2020年高考数学(理科版)总复习:考点与题型全归纳第一部分
2020年高考数学考点大全

2020年高考数学考点大全高考数学有哪些必考知识点,哪些考点容易出题?接下来是小编为大家整理的2020年高考数学考点,希望大家喜欢!2020年高考数学考点一(一)、映射、函数、反函数1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射.2、对于函数的概念,应注意如下几点:(1)掌握构成函数的三要素,会判断两个函数是否为同一函数.(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式.(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数.3、求函数y=f(x)的反函数的一般步骤:(1)确定原函数的值域,也就是反函数的定义域;(2)由y=f(x)的解析式求出x=f-1(y);(3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起.②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.(二)、函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域. 2、求函数的解析式一般有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.(3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域.(4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式.2020年高考数学考点二考点一:向量的概念、向量的基本定理【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。
2020高考数学(理科)知识点总结(精辟)

12020高考数学(理科)知识点总结1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。
∅ 注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
{}{}如:集合,A x x x B x ax =--===||22301若,则实数的值构成的集合为B A a ⊂ (答:,,)-⎧⎨⎩⎫⎬⎭10133. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ⊆⇔== (3)德摩根定律: ()()()()()()C C C C C C U UUUUUA B A B A B A B ==,4. 你会用补集思想解决问题吗?(排除法、间接法)如:已知关于的不等式的解集为,若且,求实数x ax x a M M M a --<∈∉50352的取值范围。
()),,·∴,∵·∴,∵(259351055550353322 ⎪⎭⎫⎢⎣⎡∈⇒≥--∉<--∈a aa M aa M 5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝ 若为真,当且仅当、均为真p q p q ∧ 至少有一个为真、为真,当且仅当若q p q p ∨ 若为真,当且仅当为假⌝p p6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。
) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B 中有元素无原象。
2020年高考数学高考必备知识点汇总

I第一章•集合1、集合的性质:①任何一个集合是它本身的子集,记为AA;②空集是任何藁合的子集,记为A :1③空集是任何非空集合的真子集;I①n个元素的子集有II◎个.n个元素的真子集有2n —1个・n个元素的非空真子集有2n一2个.[注]①一个命题的否命题为真,它的逆命题一定为真•否命题逆命题•②一个命题为真,则它的逆否命题一定为真•原命题逆否命题•Al B {x|x A,且x B} AU B {x | x A 或x并:B} CuA {x U ,且xA}2>集合运算:交、并、构成复合命题的形式:P或q(记作“pV q);p且q (记作P A q);非P(记作“1 q”)。
1、“或”、“且”、4、四种命题的形式及相互关系:则p;原命题:若P则q ;逆命题:若q !否命题:若「P则1q;逆否命题: 若1q 则"1 P。
①、原命题为真,它的逆命题不一定为真。
②、原命题为真,它的否命题不一定为真。
③、原命题为真,它的逆否命题一定为真。
16、如果已知pq那么我们说,p是q的充分条件,q是P的必要条件。
对数函数y=log ax( a>0且a1 )的图象和性质文档来源为 :从网络收集整理.word 版本可编辑•欢迎下载支持若pq 且qp,则称p 是q 的充要条件,记为p? q.第二章■函数一、函数的性质(1 )定义域:(2 )值域:(3)奇偶性:(在整个定义域内考虑)①定义:偶函数:f ( x) f (x).奇函数:f ( x) f (x) ②判断方法步骤: &求出定义域;是否关于原点对称;C.求d.比较f ( X )与f (X )或f ( X )与 f (X )的关系。
(4)函数的单调性定义:对于函数 任意两个自变量的值 ⑴若当 XKX2时,都有f(Xl)<f(X2),则说f(X )在这个区间上是增函数; ⑵若当 XKX2时,都有f(X 1)>f(X 2),则说f(X )在这个区间上是减函数二、指数函数与对数函数指数函数丫來但o 且a 1)的图象和性质b ・判断定义域 f (X );f(x)的定义域 X1,X2,I 内某个区间上的对数函数y=log ax( a>0且a1 )的图象和性质⑴对数、指数运算:文档来源为:从网络收集整理.word版本可编辑•欢迎下载支持X(2) v a ( a O.a1 )与y log ax ( a 0, a 1 )互为反函数.第三章数列1.(1)等差、等比数列:第四章■三角函数对数函数y=log ax( a>0且a1 )的图象和性质si ai (n 1) 2)数列{加}的前n项和Sn与通瓒5的養系秫〔m2)•三角函数1、角度与弧度的互换关系: 360 ° =2 1802、 弧长公式:I || r.扇形面积公式:s 扇形2 lr 2||r一 y xy 3、 三角函数:sin ; cos ; tan ;rrx4、 三角函数在各象限的符号:(一全二正弦,三切四余弦)sin5、同角三角函数的基本关系式: tan sin 2cos 21cos6、 诱导公式:7、 两角和与差公式cos ()cos cos sin sin 5s.二倍角公式是:sin2 = 2sin cos22 . 2cos2 = cos sin =2cosJ= 1_2sin2tantan2 =2o1 tan辅助角公式b sin (e +),这里辅助角bb1801 rad = ° ^ 57.30 ° =57 ° 18 ';1° = 180^ 0.01745 ( rad )注意:正角的弧度数为正数, 负角的弧度数为负数,零角的弧度数为零asin 0 +bcos 0= a所在象限由a 、a 9、特殊角的三角函数值:文档来源为:从网络收集整理.word版本abc10、正弦定理iAiBiC2R (R为外接圆半径). sin A sin B sinC 余弦定理c2 = a 2+b 2— 2bccosC ,b 2 = a 2+c 2 2accosB , a 2 = b 2+c 2 2bccosA ・11 acsm b2 b csinA面积公式:12aha111absir2bhb2chc211. y sin( )或 y cos( xT 20)的周期12. y sin()的对称轴方程是k2 kZ ),对称中心(k ,0);y cos( xk( kZ),1对称中心(2,0y tan( xk)的对称中心(2 5°第五章•平面向量⑴向量的基本要素:大小和方向•⑵向量的长度:即向量的大小,记作丨Jx 2 ,y⑶特殊的向量:零向量3o I a I = o. 单位向量a 为单位向量I a I = 1.X1 X2⑷相等的向量:大小相等,方向相同 (x 1, y 1)=( x 2, y 2)yi y2(5)相反向量:a=・bb=・aa + b = 0⑹平行向量(共线向量):方向相同或相反的向量,称为平行向量•记作 3 // b .平行向量也称为共线向量7文档来源为:从网络收集整理.word 版本 向 量的数 量积rra?b 是一个数 rrrri.a 0 或 b 0 rr时,a?b 0可编辑•欢迎下载支持8(8)两个向量平行的充要条件(10)两向量的夹角公式:cosab(9)两个向量垂直的充要条件X1X2 a | • |b |=xi 2yi 2? X22y220<0< 180 °,附:三角形的四个“心”;2、外心:外接圆的圆心,垂直平分线的交点3、 重心:中线的交点4、 垂心:高的交点 (11) A ABC 的判定:△ ABC 为直角△an b (b 0)或 xi y2 X2yi 0a • b=oxi • X2+y1 • y2=01、 内心:内切圆 的圆心, 角平分线的交点ABC 为钝角△ A+Z B< 2ABC 为锐角△ A + Z B> 2(门)平行四边形对角线定理:对角线的平方和等于四边的平方和22c> a b1 •几个重要不等式2(1 ) a R 5a 05 a 0当且仅当a 0,取 “ ” ,(a-b )2^o (a> be R)(2) a,b R,则 a 2 b 22ab(3) a,b R,贝9 a b 2 ab ;a 2b 2 a b 2( 4)2(2);⑸若a 、 bw R+,,则 a 2 b 2(2 )2(a,b R)222ab a b a b ab(a ,b R ).ab2 22、解不等式1 ) 一元一次不等ax b (a°), ② a 0, xx a b o ,① a 0, xx a ax 2bx c 05(a2)—元二次不等式第七章1•两点间距离:若A(xi 5yi)3B(X2,y 2),则2•平行线间距离:若h : Ax By Ci■直线和圆的方程 (X2X1)212: AxAB 则:d A 2B 2注意:x, y 对应项系数应 则P 到I 的距离•点至血W 5y)J:Ax d A BCi C205Byy kx4 •直线与圆锥曲线相交的弦长公式:o •若丨与曲线交于A (XI 5 yi)5园妙)y 2)则:ax 2(y^yOBy C2bx c 0 , 10务必注5•若A(Xi,yi )5 B(X25 y2), P( x, y) ,P 为AB中点,贝lj X1 X22V226•直线的倾斜角(0。
2020高三数学复习重点知识点归纳三篇

2020高三数学复习重点知识点归纳三篇高三数学是很多同学都害怕的,怎样克服数学难题呢?小编认为同学们应该从每一个小的知识点抓起,先总结后练习。
下面就是小编给大家带来的高三数学复习知识点归纳,希望能帮助到大家!高三数学复习知识点归纳11.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“ ”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。
若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是”.22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a b 0,a 0.24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
新课标高考数学题型全归纳(理科版)

0-@4
集合与常用逻辑用语
第 一 节 集 合
, ; , 的 含 义 能 识 别 给 定 集 合 的 子 集 在 具 体 的 情 境 中 了 解 全 集 与 空 集 的 含 义 . 集 合 的 基 本 运 算 理 解 两 个 集 合 的 并 集 与 交 集 3 . . 、 集 合 的 含 义 与 表 示 了 解 集 合 的 含 义 元 素 与 集 1 . . , ; 的 含 义 会 求 两 个 简 单 集 合 的 并 集 与 交 集理 解 在 给 ; 、 ( 合 的 关 系 能 用 自 然 语 言 图 形 语 言 和 集 合 语 言 列 举 , ; 定 集 合 中 一 个 子 集 的 含 义 会 求 给 定 子 集 的 补 集 能 ) 法 或 描 述 法 描 述 不 同 的 具 体 问 题 . ( ) 图 表 达 集 合 的 关 系 及 运 算 使 用 韦 恩 V e n n . 集 合 间 的 基 本 关 系 理 解 集 合 之 间 包 含 与 相 等 2 . .
MB/
I
2
00K *ED*A
9*/,&#*"0
2 : , } , 补 充 性 质 试 判 断 与 的 关 系 犃 犅 = 犃 犃 犅 = 犅 犃 犅 = 犪 - 4 犪 + 5 犪 犕 犘 . ∩ ∪ { | ∈ Ν 狔 狔 , , , , … , { , , , , 取 可 得 解 析 犅 犃 犃 犅 = . = 1 2 3 4 狀 犕 = 2 5 1 0 1 7 瓓 瓓 瓓 犐 犐 ∩ 犐 犪 2 2 ( ) 结 合 律 与 分 配 律 … , } , , { ( ) , 4 . 1 + 狀 狀 犖 犘 = = 犪 - 2 + 1 ∈ | 狔 狔 2 : ( ) ( ) , 结 合 律 } { , , , , , … , } , 犃 犅 犆 = 犃 犅 犆 ∪ ∪ ∪ ∪ 犪 犖 = 1 2 5 1 0 1 7 狀 - 4 狀 + 5 狀 犖 ∈ ∈, ( ) ( ) , 可 见 集 合 中 的 元 素 都 是 集 合 中 的 元 素 但 集 合 犃 犅 犆 = 犃 犅 犆 . ∩ ∩ ∩ ∩ 犕 犘 : ( ) ( ) ( ) , 分 配 律 , 中 的 元 素 不 在 集 合 中 所 以 犃 犅 犆 = 犃 犅 犃 犆 ∩ ∪ ∩ ∪ ∩ 犘 1 犕 犕 犘 . ( ) ( ) ( ) 评 注 列 举 法 是 解 决 本 类 问 题 的 常 用 方 法 犃 犅 犆 = 犃 犅 犃 犆 . ∪ ∩ ∪ ∩ ∪ . ( ) ( ) 反 演 律 德 摩 根 定 律 { , } , { 5 . 若 变 式 1 犃 = 狓 狓 = + 1 狀 犅 = 狓 狓 = 4 狀 - | ∈ Ζ | ( ) ( ) ( ) , , } , { , } , , , 犃 犅 = 犃 犅 之 瓓 瓓 瓓 犐 ∩ 犐 ∪ 犐 3 狀 = 狓 狓 = 8 狀 + 1 狀 犃 犅 犆 ∈ Ζ犆 | ∈ Ζ则 ( ) ( ) ( ) 犃 犅 = 犃 犅 . 瓓 ∪ 瓓 ∩ 瓓 ( ) 犐 犐 犐 间 的 关 系 为 . “ ” , “ ” 即 交 的 补 补 的 并 并 的 补 补 的 交 = = A . 犆 犅 犃 B . 犃 犅 犆 由 个 元 素 组 成 的 集 合 的 子 集 个 数 C . 犆 犃 = 犅 D . 犃 = 犅 = 犆 2 . 狀 犃 狀 狀 1 犽 , , 的 子 集 有 个 非 空 子 集 有 个 真 子 集 有 犃 2 2 - 1 , , 设 集 合 变 式 2 犕 = 狓 = + 犽 狓 ∈ Ζ 狀 狀 2 4 , ( ) 个 非 空 真 子 集 有 个 2 - 1 2 - 2 狀 ∈ Ν . 犽 1 , ( ) , 则 犖 = . 狓 狓 = + 犽 ∈ Ζ 2 4 M 3C. A . 犕 = 犖 B . 犕 犖 C . 犕 犖 D . 犕 犖 = ∩ 集 合 的 基 本 概 念 2 { } , { } 设 例 1 . 3 犃 = 狓 狓 - 8 狓 + 1 5 = 0 犅 = 狓 犪 狓 - 1 = 0 . | | 1 ( ) , ; 若 试 判 断 集 合 与 的 关 系 1 犪 = 犃 犅 : 、 、 利 用 集 合 元 素 的 特 征 确 定 性 无 序 性 互 异 性 . 5 犫 ( ) , 若 求 实 数 组 成 的 集 合 2 犅 犃 犪 犆 . , , { , , } , , , 设 集 合 则 例 1 . 1 犪 犫 犚 1 犪 + 犫 犪 = 犫 0 ∈ 犪 1 ( ) , , 分 析 先 求 集 合 再 由 求 集 合 确 定 1 犃 犪 = 犅 犃 ( ) 犫 - 犪 = . 5 A . 1 B . - 1 C . 2 D . - 2 与 的 关 系 犅 . , { , , } , , 由 题 意 知 故 解 析 0 1 犪 + 犫 犪又 犪 0 犪 + 犫 = ∈ ≠ ( ) , , 解 方 程 建 立 的 关 系 式 求 从 而 确 2 犪 狓 - 1 = 0 犪 犪 犫 定 集 合 犆 . , , { , , } { , , } , 得 则 集 合 可 得 0 = - 1 1 0 犪 = 0 - 1 犫 2 犪 ( ) , , 由 得 或 所 以 解 析 1 狓 - 8 狓 + 1 5 = 0 狓 = 3 狓 = 5 , , 故 选 犪 = - 1 犫 = 1 犫 - 犪 = 2 .C . { , } 犃 = 3 5 . 2 { , , } , { , } , 若 且 变 式 1 犃 = 1 3 狓 犅 = 狓 1 犃 犅 = ∪ 1 1 , , , { } , 若 得 即 所 以 犪 = 狓 - 1 = 0 狓 = 5 犅 = 5 { , , } , ( ) 则 这 样 的 的 不 同 取 值 有 1 3 狓 狓 . 5 5 个 B 个 C 个 D 个 故 A . 2 . 3 . 4 . 5 犅 犃 . ( ) { , , , , 已 知 集 合 变 式 新 课 标 理 2 2 0 1 2 1 犃 = 1 2 3 4 ( ) { , } , 因 为 又 2 犃 = 3 5 犅 犃 . } , { ( , ) , , } , 则 中 5 犅 = 狓 狓 犃 犃 狓 - 犃 犅 | ∈ ∈ ∈ 狔 狔 狔 , , ; 当 时 则 方 程 无 解 则 犅 = 犪 狓 - 1 = 0 犪 = 0 ① ( ) 所 含 元 素 的 个 数 为 . 1 , , , , 当 时 则 由 得 犅 犪 0 犪 狓 - 1 = 0 狓 = ② ≠ ≠ A . 3 B . 6 C . 8 D . 1 0 犪 1 1 1 1 集 合 间 的 基 本 关 系 , , 所 以 或 即 或 = 3 = 5 犪 = 犪 = 犪 犪 3 5 1 1. , , 故 集 合 犆 = 0 35 ( ) : 判 断 两 集 合 的 关 系 常 用 两 种 方 法 一 是 逻 辑 1 ( ) , 评 注 研 究 集 合 的 子 集 问 题 时 应 首 先 想 到 空 集 1 , , 即 先 化 简 集 合 再 从 表 达 式 中 寻 找 两 集 合 的 分 析 法 因 为 空 集 是 任 何 集 合 的 子 集 . ; , , 关 系 二 是 用 列 举 法 表 示 各 集 合 从 元 素 中 寻 找 关 系 ( ) : 含 参 数 的 一 元 一 次 方 程 解 的 确 定 2 犪 狓 = 犫 这 体 现 了 合 情 推 理 的 思 维 方 法 . ( ) , 犫 已 知 两 集 合 间 的 关 系 求 参 数 时关 键 是 将 两 当 2 , ; 时 方 程 有 唯 一 实 数 解 0 狓 = ≠ 犪 , 集 合 间 的 关 系 转 化 为 元 素 的 关 系 进 而 转 化 为 参 数 满 犪 , , ; 时 方 程 有 无 数 多 个 解 可 以 为 任 意 实 数 犪 = 犫 = 0 , 足 的 关 系 解 决 这 类 问 题 常 利 用 数 轴 和 韦 恩 图 帮 助 当 , 当 且 时 方 程 无 解 犪 = 0 犫 0 . ≠ 分 析 . 、 , 二 已 知 集 合 间 的 关 系 求 参 数 的 取 值 范 围 、 一 集 合 关 系 判 断 问 题 2 { , } , ( ) { , , } , 已 知 集 合 已 知 集 合 例 例 大 纲 全 国 理 1 . 2 犕 = 狓 狓 = 1 + 犪 犪 犘 = 1 . 4 2 0 1 2 2 犃 = 1 3 犿 | ∈ Ν 槡
2020年高考理科数学 《解三角形》题型归纳与训练及答案解析

2020年高考理科数学 《解三角形》题型归纳与训练【题型归纳】题型一 正弦定理、余弦定理的直接应用例1ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin()8sin2BA C +=. (1)求cos B(2)若6a c +=,ABC ∆面积为2,求b . 【答案】(1)15cos 17B =(2)2b =. 【解析】由题设及A B C π++=得2sin 8sin2BB =,故sin 4(1cos )B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=, 解得cos 1B =(舍去),15cos 17B =.(2)由15cos 17B =得8sin 17B =,故14sin 217ABC S ac B ac ∆==. 又2ABC S ∆=,则172ac =. 由余弦定理及6a c +=得22222cos ()2(1cos )b a c ac B a c ac B =+-=+-+1715362(1)4217=-⨯⨯+=. 所以2b =.【易错点】二倍角公式的应用不熟练,正余弦定理不确定何时运用 【思维点拨】利用正弦定理列出等式直接求出例2 ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B = . 【答案】π3【解析】1π2sin cos sin cos sin cos sin()sin cos 23B B AC C A A C B B B =+=+=⇒=⇒=.【易错点】不会把边角互换,尤其三角恒等变化时,注意符号。
【思维点拨】边角互换时,一般遵循求角时,把边换成角;求边时,把角转换成边。
例3在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若b =1,c =3,C =23π,则S △ABC =________.【答案】34【解析】因为c >b ,所以B <C ,所以由正弦定理得b sin B =c sin C ,即1sin B =3sin 2π3=2,即sin B =12,所以B=π6,所以A =π-π6-2π3=π6.所以S △ABC =12bc sin A =12×3×12=34. 【易错点】大边对大角,应注意角的取值范围【思维点拨】求面积选取公式时注意,一般选取已知角的公式,然后再求取边长。
ok 2020年高考数学考点与题型全归纳 理科

2020年高考数学考点题型全归纳(理)第一章集合与常用逻辑用语 (10)第一节集合 (10)考点一集合的基本概念 (11)考点二集合间的基本关系 (12)考点三集合的基本运算 (14)第二节命题及其关系、充分条件与必要条件 (20)考点一四种命题及其真假判断 (21)考点二充分、必要条件的判断 (22)考点三根据充分、必要条件求参数的范围 (24)第三节简单的逻辑联结词、全称量词与存在量词 (29)考点一判断含有逻辑联结词命题的真假 (30)考点二全称命题与特称命题 (31)考点三根据命题的真假求参数的取值范围 (32)第二章函数的概念与基本初等函数Ⅰ (38)第一节函数及其表示 (38)考点一函数的定义域 (39)考点二求函数的解析式 (40)考点三分段函数 (43)第二节函数的单调性与最值 (51)考点一确定函数的单调性区间 (52)考点二求函数的值域最值 (54)考点三函数单调性的应用 (56)第三节函数的奇偶性与周期性 (64)考点一函数奇偶性的判断 (65)考点二函数奇偶性的应用 (67)考点三函数的周期性 (69)第四节函数性质的综合问题 (76)考点一函数的单调性与奇偶性 (76)考点二函数的周期性与奇偶性 (77)考点三函数性质的综合应用 (78)第五节函数的图象 (87)考点一作函数的图象 (88)考点二函数图象的识辨 (90)考点三函数图象的应用 (92)第六节二次函数 (100)考点一求二次函数的解析式 (101)考点二二次函数的图象与性质 (103)第七节幂函数 (112)考点一幂函数的图象与性质 (113)考点二比较幂值大小 (114)第八节指数式、对数式的运算 (119)考点一指数幂的化简与求值 (120)考点二对数式的化简与求值 (122)第九节指数函数 (127)考点一指数函数的图象及应用 (128)考点二指数函数的性质及应用 (129)第十节对数函数 (137)考点一对数函数的图象及应用 (138)考点二对数函数的性质及应用 (139)第十一节函数与方程 (146)考点一函数零点个数、所在区间 (146)考点二函数零点的应用 (149)第十二节函数模型及其应用 (155)考点一二次函数、分段函数模型 (156)考点二指数函数、对数函数模型 (158)第三章导数及其应用 (164)第一节导数的概念及运算、定积分 (164)考点一导数的运算 (166)考点二导数的几何意义及其应用 (167)考点三定积分的运算及应用 (170)第二节导数的简单应用 (179)第一课时导数与函数的单调性 (180)考点一求函数的单调区间 (180)考点二判断含参函数的单调性 (181)第二课时导数与函数的极值、最值 (194)考点一利用导数研究函数的极值 (194)考点二利用导数研究函数的最值 (196)考点三利用导数求解函数极值和最值的综合问题 (199)第三节导数的综合应用 (209)第一课时利用导数解不等式 (209)考点一f(x)与f′(x)共存的不等式问题 (209)考点二不等式恒成立问题 (212)考点三可化为不等式恒成立问题 (215)第二课时利用导数证明不等式 (222)考点一单变量不等式的证明 (222)考点二双变量不等式的证明 (225)考点三证明与数列有关的不等式 (227)第三课时导数与函数的零点问题 (231)考点一判断函数零点的个数 (231)考点二由函数零点个数求参数 (234)第四节导数压轴专项突破 (241)第一课时分类讨论的“界点”确定 (241)考点一根据二次项系数确定分类“界点” (241)考点二根据判别式确定分类“界点” (242)考点三根据导函数零点的大小确定分类“界点” (243)考点四根据导函数零点与定义域的关系确定分类“界点” (244)第二课时有关x与e x,ln x的组合函数问题 (246)考点一x与ln x的组合函数问题 (246)考点二x与e x的组合函数问题 (247)考点三x与e x,ln x的组合函数问题 (249)考点四借助e x≥x+1和ln x≤x-1进行放缩 (251)第三课时极值点偏移问题 (254)考点一对称变换 (254)考点二消参减元 (256)考点三比(差)值换元 (257)第四课时导数零点不可求 (260)考点一猜出方程f′(x)=0的根 (260)考点二隐零点代换 (260)考点三证——证明方程f′(x)=0无根 (262)第五课时构造函数 (263)考点一“比较法”构造函数证明不等式 (263)考点二“拆分法”构造函数证明不等式 (264)考点三“换元法”构造函数证明不等式 (265)考点四“转化法”构造函数 (267)第六课时“任意”与“存在”问题 (268)考点一单一任意与存在问题 (268)考点二双任意与存在相等问题 (269)考点三双任意与双存在不等问题 (270)考点四存在与任意嵌套不等问题 (272)第四章三角函数、解三角形 (279)第一节任意角和弧度制及任意角的三角函数 (279)考点一象限角及终边相同的角 (280)考点二三角函数的定义 (282)考点三三角函数值符号的判定 (283)第二节同角三角函数的基本关系与诱导公式 (290)考点一三角函数的诱导公式 (291)考点二同角三角函数的基本关系及应用 (292)第三节三角函数的图象与性质 (301)第一课时三角函数的单调性 (302)考点一求三角函数的单调区间 (302)考点二求三角函数的值域最值 (305)考点三根据三角函数单调性确定参数 (306)第二课时三角函数的周期性、奇偶性及对称性 (314)考点一三角函数的周期性 (314)考点二三角函数的奇偶性 (316)考点三三角函数的对称性 (317)第四节函数y=A sin(ωx+φ)的图象及应用 (327)考点一求函数y=A sin(ωx+φ)的解析式 (328)考点二函数y=A sin(ωx+φ)的图象与变换 (330)考点三三角函数模型及其应用 (332)第五节两角和与差的正弦、余弦和正切公式及二倍角公式 (342)考点一三角函数公式的直接应用 (342)考点二三角函数公式的逆用与变形用 (344)考点三角的变换与名的变换 (346)第六节简单的三角恒等变换 (354)考点一三角函数式的化简 (354)考点二三角函数式的求值 (355)考点三三角恒等变换的综合应用 (358)第七节正弦定理和余弦定理 (367)第一课时正弦定理和余弦定理(一) (368)考点一利用正、余弦定理解三角形 (368)考点二判定三角形的形状 (370)第二课时正弦定理和余弦定理(二) (377)考点一有关三角形面积的计算 (377)考点二平面图形中的计算问题 (379)考点三三角形中的最值、范围问题 (382)考点四解三角形与三角函数的综合应用 (384)第八节解三角形的实际应用 (393)考点一测量高度问题 (393)考点二测量距离问题 (395)考点三测量角度问题 (396)第五章平面向量 (401)第一节平面向量的概念及线性运算 (401)考点一平面向量的有关概念 (403)考点二平面向量的线性运算 (405)考点三共线向量定理的应用 (406)第二节平面向量基本定理及坐标表示 (413)考点一平面向量基本定理及其应用 (414)考点二平面向量的坐标运算 (415)考点三平面向量共线的坐标表示 (417)第三节平面向量的数量积 (422)考点一平面向量的数量积的运算 (424)考点二平面向量数量积的性质 (426)第四节平面向量的综合应用 (434)考点一平面向量与平面几何 (434)考点二平面向量与解析几何 (435)考点三平面向量与三角函数 (436)第六章数列 (444)第一节数列的概念与简单表示 (444)考点一由a n与S n的关系求通项a n (445)考点二由递推关系式求数列的通项公式 (447)考点三数列的性质及应用 (449)第二节等差数列及其前n项和 (456)考点一等差数列的基本运算 (457)考点二等差数列的判定与证明 (458)考点三等差数列的性质及应用 (460)第三节等比数列及其前n项和 (467)考点一等比数列的基本运算 (469)考点二等比数列的判定与证明 (470)考点三等比数列的性质 (472)第四节数列求和 (478)考点一分组转化法求和 (479)考点二裂项相消法求和 (481)考点三错位相减法 (483)第五节数列的综合应用 (491)考点一数列在实际问题与数学文化问题中的应用 (491)考点二等差数列与等比数列的综合计算 (493)第七章不等式................................................................................................. 错误!未定义书签。
2020高考数学知识难点复习梳理

2020 高考数学知识难点复习梳理失败是什么?没有什么,只是更走近成功一步;成功是什么?就是走过了所有通向失败的路,只剩下一条路,那就是成功的路。
接下来是小编为大家整理的2020 高考数学知识难点复习,希望大家喜欢!第一、基本公式用错等差数列的首项为a1、公差为 d,则其通项公式an=a1+(n-1)d,前 n 项和公式 Sn=na1+n(n-1)d/2= (a1+an)d/2 ;等比数列的首项为 a1、公比为 q,则其通项公式 an=a1pn-1,当公比 q≠1时,前 n 项和公式 Sn=a1(1-pn)/(1-q)= (a1-anq)/(1-q),当公比 q=1 时,前 n 项和公式 Sn=na1。
在数列的基础题中,等差、等比数列公式是解题的根本,一旦用错了公式,解题也失去了方向。
第二、an,Sn 关系不清致误在数列题中,数列的通项 an 与其前 n 项和Sn 之间存在着关系。
这个关系对任意数列都是成立的,但要注意的是关系式分段。
在 n=1 和 n≥2 时,关系式具有完全不同的表现形式,这也是考生答题过程中经常出错的点,在使用关系式时,要牢牢记住其“分段”的特点。
当题目中给出了数列{an}的an 与Sn 之间的关系时,这两者之间可以进行相互转换,知道了an 的具体表达式,就可以通过数列求和的方法求出Sn;知道了 Sn,也可以求出an。
在答题时,一定要体会这种转换的相互性。
第三、等差、等比数列性质理解错误等差数列的前 n 项和在公差不为 0 时是关于n 的常数项为 0 的二次函数。
一般来说,有结论“若数列{an}的前 N 项和 Sn=an2+bn+c(a,b,c∈R),则数列{an}为等差数列的充要条件是 c=0”;在等差数列中,Sm,S2m-Sm,S3m-S2m(m∈N_是等差数列。
解答此类题时,要求考生全面考虑问题,考虑各种可能性,认为正确的就给予证明,不正确就举出反例驳斥。
等比数列中,公比等于-1 是特殊情况,在解决相关题型问题时值得注意。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解读
纵观近三年全国新国标九套试卷可以看出,在考试形式试卷结构知识要求、能力要求、试 题难度。时间分值上都逐渐趋于平稳,计算最适中,试题难度分布也是由易到难,具有一定的梯度 和区分度但稳中出新,新中求变,同时兼顾考查新课标的新增内容,体现了课程改革的新理念具 体来说有以下几个方面:
1、重视基础,难度适中
2、整体稳定,覆盖面广
全面考查了新课标考试说明中各部分的内容,如复数、旋转体、推理证明、简易逻辑、排列 组合、二项式定理等教学内容,有些内容轮换考查,如统计图、线性回归、直线与圆线性规划计 数原理、二项式定理、正态分布、条件概率等。
3、全面考查新增内容.体现新课改理念
如定积分、函数的零点、三视图、算法图、直方图与茎叶图、条件概率、几何概型、全称 命题与特陈命题等。
2、预测 2020 年数列与不等式的命愿趋势
①数列是高中数学的重要内容,又是学习高等数学的基础。所以在高考中占有重要地位。高 考对本部分的考查比较全面,对等差等比数列的考查每年都不会遗漏,且多以-个选择题或填空 题、一个解答题的形式进行考查,小题难度一般为中等偏下,大题难度-般为中等偏上,突出考查 考生的思维能力、解决问题的能力,试题大多有较好的区分度有关数列的试题大多是综合题。 经常把数列和指数函数对数函数或不等式的知识综合起来,也常把等差等比数列和数学归纳法综 合在一起,探索性问题是高考的热点,常在数列解答题中出现。
4、突出通性酒法理性思维和思想方法的考查
数学思想方法是对数学知识的最高层次的概括与提炼,是适用于中学数学全部内容的通法, 是高考考查的核心数形结合、函数方程分类讨论转化化归等思想在高考中每年都会考查尤其是 数形结合,每年还专门有一道“新函数"的大致图像问题。
5、重视创新能力和应用意识的培养
创新能力的培养是新课标的一个重要理念,高考题中有一定数量的题目考查了学生的创新 能力、探索能力和应用能力,教学中要加强学生对此类问题的学习和培养。
1、预测 2020 年三角函数、平面向量、解三角形的命愿趋势 ①三角函数与解三角形一直是高考考查的重点和热点,三角函数的考查形式灵活多变,在选择
愿、填空题中是必考的内容,主要考查:利用三角函数的图象及其性质解决函数 y=Asin(Ax+b) 的图像、求值、求参、求值城、求单调区间等问题;在解答题中一般与三角恒等变换、向量等知 识相结合进行综合考查。解三角形的命题重点主要有三个:一是以斜三角形为背景求三角形的 基本最值、面积或判断三角形的形状;二是以实际生活为背景(如在测最、航海、天体运行等方 面的应用)考查解三角形的实际应用问题,虽然此类考查在近两年的高考中未出现,但很可能在 以后的高考中再次出现,因此应给予关注;三是解三角形与其他知识的交汇问题,常与三角函数 不等式、平面向量数列、导数.立体几何解析几何等知识交汇,这一直是高考考查的重点和热 点。
③需要留意的新题型包括:条件探究型结论开放型条件和结论都发散型、信息迁移型、类比 归纳型、探索存在型、解题策略纳
第一章 集合与常用逻辑用语.......................................................................................................10 第一节 集 合.........................................................................................................................10 考点一 集合的基本概念.............................................................................................11 考点二 集合间的基本关系.........................................................................................12 考点三 集合的基本运算.............................................................................................14 第二节 命题及其关系、充分条件与必要条件...................................................................19 考点一 四种命题及其真假判断.................................................................................20 考点二 充分、必要条件的判断.................................................................................21 考点三 根据充分、必要条件求参数的范围.............................................................22 第三节 简单的逻辑联结词、全称量词与存在量词...........................................................27 考点一 判断含有逻辑联结词命题的真假.................................................................28 考点二 全称命题与特称命题.....................................................................................29 考点三 根据命题的真假求参数的取值范围.............................................................30
②经研究分析,预测 2020 年新课标高考数列题型会具有一定的探究性和开放性,这类题目的 特点是有的没有给出条件,或者没有给出足多的条件,需要考生自己去寻找充分条件或充要条 件;有的没有给出结论,或者没有确定的结论,需要考生自已去探求结论;有的给出的信息比较 陌生,或比较新颍.或者所给的知识以前没有学习过,需要考生自己去理解、筛选有的给出一个特 殊的情形或类似的问题,需要考生自己去归纳、联想、类比;有的给出一个研究性问题.需要考 生去探究。
②平面向量主要包括:平面向量的概念,平面向量的加减运算平面向量的基本定理及坐标运 算,数量积及非零向量的平行与垂直等平面向量的加减运算将平面向量与平面几何联系起来;平 面向量的基本定理是平面向量坐标表示的基础,它揭示了平面向量的基本结构;平面向量的坐标 运算将平面向量的运算代数化,实现了数与形的紧密结合平面向量来源于实践,又应用于实际,是 高中数学中的知识工具,应该给予重视本部分内容在高考中的命题热点是:向量加减法的坐标运 算,向量加减法的几何表示,实数与向量的数乘的基本运算,实数与向量积的坐标运算。
以考查高中基础知识为主线,在基础中考查能力前 8 道选择都是考查基本概念和公式的相当 于课本习题的变式填空题前 3 题的难变相对较低,均属常规题型,解答题的第 17、18、19 题-般 考查三角函数、数列、立体几何、概率统计属中低档难度;第 20、21 题一般考查圆锥曲线、导 数属高档难度;第 22、23 题考查极坐标与参数方程、绝对值不等式、不等式证明,属中档难 度。