB=6,∵AF=3,∴AF=EF,∴S△ABF=12S△ABE=12•√34•62=9√32.(2)作FH⊥AB于H,CJ⊥AE交AE的延长线于J.∵△ABE,△FBC都是等边三角形,∴BA=BE,BF=BC,∠ABE=∠FBC=60°,∴∠ABF=∠EBC,∴△ABF≌△EBC(SAS),∴AF=EC,∵AB∥CD,∴∠CEJ=∠F AH,∵∠FHA=∠J=90°,∴△FHA≌△CJE(AAS),∴FH=CJ,AH=EJ,∵FB=FG=FC,FH=CJ,∴Rt△FGH≌Rt△CJF(HL),∴GH=FJ,∵AH=EJ,∴EF=AG,∵BE=AE=AF+EF,∴BE=EC+AG.23.(11分)如图,已知∠A=90°,BD=BE,BC是边DE的中线,BC=15.(1)若AB=7,求AC的长度;(2)若DE=16,求△BED的周长.【解答】解:(1)在Rt△ABC中,∵∠A=90°,BC=15,AB=7,∴AC=√BC2−AB2=√152−72=4√11.(2)∵BD=BE,CD=CE=8,∴BC⊥DE,∴∠BCD=∠BCE=90°,∴BD=BE=√BC2+CD2=√152+82=17,∴△BDE的周长=17+17+16=50.。
2020-2021学年八年级下学期期中考试数学试卷及答案解析

2020-2021学年八年级下学期期中考试数学试卷一.选择题(共10小题,满分30分,每小题3分)1.能使√x−1有意义的x的取值范围是()A.x>0B.x≥0C.x>1D.x≥1【解答】解:∵√x−1有意义,∴x﹣1≥0,解得x≥1.故选:D.2.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.1、2、3B.2、3、4C.3、4、5D.4、5、6【解答】解:A、∵12+22≠32,∴不能组成直角三角形,故A选项错误;B、∵22+32≠42,∴不能组成直角三角形,故B选项错误;C、∵32+42=52,∴组成直角三角形,故C选项正确;D、∵42+52≠62,∴不能组成直角三角形,故D选项错误.故选:C.3.下列计算正确的是()A.2√3+3√2=5B.√8÷√2=2C.5√3×5√2=5√6D.√412=2√12【解答】解:A、2√3与3√2不能合并,所以A选项错误;B、原式=√8÷2=2,所以B选项正确;C、原式=25√3×2=25√6,所以C选项错误;D、原式=√92=3√22,所以D选项错误.故选:B.4.下列各式与√2是同类二次根式的是()A.√8B.√24C.√27D.√125【解答】解:(A)原式=2√2,故A与√2是同类二次根式;(B)原式=2√6,故B与√2不是同类二次根式;(C)原式=3√3,故C与√2不是同类二次根式;(D)原式=5√5,故D与√2不是同类二次根式;故选:A.5.已知a<b,则化简二次根式√−a3b的正确结果是()A.−a√−ab B.−a√ab C.a√ab D.a√−ab 【解答】解:∵√−a3b有意义,∴﹣a3b≥0,∴a3b≤0,又∵a<b,∴a<0,b≥0,∴√−a3b=−a√−ab.故选:A.6.下列各式属于最简二次根式的是()A.√8B.2+1C.√y2D.√1 2【解答】解:A、√8含有能开方的因数,不是最简二次根式,故本选项错误;B、√x2+1符合最简二次根式的定义,故本选项正确;C、√y2含有能开方的因式,不是最简二次根式,故本选项错误;D、√12被开方数含分母,故本选项错误;故选:B.7.使代数式√2x+6有意义的x的取值范围是()A.x≥﹣3B.x≤﹣3C.x>﹣3D.﹣3<x≤0【解答】解:∵代数式√2x+6有意义,∴2x+6>0,∴x>﹣3,故选:C.8.已知x−1x=2,则x2+1x2的值为()A.2B.4C.6D.8【解答】解:原式=(x−1x)2+2=22+2=6,故选:C.9.在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵x2≥0,∴x2+1≥1,∴点P(﹣2,x2+1)在第二象限.故选:B.10.如图,桌面上的正方体的棱长为2,B为一条棱的中点.已知蚂蚁沿正方体的表面从A 点出发,到达B点,则它运动的最短路程为()A.√10B.4C.√17D.5【解答】解:如图,它运动的最短路程AB=√(2+2)2+(22)2=√17,故选:C.二.填空题(共5小题,满分15分,每小题3分)11.若√12x是一个整数,则x可取的最小正整数是3.√(判断对错)【解答】解:∵√12x=2√3x,∴若√12x是一个整数,则x可取的最小正整数是3,故答案为:√.12.已知最简二次根式√7−2a与2√3可以合并,则a的值是2.【解答】解:由最简二次根式√7−2a与2√3可以合并,得7﹣2a=3.解得a=2,故答案为:2.13.已知直角三角形的两边x,y的长满足|x﹣4|+√y−3=0,则第三边的长为5或√7.【解答】解:∵|x−4|≥0,√y−3≥0,∴||=0,√y−3=0,即x=4,y=3,在直角三角形中,(1)边长为4的边是斜边,则第三边的长为√42−32=√7;(2)边长为4的边是直角边,则第三边即斜边的长为√32+42=5,故答案为5或√7.14.观察下列等式:32+42=52;52+122=132;72+242=252;92+402=412;112+602=612…按照这样的规律,第六个等式是132+842=852.【解答】解:∵第一个等式是:32+42=52;第二个等式是52+122=132;第三个等式是72+242=252;第四个等式是92+402=412;第五个等式是112+602=612…按照这样的规律,第六个等式是:132+842=852,故答案为:132+842=852.15.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4√5.【解答】解:(i)如图1所示:当B′D=B′C时,过B′点作GH∥AD,则∠B′GE =90°.当B′C=B′D时,AG=DH=12DC=8.由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G=√B′E2−EG2=√132−52=12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′=√B′H2+DH2=√42+82=4√5(ii)如图2所示:当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B 重合).(iii)当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4√5.故答案为:16或4√5.三.解答题(共8小题)16.计算:(1)(√6−2√15)×√3−6√1 2(2)(√2+1)2√32×√50√8.【解答】解:(1)原式=√6×3−2√15×3−3√2=3√2−6√5−3√2=﹣6√5;(2)原式=2+2√2+1−√32×508=3+2√2−10√2=3﹣8√2.17.先化简,再求值(1−4x+3)÷x2−2x+12x+6,其中x=√2+1.【解答】解:(1−4x+3)÷x2−2x+12x+6=x+3−4x+3⋅2(x+3) (x−1)2=x−11⋅2(x−1)2=2x−1,当x=√2+1时,原式=2+1−1=√2.18.如图,在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度全速前进,2小时后甲船到M岛,乙船到P 岛,两岛相距34海里,你知道乙船沿那个方向航行吗?【解答】解:BM=8×2=16海里,BP=15×2=30海里,在△BMP中,BM2+BP2=256+900=1156,PM2=1156,BM2+BP2=PM2,∴∠MBP=90°,180°﹣90°﹣60°=30°,故乙船沿南偏东30°方向航行.19.(1)如图1是一家唇膏卖家的礼品装,卖家采用了正三梭柱形盒子,里面刚好横放一支圆柱形唇膏,右图是其横载面,△ABC为正三角形.求这个包装盒空间的最大利用率(圆柱体积和纸盒容积的比);(2)一个长宽高分别为l,b.h的长方体纸箱装满了一层高为h的圆柱形易拉罐如图2.求纸箱空间的利用率(易拉罐总体积和纸箱容积的比);(3)比较上述两种包装方式的空间利用率哪个大?【解答】解:(1)由题意,⊙O 是△ABC 内接圆,D 为切点,如图1,连结OD ,OC .设⊙O 半径为r ,纸盒长度为h ',则CD =√3r ,BC =2√3r 则圆柱型唇膏和纸盒的体积之比为:πr 2ℎ′√34(23r)2ℎ′#/DEL/#=√39π#/DEL/#(若设△ABC 的边长为a 112πa 2ℎ′34a =√39π) (2)易拉罐总体积和纸箱容积的比:l 2r ⋅b 2r ⋅πr 2ℎlbℎ=π4;(3)∵√39ππ4=4√39=√4881<1 ∴第二种包装的空间利用率大.20.四边形ABCD 是长方形,将长方形ABCD 折叠,如图①所示,点B 落在AD 边上的点E 处,折痕为FG ,将图②折叠,点C 与点E 重合,折痕为PH .(1)在图②中,证明:EH =EP ;(2)若EF =6,EH =8,FH =10,求长方形ABCD 的面积.【解答】(1)证明:如图2,由折叠得:∠CHP=∠EHP,∵EG∥BC,∴∠EPH=∠CHP,∴∠EHP=∠EPH,∴EP=EH;(2)解:∵EF=6,EH=8,FH=10,∴∠FEH=90°,∴S△EFH=12EF×EH=24,由折叠得:BF=EF=6,CH=EH=8,∴BC=BF+FH+HC=6+10+8=24,过E作EM⊥BC于M,∴S△EFH=12FH×EM=24,∴FH×EM=48,∵FH=10,∴EM=4.8,∴S矩形ABCD=BC×EM=115.2.21.阅读下列材料,并解决相应问题:√5−√3=√5+√3)(√5−√3)(√5+√3)=2(√5+√3)2=√5+√3用上述类似的方法解答问题:若a是√5的小数部分,求√5a的值.【解答】解:∵2<√5<3,a 是√5的小数部分,∴a =√5−2,∴√5a =√5√5−2=√5(√5+2)(√5−2)(√5+2)=5+2√5. 22.已知:如图,在矩形ABCD 中,AC 是对角线.点P 为矩形外一点且满足AP =PC ,AP⊥PC .PC 交AD 于点N ,连接DP ,过点P 作PM ⊥PD 交AD 于M . (1)若AP =√5,AB =13BC ,求矩形ABCD 的面积;(2)若CD =PM ,求证:AC =AP +PN .【解答】(1)解:∵AP ⊥CP 且AP =CP ,∴△APC 为等腰直角三角形, ∵AP =√5, ∴AC =√10,∵AB =13BC ,∴设AB =x ,BC =3x ,∴在Rt △ABC 中,x 2+(3x )2=10,10x 2=10,x =1,∴S ABCD =AB •BC =1×3=3;(2)解:延长AP,CD交于Q,∵∠1+∠CND=∠2+∠PNA=90°,且∠CND=∠ANP,∴∠1=∠2,又∠3+∠5=∠4+∠5=90°,∴∠3=∠4,在△APM和△CPD中∵{∠1=∠2 AP=CP ∠3=∠4,∴△APM≌△CPD(ASA),∴DP=PM,又∵CD=PM,∴CD=PD,∴∠1=∠4=∠3,∵∠1+∠Q=∠3+∠6=90°∴∠Q=∠6∴DQ=DP=CD∴D为CQ中点,又∵AD⊥CQ∴AC=AQ=AP+PQ,在△APN和△CPQ中∵{∠1=∠2AP=CP∠APC=∠CPQ,∴△APN≌△CPQ(ASA),∴PQ=PN∴AC=AP+PQ=AP+PN.23.如图,在等边△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果点M以3厘米/秒的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.①经过2秒后,△BMN和△CDM是否全等?请说明理由.②当两点的运动时间为多少时,△BMN是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是 3.8或2.6厘米/秒.(直接写出答案)【解答】解:(1)①△BMN≌△CDM.理由如下:…(1分)∵V N=V M=3厘米/秒,且t=2秒,∴CM=2×3=6(cm)BN=2×3=6(cm)BM=BC﹣CM=10﹣6=4(cm)∴BN=CM…(1分)∵CD=4(cm)∴BM=CD…(1分)∵∠B=∠C=60°,∴△BMN≌△CDM.(SAS)…(1分)②设运动时间为t秒,△BMN是直角三角形有两种情况:Ⅰ.当∠NMB=90°时,∵∠B=60°,∴∠BNM=90°﹣∠B=90°﹣60°=30°.∴BN=2BM,…(1分)∴3t=2×(10﹣3t)∴t=209(秒);…(1分)Ⅱ.当∠BNM=90°时,∵∠B=60°,∴∠BMN=90°﹣∠B=90°﹣60°=30°.∴BM=2BN,…(1分).∴10﹣3t=2×3t∴t=109(秒).…(1分)∴当t=209秒或t=109秒时,△BMN是直角三角形;(2)分两种情况讨论:I.若点M运动速度快,则3×25﹣10=25V N,解得V N=2.6;Ⅱ.若点N运动速度快,则25V N﹣20=3×25,解得V N=3.8.故答案是3.8或2.6.…(2分)。
2020-2020学年驻马店市八年级下期中数学试卷含答案解析

2020-2020学年河南省驻马店市八年级(下)期中数学试卷一、选择题1.要使有意义,则x的取值范围是()A.x≤ B.x≥C.x≤D.x≥2.下列二次根式中属于最简二次根式的是()A. B. C.D.3.下列各组线段能构成直角三角形的一组是()A.7,12,13 B.30,40,50 C.5,9,12 D.3,4,64.如图,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D.则BD的长为()A.B.C.D.5.如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14 B.16 C.20 D.186.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A.6米B.6米C.3米D.3米7.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90°D.CE⊥DE8.下列命题:①平行四边形的对边相等;②对角线相等的四边形是矩形;③对角线互相垂直平分的四边形是正方形;④一条对角线平分一组对角的平行四边形是菱形.其中真命题的个数是()A.1 B.2 C.3 D.4二、填空9.命题“等腰三角形的两个底角相等”的逆命题是.10.当1<a<2时,代数式+|1﹣a|的值是.11.三角形周长为(7+2)cm,已知两边长分别为cm和cm,则第三边的长是cm.12.已知平行四边形ABCD中,∠B=5∠A,则∠D=.13.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD=.14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.15.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH为a,BH为b,则ab=.16.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(6,0)、(0,4),点P是线段BC上的动点,当△OPA是等腰三角形时,则P点的坐标是.三、解答(本大题共8个小题,满分67分)17.计算:(1)(10﹣6+4)÷(2)×(﹣)÷(﹣)18.已知x=+,y=﹣,求代数式x2+y2﹣xy﹣2x+2y的值.19.如图,在四边形ABCD中,∠ABC=90°,∠BAD=135°,AB=1,AC=,点E为CD中点.求证:CD=2AE.20.已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.21.在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.22.如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD、BC分别交于点M 和点N.(1)请你判断OM和ON的数量关系,并说明理由;(2)过点D作DE∥AC交BC的延长线于点E,当AB=6,AC=8时,求△BDE的周长.23.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)直接写出AM、AD、MC三条线段的数量关系:;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.2020-2020学年河南省驻马店市八年级(下)期中数学试卷参考答案与试题解析一、选择题1.要使有意义,则x的取值范围是()A.x≤ B.x≥C.x≤D.x≥【考点】二次根式有意义的条件.【分析】二次根式有意义的条件是被开方数大于或等于零.【解答】解:要使有意义,则4﹣5x≥0,解得:x≤.故选;A.【点评】本题主要考查的是二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.2.下列二次根式中属于最简二次根式的是()A. B. C.D.【考点】最简二次根式.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含能开得尽方的因数或因式,故A错误;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数含分母,故C错误;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D正确;故选:D.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.3.下列各组线段能构成直角三角形的一组是()A.7,12,13 B.30,40,50 C.5,9,12 D.3,4,6【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理(看看两小边的平方和是否等于大边的平方)分别进行判断即可.【解答】解:A、∵72+122≠132,∴以7,12,13为边的三角形不是直角三角形,故本选项错误;B、∵302+402=502,∴以30,40,50为边的三角形是直角三角形,故本选项正确;C、∵52+92≠122,∴以5,9,12为边的三角形不是直角三角形,故本选项错误;D、∵32+42≠62,∴以3,4,6为边的三角形不是直角三角形,故本选项错误;故选B.【点评】本题考查了勾股定理的逆定理的应用,能熟记知识点是解此题的关键,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形.4.如图,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D.则BD的长为()A.B.C.D.【考点】勾股定理;三角形的面积.【专题】计算题.【分析】利用勾股定理求得相关线段的长度,然后由面积法求得BD的长度.【解答】解:如图,由勾股定理得AC==.∵BC×2=AC•BD,即×2×2=×BD∴BD=.故选:C.【点评】本题考查了勾股定理,三角形的面积.利用面积法求得线段BD的长度是解题的关键.5.如图,▱ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则▱ABCD的周长为()A.14 B.16 C.20 D.18【考点】平行四边形的性质.【分析】由平行四边形的性质得出AB=CD,BC=AD,OB=OD,再根据线段垂直平分线的性质得出BE=DE,由△CDE的周长得出BC+CD=6cm,即可求出平行四边形ABCD的周长.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,OB=OD,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,∴DE+CE+CD=BE+CE+CD=BC+CD=10,∴平行四边形ABCD的周长=2(BC+CD)=20;故选C.【点评】本题考查了平行四边形的性质、线段垂直平分线的性质以及三角形、平行四边形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.6.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()A.6米B.6米C.3米D.3米【考点】菱形的性质.【专题】应用题.【分析】由四边形ABCD为菱形,得到四条边相等,对角线垂直且互相平分,根据∠BAD=60°得到三角形ABD为等边三角形,在直角三角形ABO中,利用勾股定理求出OA的长,即可确定出AC的长.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD=24÷4=6(米),∵∠BAD=60°,∴△ABD为等边三角形,∴BD=AB=6(米),OD=OB=3(米),在Rt△AOB中,根据勾股定理得:OA==3(米),则AC=2OA=6米,故选A.【点评】此题考查了勾股定理,菱形的性质,以及等边三角形的判定与性质,熟练掌握菱形的性质是解本题的关键.7.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90°D.CE⊥DE【考点】矩形的判定;平行四边形的性质.【分析】先证明四边形ABCD为平行四边形,再根据矩形的判定进行解答.【解答】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;C、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误.故选B.【点评】本题考查了平行四边形的判定和性质、矩形的判定,首先判定四边形ABCD为平行四边形是解题的关键.8.下列命题:①平行四边形的对边相等;②对角线相等的四边形是矩形;③对角线互相垂直平分的四边形是正方形;④一条对角线平分一组对角的平行四边形是菱形.其中真命题的个数是()A.1 B.2 C.3 D.4【考点】命题与定理.【分析】根据平行四边形的性质对①进行判断;根据矩形的判定方法对②进行判断;根据正方形的判定方法对③进行判断;根据菱形的判定方法对④进行判断.【解答】解:平行四边形的对边相等,所以①正确;对角线相等的平行四边形是矩形,所以②错误;对角线互相垂直平分且相等的四边形是正方形,所以③错误;一条对角线平分一组对角的平行四边形是菱形,所以④正确.故选B.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.二、填空9.命题“等腰三角形的两个底角相等”的逆命题是两个角相等三角形是等腰三角形.【考点】命题与定理.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【解答】解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”.【点评】根据逆命题的概念来回答:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.10.当1<a<2时,代数式+|1﹣a|的值是1.【考点】二次根式的性质与化简.【分析】直接利用a的取值范围去掉绝对值和化简二次根式,进而求出答案.【解答】解:∵1<a<2,+|1﹣a|=2﹣a+a﹣1=1.故答案为:1.【点评】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.11.三角形周长为(7+2)cm,已知两边长分别为cm和cm,则第三边的长是4cm.【考点】二次根式的加减法.【分析】首先化简二次根式,进而合并同类二次根式得出答案.【解答】解:∵三角形周长为(7+2)cm,两边长分别为cm和cm,∴第三边的长是:(7+2)﹣﹣=7+2﹣3﹣2=4(cm).故答案为:4.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.12.已知平行四边形ABCD中,∠B=5∠A,则∠D=150°.【考点】平行四边形的性质.【分析】根据题意画出图形,再根据∠B=5∠A得出∠B的度数,进而得出∠D的度数.【解答】解:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°,∠D=∠B,∵∠B=5∠A,∴6∠A=180°,解得∠A=30°,∴∠D=∠B=30°×5=150°°.故答案为:150°.【点评】本题考查的是平行四边形的性质,熟知平行四边形的对边互相平行,两组内角分别相等是解答此题的关键.13.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD=2.【考点】三角形中位线定理.【分析】由题意可知EF是△ADC的中位线,由此可求出AD的长,再根据中线的定义即可求出BD的长.【解答】解:∵点E、F分别是AC、DC的中点,∴EF是△ADC的中位线,∴EF=AD,∵EF=1,∴AD=2,∵CD是△ABC的中线,∴BD=AD=2,故答案为:2.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.14.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【考点】正方形的性质;等边三角形的性质.【分析】根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE 与AD的关系,∠AED的度数,根据等腰三角形的性质,可得∠AEB与∠ABE的关系,根据三角形的内角和,可得∠AEB的度数,根据角的和差,可得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.【点评】本题考查了正方形的性质,先求出∠BAE的度数,再求出∠AEB,最后求出答案.15.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH为a,BH为b,则ab=48.【考点】勾股定理的证明.【分析】根据面积的差得出a+b的值,再利用a﹣b=2,解得a,b的值代入即可.【解答】解:∵AB=10,EF=2,∴大正方形的面积是100,小正方形的面积是4,∴四个直角三角形面积和为100﹣4=96,设AH为a,BH为b,即4×ab=96,∴2ab=96,a2+b2=100,∴(a+b)2=a2+b2+2ab=100+96=196,∴a+b=14,∵a﹣b=2,解得:a=8,b=6,∴AH=8,BH=6,∴ab=6×8=48.故答案为:48.【点评】此题考查勾股定理的证明,关键是应用直角三角形中勾股定理的运用解得ab的值.16.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(6,0)、(0,4),点P是线段BC上的动点,当△OPA是等腰三角形时,则P点的坐标是(3,4)或(2,4)或(6﹣2,4).【考点】矩形的性质;坐标与图形性质;等腰三角形的判定.【分析】由矩形的性质得出BC=OA=6,AB=OC=4,∠B=∠OCB=90°,分三种情况:①当PO=PA时;②当AP=AO=6时;③当OP=OA=6时;分别求出PC的长,即可得出结果.【解答】解:∵四边形OABC是矩形,∴BC=OA=6,AB=OC=4,∠B=∠OCB=90°,分三种情况:如图所示:①当PO=PA时,P在OA的垂直平分线上,P是BC的中点,PC=3,∴点P的坐标为(3,4);②当AP=AO=6时,BP==2,∴PC=6﹣2,∴P(6﹣2,4);③当OP=OA=6时,PC==2,∴P(2,4).综上所述:点P的坐标为(3,4)或(2,4)或(6﹣2,4).故答案为:(3,4)或(2,4)或(6﹣2,4).【点评】本题考查了矩形的性质、坐标与图形性质、等腰三角形的判定、勾股定理;熟练掌握矩形的性质,进行分类讨论是解决问题的关键.三、解答(本大题共8个小题,满分67分)17.计算:(1)(10﹣6+4)÷(2)×(﹣)÷(﹣)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先对括号内的式子化简,再根据二次根式的除法进行计算即可解答本题;(2)根据二次根式的乘除法进行计算即可解答本题.【解答】解:(1)(10﹣6+4)÷===15;(2)×(﹣)÷(﹣)===.【点评】本题考查考查二次根式的混合运算,解题的关键是明确二次根式混合运算的计算方法.18.已知x=+,y=﹣,求代数式x2+y2﹣xy﹣2x+2y的值.【考点】二次根式的化简求值.【分析】首先把x2+y2﹣xy﹣2x+2y化为x2﹣2xy+y2+xy﹣2x+2y=(x﹣y)2+xy﹣2(x﹣y),在代入数值计算即可.【解答】解:∵x=+,y=﹣,∴x2+y2﹣xy﹣2x+2y=x2﹣2xy+y2+xy﹣2x+2y=(x﹣y)2+xy﹣2(x﹣y)=8+1﹣4=9﹣4.【点评】此题主要二次根式的化简求值,主要利用完全平方公式把整式整理,再进一步代入计算.19.如图,在四边形ABCD中,∠ABC=90°,∠BAD=135°,AB=1,AC=,点E为CD中点.求证:CD=2AE.【考点】勾股定理;直角三角形斜边上的中线.【专题】证明题.【分析】首先利用已知条件和勾股定理可证明BC=AB,进而可得∠BCA=∠BAC=45°,再根据已知条件可得∠CAD=135﹣45°=90°,所以三角形CAD是直角三角形,利用在直角三角形中,斜边上的中线等于斜边的一半即可证明CD=2AE.【解答】证明:Rt△ABC中,∠ABC=90°,AB=1,AC=∴BC2=()2﹣12=1,∴BC=AB,∴∠BCA=∠BAC=45°,又∵∠BAD=135°,∴∠CAD=135﹣45°=90°,又∵AE为CD上中点,∴AE为Rt△CAD斜边上中线,则CD=2AE.【点评】本题考查了勾股定理的运用以及在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)的性质,解题的关键是证明△CAD是直角三角形.20.已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【专题】证明题.【分析】首先证明△AEB≌△CFD可得AB=CD,再由条件AB∥CD可利用一组对边平行且相等的四边形是平行四边形证明四边形ABCD为平行四边形.【解答】证明:∵AB∥CD,∴∠DCA=∠BAC,∵DF∥BE,∴∠DFA=∠BEC,∴∠AEB=∠DFC,在△AEB和△CFD中,∴△AEB≌△CFD(ASA),∴AB=CD,∵AB∥CD,∴四边形ABCD为平行四边形.【点评】此题主要考查了平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.21.在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【考点】平行四边形的性质;角平分线的性质;勾股定理的逆定理;矩形的判定.【专题】证明题.【分析】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【点评】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.22.如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD、BC分别交于点M 和点N.(1)请你判断OM和ON的数量关系,并说明理由;(2)过点D作DE∥AC交BC的延长线于点E,当AB=6,AC=8时,求△BDE的周长.【考点】菱形的性质;全等三角形的判定与性质;勾股定理.【专题】计算题;矩形菱形正方形.【分析】(1)根据四边形ABCD是菱形,判断出AD∥BC,AO=OC,即可推得OM=ON.(2)首先根据四边形ABCD是菱形,判断出AC⊥BD,AD=BC=AB=6,进而求出BO、BD的值是多少;然后根据DE∥AC,AD∥CE,判断出四边形ACED是平行四边形,求出DE=AC=6,即可求出△BDE的周长是多少.【解答】解:(1)∵四边形ABCD是菱形,∴AD∥BC,AO=OC,∴,∴OM=ON.(2)∵四边形ABCD是菱形,∴AC⊥BD,AD=BC=AB=6,∴BO==2,∴,∵DE∥AC,AD∥CE,∴四边形ACED是平行四边形,∴DE=AC=8,∴△BDE的周长是:BD+DE+BE=BD+AC+(BC+CE)=4+8+(6+6)=20即△BDE的周长是20.【点评】(1)此题主要考查了菱形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.(2)此题还考查了三角形的周长的含义以及求法,以及勾股定理的应用,要熟练掌握.23.【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)直接写出AM、AD、MC三条线段的数量关系:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.【考点】四边形综合题.【分析】(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可.(2)作FA⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.(3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM不成立.【解答】证明:延长AE、BC交于点N,如图1(1),∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.在△ADE和△NCE中,∴△ADE≌△NCE(AAS).∴AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠FAE=90°.∴∠FAB=90°﹣∠BAE=∠DAE.在△ABF和△ADE中,∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM.(3)①结论AM=AD+MC仍然成立.证明:延长AE、BC交于点P,如图2(1),∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠EPC=∠MAE.∴MA=MP.在△ADE和△PCE中,∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.②结论AM=DE+BM不成立.证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠QAB=∠QAM.∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.在△ABQ和△ADE中,∴△ABQ≌△ADE(AAS).∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.∴AM=DE+BM不成立.【点评】本题是四边形综合题,主要考查了正方形及矩形的性质、全等三角形的性质和判定、等腰三角形的判定、平行线的性质、角平分线的定义等知识,考查了基本模型的构造(平行加中点构造全等三角形),考查了反证法的应用,综合性比较强.添加辅助线,构造全等三角形是解决这道题的关键.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.【考点】正方形的判定;平行四边形的判定与性质;菱形的判定.【专题】几何综合题.【分析】(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.【点评】本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力.。
2020-2021学年八年级下期中数学试题及答案解析

2020-2021学年八年级下期中考试数学试卷一.选择题(共12小题,满分36分,每小题3分) 1.下列各方程组中,属于二元一次方程组的是( ) A .{x =0y =2B .{x +y =0z +y =2C .{x +y =01x+y =2D .{x +y =0xy =2【解答】解:A 、该方程组符合二元一次方程组的定义,故本选项符合题意; B 、该方程组中含有3个未知数,不是二元一次方程组,故本选项不符合题意; C 、该方程组的第二个方程是分式方程,不是二元一次方程组,故本选项不符合题意; D 、该方程组中的第二个方程的最高次数2,不是二元一次方程组,故本选项不符合题意; 故选:A .2.如图是12个大小相同的小正方形,其中5个小正方形已涂上阴影,现随机丢一粒豆子在这12个小正方形内,则它落在阴影部分的概率是( )A .56B .512C .59D .712【解答】解:如图所示:12个大小相同的小正方形,其中5个小正方形已涂上阴影, 则随机丢一粒豆子在这12个小正方形内,则它落在阴影部分的概率是:512.故选:B .3.如图,∠DAC 是△ABC 的一个外角,AE 平分∠DAC ,且AE ∥BC ,则△ABC 一定是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形【解答】证明:∵AE 平分∠DAC ,∴∠1=∠2,∵AE∥BC,∴∠1=∠C,∠B=∠2,∴∠B=∠C,即AB=AC,∴△ABC是等腰三角形.故选:C.4.下列命题中,真命题是()A.两个锐角的和一定是钝角B.相等的角是对顶角C.垂线段最短D.带根号的数一定是无理数【解答】解:A、两个锐角的和可能是锐角、直角或钝角,故原命题错误,是假命题,不符合题意;B、相等的角不一定是对顶角,故原命题错误,不符合题意;C、垂线段最短,正确,是真命题,符合题意;D、带根号的数不一定是无理数,如√4,故原命题错误,不符合题意,故选:C.5.下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为x甲、x乙,方差分别为s甲2、s乙2,若x甲=x乙,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定D.一个抽奖活动中,中奖概率为120,表示抽奖20次就有1次中奖【解答】解:了解三名学生的视力情况,由于总体数量较少,且容易操作,因此宜采取普查,因此选项A 不符合题意;任意画一个三角形,其内角和是360°是不可能事件,因此选项B 不符合题意; 根据平均数和方差的意义可得选项C 符合题意; 一个抽奖活动中,中奖概率为120,表示中奖的可能性为120,不代表抽奖20次就有1次中奖,因此选项D 不符合题意; 故选:C .6.如图,AB ∥CD ,点E 在BC 上,且CD =CE ,∠D =74°,则∠B 的度数为( )A .74°B .32°C .22°D .16°【解答】解:∵CD =CE ,∠D =74°, ∴∠DEC =∠D =74°,∴∠C =180°﹣74°﹣74°=32°, ∵AB ∥CD , ∴∠B =∠C =32°, 故选:B .7.已知方程组{2x −y +3=0ax −y +c =0的解为{x =−1y =1,则一次函数y =2x +3与y =ax +c 的图象的交点坐标是( ) A .(﹣1,1)B .(1,﹣1)C .(2,﹣2)D .(﹣2,2)【解答】解:∵方程组{2x −y +3=0ax −y +c =0的解为{x =−1y =1,∴一次函数y =2x +3与y =ax +c 的图象的交点坐标是(﹣1,1), 故选:A .8.口袋中有14个红球和若干个白球,这些球除颜色外都相同,从口袋中随机摸出一个球,记下颜色后放回,多次实验后发现摸到白球的频率稳定在0.3,则白球的个数是( ) A .5B .6C .7D .8【解答】解:设袋中白球有x 个,根据题意得:x x+14=0.3,解得:x =6,经检验:x =6是分式方程的解,故选:B .9.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托,如果一托为5尺,那么索长( )尺. A .25B .20C .15D .10【解答】解:设索长x 尺,竿子长y 尺, 依题意,得:{x −y =5y −12x =5, 解得:{x =20y =15.故选:B .10.如图,把一个长方形纸片沿EF 折叠后,点C 、D 分别落在M 、N 的位置.若∠EFB =65°,则∠AEN 等于( )A .25°B .50°C .65°D .70°【解答】解:∵∠EFB =65°,AD ∥CB , ∴∠DEF =65°,由折叠可得∠NEF =∠DEF =65°, ∴∠AEN =180°﹣65°﹣65°=50°, 故选:B .11.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x 负的场数为y ,则可列方程组为( ) A .{x +y =83x −y =12B .{x −y =83x −y =12C .{x +y =183x +y =12D .{x −y =83x +y =12【解答】解:设这个队胜x 场,负y 场, 根据题意,得{x +y =83x −y =12.故选:A .12.同型号的甲、乙两辆车加满气体燃料后均可行驶210km ,它们各自单独行驶并返回的最远距离是105km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A .120kmB .140kmC .160kmD .180km【解答】解:设甲行驶到C 地时返回,到达A 地燃料用完,乙行驶到B 地再返回A 地时燃料用完,如图:设AB =xkm ,AC =ykm ,根据题意得: {2x +2y =210×2x −y +x =210, 解得:{x =140y =70.∴乙在C 地时加注行驶70km 的燃料,则AB 的最大长度是140km .或者:设AC =ykm 即可,从甲车的角度考虑问题,甲车给乙车注入燃料,要想最远,需满足一下两个条件:①注满乙车;②刚好够甲车从C 回到A .从A 到C ,甲、乙两车都行驶了AC ,即乙车耗油量为ykm ,也即甲车注入燃料量为ykm ,注入后甲车剩余ykm (刚好返回A 地),所以对于甲车,y +y +y =210,所以y =70.从乙车角度,从C 出发是满燃料,所以AB 为:105+70÷2=140(km ). 故选:B .二.填空题(共6小题,满分18分,每小题3分)13.把命题“对顶角相等”改写成“如果…那么…”的形式: 如果两个角是对顶角,那么这两个角相等 .【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等, 故答案为:如果两个角是对顶角,那么这两个角相等.14.甲乙两人同解方程组{ax +by =2cx −7y =8时,甲正确解得{x =3y =−2,乙因抄错c 而得{x =−2y =2,则a +c = 2 .【解答】解:{ax +by =2①cx −7y =8②把{x =3y =−2代入②得:3c +14=8, 解得:c =﹣2,把{x =3y =−2和{x =−2y =2代入①得:{3a −2b =2−2a +2b =2, 解得:{a =4b =5,所以a +c =4+(﹣2)=2, 故答案为:2.15.在一个不透明的盒子里装有除颜色外其余均相同的2个黄色乒乓球和若干个白色乒乓球,从盒子里随机摸出一个乒乓球,摸到黄色乒乓球的概率为13,那么盒子内白色乒乓球的个数为 4 .【解答】解:盒子内乒乓球的个数为2÷13=6(个), 白色乒乓球的个数6﹣2=4(个) 故答案为4.16.一只蚂蚁在如图所示的七巧板上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那它停在4号板上的概率是116.【解答】解:因为4号板的面积占了总面积的116,故停在4号板上的概率为116,故答案为:116.17.如图,已知AB ∥CD ∥EF ,则∠1,∠2,∠3之间的数量关系是 ∠1﹣∠3+∠2=180° .【解答】解:∵CD ∥EF ,∴∠2+∠CEF =180°, ∵AB ∥EF , ∴∠1=∠3+∠CEF , ∴∠CEF =∠1﹣∠3, ∴∠2+∠1﹣∠3=180°, 即∠1﹣∠3+∠2=180°. 故答案为:∠1﹣∠3+∠2=180°.18.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题.如图所示,已知AB ∥CD ,∠BAE =78°,∠DCE =120°,则∠E 的度数是 42° .【解答】解:如图,延长DC 交AE 于F , ∵AB ∥CD ,∠BAE =78°, ∴∠CFE =78°, 又∵∠DCE =120°,∴∠E =∠DCE ﹣∠CFE =120°﹣78°=42°. 故答案为:42°.三.解答题(共6小题,满分66分)19.(12分)解二元一次方程组的关键是“消元”,即把“二元”转化为“一元”,同样,我们可以用“消元”的方法解三元一次方程组.下面,我们就来解一个三元一次方程组:解方程组{x +y +z =2,①2x +3y −z =8,②3x −2y +z =3,③小曹同学的部分解答过程如下:解: ① + ② ,得3x +4y =10,④ ② + ③ ,得5x +y =11,⑤ ⑤ 与 ④ 联立,得方程组 {3x +4y =10,④5x +y =11,⑤(1)请补全小曹同学的解答过程:(2)若m 、n 、p 、q 满足方程组{m +n +p +q =42(m +n)+3p −q =163(m +n)−2p +q =6,则m +n ﹣2p +q = ﹣2 .【解答】解:(1)方程组{x +y +z =2,①2x +3y −z =8,②3x −2y +z =3,③小曹同学的部分解答过程如下: 解:①+②,得3x +4y =10,④ ②+③,得5x +y =11,⑤ ⑤与④联立,得方程组 {3x +4y =10,④5x +y =11,⑤ 解得:{x =2y =1把{x =2y =1代入①得:2+1+z =2, 解得:z =﹣1,∴原方程组的解是{x =2y =1z =−1故答案为:①,②,②,③,⑤,④.(2){m +n +p +q =4①2(m +n)+3p −q =16②3(m +n)−2p +q =6③②﹣①×2得:p ﹣3q =8④, ③﹣①×3得:﹣5p ﹣2q =﹣6⑤, 由④与⑤组成方程组{p −3q =8−5p −2q =−6解得:{p =2q =−2,代入①得:m +n =4 ∴m +n ﹣2p +q =﹣2 故答案为:﹣2.20.(10分)(1)解方程组:{x +2y =1,①3x −2y =11,②(2)计算:√4+|﹣2|+√−273+(﹣1)2016.【解答】解:(1)①+②得:4x =12, 解得:x =3;把x =3代入①得:y =﹣1, 则方程组的解为{x =3y =−1;(2)原式=2+2﹣3+1 =4﹣3+1 =1+1 =2.21.(10分)(1)解方程组:{23x −34y =124(x −y)−3(2x +y)=17; (2)已知关于x 、y 的方程组{x −y =a +32x +y =5a 的解满足x >y >0,化简|a |+|3﹣a |.【解答】解:(1)原方程化为{8x −9y =6①2x +7y =−17②,①﹣②×4得:﹣37y =74, 解得y =﹣2,把y =﹣2代入①得x =−32, ∴原方程组的解为{x =−32y =−2;(2)由方程组{x −y =a +32x +y =5a ,解得{x =2a +1y =a −2,由x >y >0,得{2a +1>a −2a −2>0,解得a>2,当2<a≤3时,|a|+|3﹣a|=a+3﹣a=3;当a>3时,|a|+|3﹣a|=a+a﹣3=2a﹣3.22.(12分)已知:如图,点D、E、F、G都在△ABC的边上,DE∥AC,且∠1+∠2=180°(1)求证:AD∥FG;(2)若DE平分∠ADB,∠C=40°,求∠BFG的度数.【解答】证明:(1)∵DE∥AC∴∠2=∠DAC∵∠l+∠2=180°∴∠1+∠DAC=180°∴AD∥GF(2)∵ED∥AC∴∠EDB=∠C=40°∵ED平分∠ADB∴∠2=∠EDB=40°∴∠ADB=80°∵AD∥FG∴∠BFG=∠ADB=80°23.(10分)小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?【解答】解:公平.画树状图得:从表中可以得到:P 积为奇数=26=13,P 积为偶数=46=23,∴小明的积分为26×2=23,小刚的积分为46×1=46=23.24.(12分)5G 时代的到来,将给人类生活带来巨大改变.现有A 、B 两种型号的5G 手机,进价和售价如表所示:型号价格进价(元/部) 售价(元/部) A3000 3400 B 3500 4000某营业厅购进A 、B 两种型号手机共花费32000元,手机销售完成后共获得利润4400元.(1)营业厅购进A 、B 两种型号手机各多少部?(2)若营业厅再次购进A 、B 两种型号手机共30部,其中B 型手机的数量不多于A 型手机数量的2倍,请设计一个方案:营业厅购进两种型号手机各多少部时获得最大利润,最大利润是多少?【解答】解:(1)设营业厅购进A 、B 两种型号手机分别为a 部、b 部,{3000a +3500b =32000(3400−3000)a +(4000−3500)b =4400, 解得,{a =6b =4, 答:营业厅购进A 、B 两种型号手机分别为6部、4部;(2)设购进A 种型号的手机x 部,则购进B 种型号的手机(30﹣x )部,获得的利润为w 元,w=(3400﹣3000)x+(4000﹣3500)(30﹣x)=﹣100x+15000,∵B型手机的数量不多于A型手机数量的2倍,∴30﹣x≤2x,解得,x≥10,∵w=﹣100x+15000,k=﹣100,∴w随x的增大而减小,∴当x=10时,w取得最大值,此时w=14000,30﹣x=20,答:营业厅购进A种型号的手机10部,B种型号的手机20部时获得最大利润,最大利润是14000元.四.解答题(共2小题,满分30分)25.(14分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟10米,乙在A地时距地面的高度b为30米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?【解答】解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)当0≤x<2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y={15x(0≤x <2)30x−30(2≤x≤11);(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y =10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.26.(16分)探究与发现:【探究一】我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图①,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD 的数量关系,并证明你探究的数量关系.【探究二】三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图②,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠A与∠P的数量关系,并证明你探究的数量关系.【探究三】若将△ADC改成任意四边形ABCD呢?已知:如图③,在四边形ABCD中,DP、CP分别平分∠BDC和∠ACD,试利用上述结论直接写出∠A+∠B与∠P的数量关系2∠P=∠B+∠A.【解答】解:探究一:∠FDC+∠ECD=180°+∠A.理由如下:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∠FDC+∠ECD=180°+∠A.理由如下:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=12∠ADC,∠PCD=12∠ACD,∴∠DPC=180°﹣∠PDC﹣∠PCD,=180°−12∠ADC−12∠ACD,=180°−12(∠ADC+∠ACD),=180°−12(180°﹣∠A),=90°+12∠A;探究三:2∠P=∠B+∠A.理由如下:∵DP,CP分别平分∠BDC和∠ACD,∴∠PDC=12∠ADC,∠PCD=12∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD=180°−12∠ADC−12∠BCD=180°−12(∠ADC+∠BCD)=180°−12(360°﹣∠A﹣∠B)=12(∠A+∠B).即2∠P=∠B+∠A.故答案为:2∠P=∠B+∠A.。
平舆县期中八年级数学试卷

一、选择题(每题3分,共30分)1. 下列数中,是整数的是()A. -2.5B. 3.14C. 0.001D. 22. 下列各数中,有理数是()A. √2B. πC. √-1D. 1/23. 下列方程中,正确的是()A. 2x + 3 = 7B. 3x - 2 = 5C. x^2 = 4D. 2x^2 + 3x - 2 = 04. 下列函数中,是二次函数的是()A. y = 2x^2 + 3x + 1B. y = x^3 + 2x^2 - 3C. y = 2x + 1D. y = 3x^2 - 4x - 15. 已知a、b是实数,且a + b = 0,则()A. a > 0,b < 0B. a < 0,b > 0C. a = 0,b ≠ 0D. a = b6. 下列图形中,是轴对称图形的是()A. 正方形B. 长方形C. 等腰三角形D. 梯形7. 下列运算中,正确的是()A. (-3)^2 = 9B. (-2)^3 = -8C. (-1)^4 = -1D. (-2)^5 = 328. 下列各数中,正数是()A. -1/2B. 0C. 1/3D. -29. 下列各数中,有理数是()A. √4B. √-9C. √0D. √110. 下列方程中,无解的是()A. 2x + 3 = 7B. 3x - 2 = 5C. x^2 = 4D. 2x^2 + 3x - 2 = 0二、填空题(每题3分,共30分)11. 已知a、b是实数,且a + b = 0,则ab = _______。
12. 下列各数中,有理数是 _______。
13. 已知函数y = 2x - 3,当x = 2时,y = _______。
14. 下列各数中,正数是 _______。
15. 下列各数中,无理数是 _______。
16. 下列图形中,是轴对称图形的是 _______。
17. 下列运算中,正确的是 _______。
2020-2021学年八年级下期中考试数学试题及答案解析

2020-2021学年八年级下期中考试数学试卷一.选择题(共8小题,满分24分,每小题3分) 1.下列调查适合采用全面调查(普查)方式的是( ) A .翠湖的水质情况B .某品牌节能灯的使用寿命C .乘坐动车时对乘客的安检D .端午节期间市场上粽子质量情况 2.下列事件中,属于必然事件的是( ) A .三角形的外心到三边的距离相等 B .某射击运动员射击一次,命中靶心 C .任意画一个三角形,其内角和是180° D .抛一枚硬币,落地后正面朝上 3.分式2−x x−3有意义的x 的取值范围为( )A .x ≠2B .x ≠3C .x =2D .x =34.下列各式中,正确的是( ) A .ab =a 2b2 B .2(x−1)1−x 2=−21+xC .ab+1a=b +1D .a 2+b 2a+b=a +b5.下列图标中,是中心对称图形的是( )A .B .C .D .6.一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲,乙两人合作完成需要( )小时 A .1a+1bB .1abC .1a+bD .aba+b7.如图,在平行四边形ABCD 中,对角线AC 、BD 交于点O ,添加下列一个条件,能使平行四边形ABCD 成为菱形的是( )A.AO=BO B.AC=AD C.AB=BC D.OD=AC8.如图,已知正方形ABCD的边长为4,P是对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接AP,EF.给出下列结论:①PD=√2DF;②四边形PECF的周长为8;③△APD一定是等腰三角形;④AP=EF.其中正确结论的序号为()A.①②④B.①②C.①④D.①②③④二.填空题(共10小题,满分30分,每小题3分)9.已知一组数据有40个,把它分成五组,第一组、第二组、第四组、第五组的频数分别是10,8,7,6,第三组频数是.10.为了了解某市2019年10000名考生的数学中考成绩,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体;②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本;④样本容量是200.其中说法正确的有(填序号).11.一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使一次拨对的概率小于12019,则密码的位数至少要设置位.12.下列说法中:①在367人中至少有两个人的生日相同;②一次摸奖活动的中奖率是1%,那么摸100次必然会中一次奖;③一副扑克牌中,随意抽取一张是红桃K,这是随机事件;④一个不透明的口袋中装有3个红球,5个白球,搅匀后想从中任意摸出一个球,摸到红球的可能性大于摸到白球的可能性;以上说法中正确的有(填序号).13.计算2m−2+m2−m的结果是.14.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC 绕点A顺时针旋转到位置①可得到点P1,此时AP1=√2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+√2;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+√2;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=.15.菱形ABCD的对角线AC=4,BD=2,以AC为边作正方形ACEF,则BF的长为.16.如图,对折矩形纸片ABCD使AD与BC重合,得到折痕MN,再把纸片展平.E是AD 上一点,将△ABE沿BE折叠,使点A的对应点A′落在MN上.若CD=5,则BE的长是.17.若关于x的分式方程6x−1=x+3x(x−1)−kx无解,则k的值为.18.如图,F是矩形ABCD内一点,AF=BF.连结DF并延长交BC于点G,且点C与AB 的中点E恰好关于直线DG对称.若AD=9,则AB的长为.三.解答题(共10小题,满分96分)19.(8分)先化简,再求值:(2x2x+1−14x2+2x)÷(1−4x2+14x),其中x=3.20.(8分)解方程:xx−3+6x+3=121.(8分)如图,在3×3正方形方格中,有3个小正方形涂成了黑色,所形成的图案如图所示,图中每块小正方形除颜色外完全相同.(1)一个小球在这个正方形方格上自由滚动,那么小球停在黑色小正方形的概率是多少?(2)现将方格内空白的小正方形(A、B、C、D、E、F)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是中心对称图形的概率.22.(8分)为了了解同学们寒假期间每天健身的时间t(分),校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表,已知C组所在扇形的圆心角为108°.组别频数统计A(t<20)8B(20<40)12C(40t<60)aD(60≤t<80)15E(80)b请根据如图图表,解答下列问题:(1)填空:这次被调查的同学共有人,a=,b=,m=;(2)求扇形统计图中扇形E的圆心角度数;(3)该校共有学生1200人,请估计每天健身时间不少于1小时的人数.23.(10分)如图,已知点A(2,4)、B(1,1)、C(3,2).(1)将△ABC绕点O逆时针旋转90°得△A1B1C1,画出△A1B1C1,并写出点C的对应点C1的坐标为;(2)画出△ABC关于原点成中心对称的图形△A2B2C2,并写出点A的对应点A2的坐标为;(3)在平面直角坐标系内找点D,使得A、B、C、D为顶点的四边形为平行四边形,则点D的坐标为.24.(10分)如图,▱ABCD中,CG⊥AB于点G,∠ABF=45°,F在CD上,BF交CG 于点E,连接AE,AE⊥AD.(1)若BG=1,BC=√10,求EF的长度;(2)求证:AB−√2BE=CF.25.(10分)受疫情影响,“84”消毒液需求量猛增,某商场用8000元购进一批“84”消毒液后,供不应求,商场用17600元购进第二批这种“84”消毒液,所购数量是第一批数量的2倍,但单价贵了1元.(1)求该商场购进的第一批“84”消毒液的单价;(2)商场销售这种“84”消毒液时,每瓶定价为13元,最后200瓶按9折销售,很快售完,在这两笔生意中商场共获利多少元?26.(10分)如图,矩形ABCD,延长CD至点E,使DE=CD,连接AC,AE,过点C作CF∥AE交AD的延长线于点F,连接EF.(1)求证:四边形ACFE是菱形;(2)连接BE 交AD 于点G .当AB =2,∠ACB =30°时,求BG 的长.27.(12分)阅读下列材料:在分式中,对于只含有一个字母的分式,当分子的次数小于分母的次数时,我们称之为“真分式”,如4x−1,x+1x 2当分子的次数大于或等于分母的次数时,我们称之为“假分式”,如:x+1x−1,x 2+1x+1假分式可以化为整式与真分式和的形式,我们也称之为带分式,如:x+1x−1=(x−1)+2x−1=1+2x−1.解决问题:(1)下列分式中属于真分式的是( ) A .x 2x−1B .x−1x+1C .32x−1D .x 2+1x 2−1(2)将假分式3x+1x−1、x 2+1x+1分别化为带分式;(3)若假分式2x 2+3x−6x+3的值为整数,请直接写出所有符合条件的整数x 的值.28.(12分)如图①所示,已知正方形ABCD 和正方形AEFG ,连接DG ,BE .(1)发现:当正方形AEFG 绕点A 旋转,如图②所示. ①线段DG 与BE 之间的数量关系是 ; ②直线DG 与直线BE 之间的位置关系是 ;(2)探究:如图③所示,若四边形ABCD 与四边形AEFG 都为矩形,且AD =2AB ,AG =2AE 时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG 、DE ,若AE =1,AB =2,求BG 2+DE 2的值(直接写出结果).2020-2021学年八年级下期中考试数学试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分) 1.下列调查适合采用全面调查(普查)方式的是( ) A .翠湖的水质情况B .某品牌节能灯的使用寿命C .乘坐动车时对乘客的安检D .端午节期间市场上粽子质量情况【解答】解:A 、调查翠湖的水质情况适合抽样调查; B 、调查某品牌节能灯的使用寿命适合抽样调查; C 、乘坐动车时对乘客的安检必须全面调查;D 、调查端午节期间市场上粽子质量情况适合抽样调查; 故选:C .2.下列事件中,属于必然事件的是( ) A .三角形的外心到三边的距离相等 B .某射击运动员射击一次,命中靶心 C .任意画一个三角形,其内角和是180° D .抛一枚硬币,落地后正面朝上【解答】解:A 、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,只有三角形是等边三角形时才符合,故本选项不符合题意; B 、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意; C 、三角形的内角和是180°,是必然事件,故本选项符合题意; D 、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意; 故选:C . 3.分式2−x x−3有意义的x 的取值范围为( )A .x ≠2B .x ≠3C .x =2D .x =3【解答】解:由题意得:x ﹣3≠0, 解得:x ≠3, 故选:B .4.下列各式中,正确的是( ) A .ab =a 2b2 B .2(x−1)1−x 2=−21+xC .ab+1a=b +1D .a 2+b 2a+b=a +b【解答】解:ab 与a 2b 在a =0或a =b 时才成立,故选项A 不正确;2(x−1)1−x =2(x−1)(1+x)(1−x)=−21+x,故选项B 正确;ab+1a =b +1a,故选项C 不正确; a 2+b 2a+b不能化简,故选项D 不正确;故选:B .5.下列图标中,是中心对称图形的是( )A .B .C .D .【解答】解:A 、不属于中心对称图形; B 、属于中心对称图形; C 、不属于中心对称图形; D 、不属于中心对称图形; 故选:B .6.一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲,乙两人合作完成需要( )小时 A .1a+1bB .1abC .1a+bD .aba+b【解答】解:甲和乙的工作效率分别是1a,1b,合作的工作效率是1a+1b,所以合作完成需要的时间是11a +1b=1b+a ab=ab a+b.故选:D .7.如图,在平行四边形ABCD 中,对角线AC 、BD 交于点O ,添加下列一个条件,能使平行四边形ABCD 成为菱形的是( )A.AO=BO B.AC=AD C.AB=BC D.OD=AC【解答】解:A、AO=BO,对角线相等的平行四边形是矩形,不一定是菱形,命题错误;B、AC=AD,不能判断▱ABCD是菱形,错误;C、根据菱形的定义可得,当AB=BC时▱ABCD是菱形,正确;D、OD=AC,不能判断▱ABCD是菱形,错误;故选:C.8.如图,已知正方形ABCD的边长为4,P是对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接AP,EF.给出下列结论:①PD=√2DF;②四边形PECF的周长为8;③△APD一定是等腰三角形;④AP=EF.其中正确结论的序号为()A.①②④B.①②C.①④D.①②③④【解答】解:∵PE⊥BC于点E,PF⊥CD于点F,CD⊥BC,∴PF∥BC,∴∠DPF=∠DBC,∵四边形ABCD是正方形∴∠DBC=45°∴∠DPF=∠DBC=45°,∴∠PDF=∠DPF=45°,∴PF=EC=DF,在Rt△DPF中,DP2=DF2+PF2=DF2+DF2=2DF2,∴PD=√2DF.故①正确;②∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四边形PECF为矩形,∴四边形PECF的周长=2CE+2PE=2CE+2BE=2BC=8,故②正确;③∵点P是正方形ABCD的对角线BD上任意一点,∠ADP=45°,∴当∠P AD=45°或67.5°或90°时,△APD是等腰三角形,除此之外,△APD不是等腰三角形,故③错误.④∵四边形PECF为矩形,∴PC=EF,∠PFE=∠ECP,∵正方形为轴对称图形,∴AP=PC,∴AP=EF,故④正确;故选:A.二.填空题(共10小题,满分30分,每小题3分)9.已知一组数据有40个,把它分成五组,第一组、第二组、第四组、第五组的频数分别是10,8,7,6,第三组频数是9.【解答】解:∵一组数据有40个,把它分成五组,第一组、第二组、第四组、第五组的频数分别是10,8,7,6,∴第三组频数是:40﹣10﹣8﹣7﹣6=9.故答案为:9.10.为了了解某市2019年10000名考生的数学中考成绩,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体;②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本;④样本容量是200.其中说法正确的有①③④(填序号).【解答】解:①这10000名考生的数学中考成绩的全体是总体,正确;②每个考生的数学中考成绩是个体,故原说法错误;③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;④样本容量是200,正确;故答案为:①③④.11.一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使一次拨对的概率小于12019,则密码的位数至少要设置4位.【解答】解:因为取一位数时一次就拨对密码的概率为110;取两位数时一次就拨对密码的概率为1100;取三位数时一次就拨对密码的概率为11000;取四位数时一次就拨对密码的概率为110000.故一次就拨对的概率小于12019,密码的位数至少需要4位.故答案为:4.12.下列说法中:①在367人中至少有两个人的生日相同;②一次摸奖活动的中奖率是1%,那么摸100次必然会中一次奖;③一副扑克牌中,随意抽取一张是红桃K,这是随机事件;④一个不透明的口袋中装有3个红球,5个白球,搅匀后想从中任意摸出一个球,摸到红球的可能性大于摸到白球的可能性;以上说法中正确的有①、③(填序号).【解答】解:①在367人中至少有两个人的生日相同,正确;②一次摸奖活动的中奖率是1%,那么摸100次不一定会中一次奖,错误;③一副扑克牌中,随意抽取一张是红桃K,这是随机事件,正确;④一个不透明的口袋中装有3个红球,5个白球,搅匀后想从中任意摸出一个球,摸到红球的可能性小于于摸到白球的可能性,错误;故答案为:①、③.13.计算2m−2+m2−m的结果是﹣1.【解答】解:原式=2m−2−mm−2=2−mm−2=−(m−2)m−2=﹣1,故答案为:﹣1.14.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC 绕点A顺时针旋转到位置①可得到点P1,此时AP1=√2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+√2;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+√2;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=1342+672√2.【解答】解:由题意可得:AP1=√2,AP2=1+√2,AP3=2+√2;AP4=2+2√2;AP5=3+2√2;AP6=4+2√2;AP7=4+3√2;AP8=5+3√2;AP9=6+3√2;∵2013=3×671,∴AP2013=(2013﹣671)+671√2=1342+671√2,∴AP2014=1342+671√2+√2=1342+672√2.故答案为:1342+672√2.15.菱形ABCD的对角线AC=4,BD=2,以AC为边作正方形ACEF,则BF的长为√29或√13.【解答】解:∵四边形ABCD是菱形,AC=4,BD=2,∴AO=12AC=2,BO=12BD=1,①如图1,正方形ACEF在AC的上方时,过点B作BG⊥AF交F A的延长线于G,则BG=AO=2,AG=OB=1,FG=AF+AG=4+1=5,在Rt△BFG中,BF=√BG2+FG2=√22+52=√29;②如图2,正方形ACEF在AC的下方时,过点B作BG⊥AF于G,则BG=AO=2,FG=AF﹣AG=4﹣1=3,在Rt△BFG中,BF=√BG2+FG2=√22+32=√13,综上所述,BF长为√29或√13.故答案为:√29或√13.16.如图,对折矩形纸片ABCD使AD与BC重合,得到折痕MN,再把纸片展平.E是AD 上一点,将△ABE沿BE折叠,使点A的对应点A′落在MN上.若CD=5,则BE的长是10√33.【解答】解:∵将矩形纸片ABCD对折一次,使边AD与BC重合,得到折痕MN,∴AB=2BM,∠A′MB=90°,MN∥BC.∵将△ABE沿BE折叠,使点A的对应点A′落在MN上.∴A′B=AB=2BM.在Rt△A′MB中,∵∠A′MB=90°,∴sin∠MA′B=BM BA′=12,∴∠MA′B=30°,∵MN∥BC,∴∠CBA′=∠MA′B=30°,∵∠ABC=90°,∴∠ABA ′=60°,∴∠ABE =∠EBA ′=30°,∴BE =AB cos30°=5√32=10√33. 故答案为:10√33. 17.若关于x 的分式方程6x−1=x+3x(x−1)−kx 无解,则k 的值为 ﹣3或﹣5 . 【解答】解:方程两边同时乘以x (x ﹣1),得6x =x +3﹣k (x ﹣1),∴(5+k )x =3+k ,∵方程无解,∴k =﹣5,∵x =0和x =1是方程的增根,∴3+k =0,∴k =﹣3,故答案为﹣3或﹣5.18.如图,F 是矩形ABCD 内一点,AF =BF .连结DF 并延长交BC 于点G ,且点C 与AB的中点E 恰好关于直线DG 对称.若AD =9,则AB 的长为 6√3 .【解答】解:连接EF 、EG 、EC ,如图所示:∵四边形ABCD 是矩形,∴BC =AD =9,AD ∥BC ,∠BAD =∠ABC =90°,∴AB ⊥AD ,∵AF =BF ,点E 是AB 的中点,∴EF ⊥AB ,∴EF ∥AD ∥BC ,∴EF 是梯形ABGD 的中位线,∠EFG =∠CGF ,∴EF =12(AD +BG ),设BG =x ,则CG =9﹣x ,EF =12(9+x ),∵点C 与AB 的中点E 关于直线DG 对称,∴EG =CG ,∠CGF =∠EGF ,∴∠EFG =∠EGF ,∴EG =EF ,∴EF =CG ,∴12(9+x )=9﹣x , 解得:x =3,∴BG =3,EG =CG =6,∴BE =√EG 2−BG 2=√62−32=3√3,∴AB =2BE =6√3;故答案为:6√3.三.解答题(共10小题,满分96分)19.(8分)先化简,再求值:(2x 2x+1−14x 2+2x)÷(1−4x 2+14x ),其中x =3. 【解答】解:原式=4x 2−12x(2x+1)÷4x−4x 2−14x =(2x+1)(2x−1)2x(2x+1)•4x −(2x−1)2=−22x−1, 当x =3时,原式=−25.20.(8分)解方程:x x−3+6x+3=1【解答】解:方程两边乘 (x ﹣3)(x +3),得 x (x +3)+6 (x ﹣3)=x 2﹣9,解得:x =1,检验:当 x =1 时,(x ﹣3)(x +3)≠0,所以,原分式方程的解为x =1.21.(8分)如图,在3×3正方形方格中,有3个小正方形涂成了黑色,所形成的图案如图所示,图中每块小正方形除颜色外完全相同.(1)一个小球在这个正方形方格上自由滚动,那么小球停在黑色小正方形的概率是多少?(2)现将方格内空白的小正方形(A 、B 、C 、D 、E 、F )中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是中心对称图形的概率.【解答】解:(1)由题意可得,小球停在黑色小正方形的概率是39=13, 即小球停在黑色小正方形的概率是13; (2)中心对称的情况是:(BE )、(CD )、(AF ),(EB ),(DC ),(F A ),则新图案是中心对称图形的概率是:65×6=15, 即新图案是中心对称图形的概率是15.22.(8分)为了了解同学们寒假期间每天健身的时间t (分),校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表,已知C 组所在扇形的圆心角为108°.组别频数统计 A (t <20) 8B(20<40)12C(40t<60)aD(60≤t<80)15E(80)b请根据如图图表,解答下列问题:(1)填空:这次被调查的同学共有60人,a=18,b=7,m=25;(2)求扇形统计图中扇形E的圆心角度数;(3)该校共有学生1200人,请估计每天健身时间不少于1小时的人数.【解答】解:(1)12÷20%=60(人),15÷60=25%,因此m=25,∵C组所在扇形的圆心角为108°,∴C组的人数a=60×108360=18(人),b=60﹣15﹣18﹣12﹣8=7(人),故答案为:60,18,7,25;(2)扇形统计图中扇形E的圆心角度数为360°×760=42°,答:扇形统计图中扇形E的圆心角度数为42°;(3)每天健身时间不少于1 小时的人数是1200×15+760=440(人),答:该校1200名学生中每天健身时间不少于1小时的大约有440人.23.(10分)如图,已知点A(2,4)、B(1,1)、C(3,2).(1)将△ABC绕点O逆时针旋转90°得△A1B1C1,画出△A1B1C1,并写出点C的对应点C1的坐标为(﹣2,3);(2)画出△ABC关于原点成中心对称的图形△A2B2C2,并写出点A的对应点A2的坐标为(﹣2,﹣4);(3)在平面直角坐标系内找点D,使得A、B、C、D为顶点的四边形为平行四边形,则点D的坐标为(4,5)或(0,3)或(2,﹣1).【解答】解:(1)如图,△A1B1C1即为所求,点C1的坐标为(﹣2,3).故答案为(﹣2,3).(2)△A2B2C2即为所求,点A2的坐标为(﹣2,﹣4)故答案为(﹣2,﹣4).(3)如图,满足条件的点D的坐标为(4,5)或(0,3)或(2,﹣1).故答案为(4,5)或(0,3)或(2,﹣1).24.(10分)如图,▱ABCD中,CG⊥AB于点G,∠ABF=45°,F在CD上,BF交CG 于点E,连接AE,AE⊥AD.(1)若BG=1,BC=√10,求EF的长度;(2)求证:AB−√2BE=CF.【解答】解:(1)∵CG⊥AB,BG=1,BC=√10,∴CG=√BC2−BG2=√(√10)2−12=3.∵∠ABF=45°,∴△BGE是等腰直角三角形,∴EG=BG=1,∴EC=CG﹣EG=3﹣1=2,∵在平行四边形ABCD中,AB∥CD,∠ABF=45°,CG⊥AB,∴∠CFE=∠ABF=45°,∠FCE=∠BGE=90°,∴△ECF是等腰直角三角形,∴EF=√EC2+CF2=√22+22=2√2;(2)证明:过E作EH⊥BE交AB于H,∵∠ABF=45°,∠BEH=90°,∴△BEH是等腰直角三角形,∴BH=√BE2+EH2=√2BE,BE=HE,∴∠BHE=45°,∴∠AHE=180°﹣∠BHE=180°﹣45°=135°,由(1)知,△BGE和△ECF都是等腰直角三角形,∴∠BEG=45°,CE=CF,∴∠BEC=180°﹣∠BEG=180°﹣45°=135°,∴∠AHE=∠CEB,∵AE⊥AD,∴∠DAE=90°,∴∠BAD=∠DAE+∠EAB=90°+∠EAB,由(1)知,∠FCE=90°,∴∠BCD =∠FCE +∠BCG =90°+∠BCG ,∵在平行四边形ABCD 中,∠BAD =∠BCD ,∴90°+∠EAB =90°+∠BCG ,∴∠EAB =∠BCG ,即∠EAH =∠BCE ,在△△EAH 和△BCE 中,{∠EAH =∠BCE ∠EHA =∠BEC EH =BE∴△EAH ≌△BCE (AAS ),∴AH =CE =CF ,∴AB −√2BE =AB ﹣BH =AH =CF ,即AB −√2BE =CF .25.(10分)受疫情影响,“84”消毒液需求量猛增,某商场用8000元购进一批“84”消毒液后,供不应求,商场用17600元购进第二批这种“84”消毒液,所购数量是第一批数量的2倍,但单价贵了1元.(1)求该商场购进的第一批“84”消毒液的单价;(2)商场销售这种“84”消毒液时,每瓶定价为13元,最后200瓶按9折销售,很快售完,在这两笔生意中商场共获利多少元?【解答】解:(1)设该商场购进的第一批“84”消毒液单价为x 元/瓶,依题意得:2×8000x=17600x+1. 解得,x =10.经检验,x =10是原方程的根.所以该商场购进的第一批消毒液的单价为10元/瓶;(2)共获利:(800010+1760010+1−200)×13+200×13×0.9﹣(8000+17600)=5340(元).在这两笔生意中商场共获得5340元.26.(10分)如图,矩形ABCD ,延长CD 至点E ,使DE =CD ,连接AC ,AE ,过点C 作CF ∥AE 交AD 的延长线于点F ,连接EF .(1)求证:四边形ACFE 是菱形;(2)连接BE 交AD 于点G .当AB =2,∠ACB =30°时,求BG 的长.【解答】(1)证明:∵四边形ABCD 是矩形,∴∠ADC =90°,∴AF ⊥CE ,∵CD =DE ,∴AE =AC ,EF =CF ,∴∠EAD =∠CAD ,∵AE ∥CF ,∴∠EAD =∠AFC ,∴∠CAD =∠CF A ,∴AC =CF ,∴AE =EF =AC =CF ,∴四边形ACFE 是菱形;(2)解:如图,∵四边形ABCD 是矩形,∴∠ABC =∠BCE =90°,CD =AB ,∵AB =2,CD =DE ,∴BC =2√3,CE =4,∴BE =√BC 2+CE 2=2√7,∵AB =CD =DE ,∠BAE =∠EDG =90°,∠AGB =∠DGE ,∴△ABG ≌△DEG (AAS ),∴BG =EG ,∴BG =12BE =√7.27.(12分)阅读下列材料:在分式中,对于只含有一个字母的分式,当分子的次数小于分母的次数时,我们称之为“真分式”,如4x−1,x+1x 当分子的次数大于或等于分母的次数时,我们称之为“假分式”,如:x+1x−1,x 2+1x+1假分式可以化为整式与真分式和的形式,我们也称之为带分式,如:x+1x−1=(x−1)+2x−1=1+2x−1.解决问题:(1)下列分式中属于真分式的是( )A .x 2x−1B .x−1x+1C .32x−1 D .x 2+1x 2−1 (2)将假分式3x+1x−1、x 2+1x+1分别化为带分式; (3)若假分式2x 2+3x−6x+3的值为整数,请直接写出所有符合条件的整数x 的值.【解答】解:(1)选(C );(2)3x+1x−1=3(x−1)+4x−1=3+4x−1; x 2+1x+1=(x 2−1)+2x+1=(x+1)(x−1)+2x+1=x ﹣1+2x+1; (3)原式=(2x−3)(x+3)+3x+3 =2x ﹣3+3x+3,由x 是整数,原分式的值也为整数,∴x +3=±1或±3,∴x =﹣6、﹣4、﹣2、0.28.(12分)如图①所示,已知正方形ABCD 和正方形AEFG ,连接DG ,BE .(1)发现:当正方形AEFG 绕点A 旋转,如图②所示.①线段DG 与BE 之间的数量关系是 DG =BE ;②直线DG 与直线BE 之间的位置关系是 DG ⊥BE ;(2)探究:如图③所示,若四边形ABCD 与四边形AEFG 都为矩形,且AD =2AB ,AG =2AE 时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG 、DE ,若AE =1,AB =2,求BG 2+DE 2的值(直接写出结果).【解答】解:(1)①如图②中,∵四边形ABCD 和四边形AEFG 是正方形,∴AE =AG ,AB =AD ,∠BAD =∠EAG =90°,∴∠BAE =∠DAG ,在△ABE 和△DAG 中,{AB =AD ∠BAE =∠DAG AE =AG,∴△ABE ≌△ADG (SAS ),∴BE =DG ;②如图2,延长BE 交AD 于T ,交DG 于H .由①知,△ABE ≌△DAG ,∴∠ABE =∠ADG ,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;(2)数量关系不成立,DG=2BE,位置关系成立.如图③中,延长BE交AD于T,交DG于H.∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴ABAD =AEAG=12,∴△ABE∽△ADG,∴∠ABE=∠ADG,BEDG =1 2,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE ⊥DG ;(3)如图④中,作ET ⊥AD 于T ,GH ⊥BA 交BA 的延长线于H .设ET =x ,AT =y .∵△AHG ∽△ATE ,∴GH ET =AH AT =AG AE =2,∴GH =2x ,AH =2y ,∴4x 2+4y 2=4,∴x 2+y 2=1,∴BG 2+DE 2=(2x )2+(2y +2)2+x 2+(4﹣y )2=5x 2+5y 2+20=25.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为_____.
三、解答题
16.计算(1)
(2)
17.计算:
(1)已知 ,求代数式 的值;
(2)已知 , ,求代数式 的值.
A.13B.19C.25D.169
二、填空题
11.“矩形的对角线相等”的逆命题为_______,该逆命题是______命题(真、假)
12.已知线段a=3,b=4,若线段c能和a,b构成直角三角形,则c的长度是_____.
13.在菱形ABCD中,对角线AC=30,BD=60,则菱形ABCD的面积为____________.
故选C.
【点睛】
本题考查了二次根式的混合运算、二次根式的化简;熟练掌握二次根式的化简与运算是解决问题的关键.
5.C
【分析】
根据非负数的性质可知a,b,c的值,再由勾股定理的逆定理即可判断三角形为直角三角形.
【详解】
解:∵
∴ , , ,
∴ , ,
又∵ ,
故该三角形为直角三角形,
故答案为:C.
【点睛】
本题考查了非负数的性质及勾股定理的逆定理,解题的关键是解出a,b,c的值,并正确运用勾股定理的逆定理.
18.如图,已知 ∥ ,点 , 在直线 上, , ,求证:四边形 是平行四边形.
19.如图(1)是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为 和 斜边长为 图(2)是以 为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个直角梯形.
(1)在图(3)处画出拼成的这个图形的示意图;
(2)利用(1)画出的图形证明勾股定理.
A. B. C. D.
7.为比较 与 的大小,小亮进行了如下分析后作一个直角三角形,使其两直角边的长分别为 与 ,则由的股定理可求得其斜边长为 .根据“三角形三边关系”,可得 .小亮的这一做法体现的数学思想是( )
A.分类讨论思想B.方程思想C.类比思想D.数形结合思想
8.正方形具有而菱形不具有的性质是()
A.4cmB.5cmC.6cmD.8cm
4.下列二次根式的运算:① ;② ;③ ;④ ;其中运算正确的有( )
A.1个B.2个C.3个D.4个
5.已知 是三角形的三边长,如果满足 ,则三角形的形状是()
A.等腰三角形B.等边三角形C.直角三角形D.钝角三角形
6.下面二次根式中,是最简二次根式的是()
故选C.
【点睛】
本题考查了最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.
【详解】
原式 |﹣5| .
故选B.
【点睛】
本题考查了二次根式的性质,正确掌握二次根式的性质是解答问题的关键.
3.A
【分析】
利用平行四边形的性质得出AO=CO,DO=BO,再利用勾股定理得出AD的长进而得出答案.
【详解】
∵四边形ABCD是平行四边形,
∴DO=BO,AO=CO,
∵∠ODA=90°,AC=10cm,BD=6cm,
河南省驻马店市平舆县2020-2021学年八年级下学期期中数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知 = ,则 的取值范围是()
A. B. C. D.
2.化简二次根式 的值为( )
A. B. C. D.
3.如图,在▱ABCD中,∠ODA=90°,AC=10cm,BD=6cm,则BC的长为()
22.如图,平行四边形ABCD的对角线AC, BD相交于点O,且AE∥BD, BE∥AC, OE= CD.
(1)求证:四边形ABCD是菱形;
(2)若AD=2,则当四边形ABCD的形状是__________时,四边形AOBE的面积取得最大值是__________.
23.如图1,在正方形ABCD中,P是对角线BD上的点,点E在AB上,且PA=PE.
(1)求证:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,试探究∠CPE与∠ABC之间的数量关系,并说明理由.
参考答案
1.D
【解析】
由二次根式的性质可知,x-2≥0,所以x≥2.
故选D.
2.B
【解析】
【分析】
先将积的二次根式转化为二次根式的积,再进行化简.
6.C
【ห้องสมุดไป่ตู้析】
判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
【详解】
A. = ,不是最简二次根式,不符合题意;
B. = ,不是最简二次根式,不符合题意;
C. ,是最简二次根式,符合题意;
D. = ,不是最简二次根式,不符合题意,
A.对角线垂直且互相平分B.每一条对角线平分一组对角C.对角线相等D.对边相等
9.如图,在四边形 中,对角线 , 相交于点 ,且 , ,下列结论不一定成立的是()
A. B. C. D.
10.如图,2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么 的值为( )
20.如图,由6个形状、大小完全相同的小矩形组成大矩形网格,小矩形的顶点称为这个矩形网格的格点,由格点构成的四边形称为格点四边形,请按要求作图(标出所画图形的顶点字母).
(1)在图1中画出一个格点正方形;
(2)在图2中画出一个一般的格点平行四边形(非菱形、矩形).
21.如图,一架6.5m长的梯子AB斜靠在一竖直的墙AO上,这时BO为2.5m.如果将梯子的低端B外移1.4m,顶端A沿着墙壁也下滑1.4m吗?
∴DO=3cm,AO=5cm,则AD=BC= =4(cm)
故选;A.
【点睛】
此题考查平行四边形的性质,解题关键在于利用勾股定理进行求解.
4.C
【分析】
由二次根式的性质与化简、运算得出①②③正确,④不正确,即可得出结论.
【详解】
解:① × =2 ,正确,
② - = ,正确,
③ = ,正确,
④ =2④不正确;