高中数学必修一《函数的概念》优秀教学设计

合集下载

高中数学教学课例《函数的概念》课程思政核心素养教学设计及总结反思

高中数学教学课例《函数的概念》课程思政核心素养教学设计及总结反思
接下来引导学生思考通过对上述实例的共同点并 结合课本归纳函数的概念。组织学生阅读课本,在阅读 过程中注意思考以下问题
问题 1:函数的概念是什么初中与高中对函数概念 的定义的异同点是什么符号“”的含义是什么
问题 2:构成函数的三要素是什么 问题 3:区间的概念是什么区间与集合的关系是什 么在数轴上如何表示区间给学生十分钟的时间,组织学 生进行全班交流。 设计意图:以问题串的形式来探索新知,引起学生 的认知冲突,使学生对旧知识产生质疑,从而激发学生 的学习动机和求知欲。 根据学生的回答,可能得到以下的预设:①函数的 概念:给定两个非空数集 A 和 B,如果按照某个对应关 系 f,对于集合 A 中任何一个数 x,在集合 B 中都存在
(三)情感态度价值观 在自主探究,合作交流中,感受到探索的乐趣和成 功的体验,体会到数学的逻辑性和严谨性,逐步养成良 好的学习习惯,增强合作意识。 新课标指出学生是教学的主体,所以要成为符合新 课标要求的教师,首先就要深入了解所面对的学生。本 阶段的学生已经具备了一定的分析能力,以及逻辑推理 学生学习能 能力,在此之前,他们已经学会了函数的概念,函数的 力分析 图像和表示方法,对函数性质有了初步的认识,这就为 本节课内容的学习奠定了基础,但是对于用数学的语言 来描述函数的图像性质关系的理解,学生可能会产生一 定的困难。 新课标理念认为,在教学过程中,学生是学习的主 体,教师是学习的组织者、引导者,教学的一切活动都 教学策略选 必须以强调学生的主动性、积极性为出发点。根据这一 择与设计 教学理念,结合本节课的内容特点和学生的心理特征与 认知规律,我采用启发法、讲授法、小组合作、自主探 究等教学方法。
引导学生分析归纳以上三个实例,他们之间有什么 共同点,并根据初中所学函数的概念,判断各个实例中 的两个变量之间的关系是否为函数关系。

高中数学《函数的概念》公开课优秀教学设计三

高中数学《函数的概念》公开课优秀教学设计三

⾼中数学《函数的概念》公开课优秀教学设计三1.2.1函数的概念教学设计⼀、教材分析:本节内容为《1.2.1函数的概念》,是⼈教A版⾼中《数学》必修⼀《1.2函数及其表⽰》的第⼀课.函数是中学数学最重要的基本概念之⼀,在初中,学⽣已经学习过函数的概念,它是从运动变化的观点出发,把函数看成是变量之间的依赖关系.从历史上看,初中给出的定义来源于物理公式,最初的函数概念⼏乎等同于解析式.后来,⼈们逐渐意识到定义域与值域的重要性,⽽要说清楚变量以及两个变量间变化的依赖关系,往往先要弄清各个变量的物理意义,这就使研究受到了⼀定的限制.如果只根据变量观点,那么有些函数就很难进⾏深⼊研究.例如:1,当X是有理数时,f(X)=」P,当X是⽆理数时.对这个函数,如果⽤变量观点来解释,会显得⼗分勉强,也说不出X的物理意义是什么?但⽤集合、对应的观点来解释,就⼗分⾃然?函数思想也是整个⾼中数学最重要的数学思想之⼀,⽽函数概念是函数思想的基础,它不仅对前⾯学习的集合作了巩固和发展,⽽且它是学好后继知识的基础和⼯具.函数与代数式、⽅程、不等式、数列、三⾓函数、解析⼏何、导数等内容的联系也⾮常密切,函数的基础知识在现实⽣活、社会、经济及其他学科中有着⼴泛的应⽤.本节课⽤集合与对应的语⾔进⼀步描述函数的概念,让学⽣感受建⽴函数模型的过程和⽅法.⼆、学情分析:在学习⽤集合与对应的语⾔刻画函数之前,学⽣已经会把函数看成变量之间的依赖关系,同时,虽然函数⽐较抽象,但是函数现象⼤量存在于学⽣的周围,教科书选⽤了运动、⾃然界、经济⽣活中的实际例⼦进⾏分析,从实例中抽象概括出⽤集合与对应的语⾔来定义函数概念,对学⽣的抽象、归纳能⼒要求⽐较⾼,能很好的锻炼学⽣的抽象思维能⼒以及加深对函数概念的理解三、教学⽬标:(⼀)知识与技能理解函数的定义,能⽤集合与对应的语⾔来刻画函数,体会对应关系在刻画函数概念中的作⽤;了解构成函数的三要素.(⼆)过程与⽅法通过三个实例共性的分析到函数概念的形成,再对三个实例进⾏拓展,让学⽣对函数概念进⾏辨析,体现从特殊到⼀般,再从⼀般到特殊的思想⽅法,渗透了归纳推理,实现了感性认识到理性认识的升华.(三)情感、态度与价值观通过从实际问题中抽象概括函数的概念,培养学⽣的抽象概括能⼒,体会函数是描述变量之间依赖关系的重要数学模型,在此基础上学会⽤集合与对应的语⾔来刻画函数,感受数学的抽象性和简洁美.四、教学重点与难点:(⼀)教学重点体会函数是描述变量之间的依赖关系的重要数学模型,并能⽤集合与对应的语⾔来刻画函数(⼆)教学难点函数概念的理解及符号“ y⼆f (X)”的含义.五、教学策略:⾸先,通过魔术表演,体现函数在实际⽣活中的运⽤,激发学⽣进⼀步学习函数的积极性;其次,在学⽣习惯⽤解析式表⽰函数的基础上借助教科书实例,从解析法、图象法、列表法等不同的⽅式,结合函数的数与形两个⽅⾯给学⽣充分的认识,为学⽣⽤集合与对应的语⾔刻画函数打下感性基础;再次,分析讲解函数概念中的关键点时,对于对应关系f、函数关系中多对⼀的情况、值域是集合B的⼦集等较为抽象问题的理解采取放乒乓球的实验,让抽象问题具体化;最后,通过对三个实例进⾏拓展让学⽣抛开物理运动背景,⽤集合与对应的语⾔来分析函数并强调函数关系中对应关系的⽅向.六、教学基本流程:七、教学情景设计:教学流程教学内容设计意图探索新知研讨探究:分析、归纳三个实例中,变量之间关系的共同点概括出函数的定义师⽣活动师:让学⽣分组讨论三个实例中,变量之间关系的共同点? ⽣:概括出三个实例中,变量之间关系的共同点四、新课讲解⼀般地,设A, B是⾮空的数集,如果按照某种确定的对应关系f,使对于集合A中任意⼀个数X,在集合B中都有唯⼀确定的数f(x)和它对应,那么就称f : A》B为从集合A到集合B的⼀个函数,记作y = f (x), x A.其中,x叫做⾃变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)x?A}通过集合与对应的语⾔来刻画初中已学函数,使学⽣加深理解函数的本质及构成函数的基本要素.师:强调、分析概念中的关键点.①A,B是⾮空的数集;②对应关系f可以通过解析式、图象、列表来表⽰;③任意、存在、唯⼀;④符号“ y = f(x)”的含义;⑤函数三要素:定义域A、值域、对应关系.五、实验操作叫做函数的值域.动⼀动:请将A盒⼦中的所有乒乓球放⼊B盒⼦中.思考:A中的乒乓球和 B 中的格⼦都标有数字,可以把A,B看成两个⾮空数集,那么每⼀种放法是从A到B的⼀个函数吗?若是,它的值域是什么?通过放乒乓球的实验,将函数概念中:①对应关系f ;②函数关系中多对⼀的情况;③值域是集合B的⼦集.等较为抽象的问题题具体化,⽣活化.师:启发学⽣思考每⼀种⽅法实质就是⼀个对应关系,通过对应关系,可以出现多对⼀,但不可⼀对多,同时,通过实验结果理解值域是集合B的⼀个⼦集.⽣:⼩组合作讨论每⼀种放法是否为从集合A到集合B的⼀个函数.若是,则求它的值域.师:强调初、⾼中对函数定义本质是⼀样的,只是出发点不同,⽤集合与对应的语⾔来描述函数可以摆脱物理运动的束缚.1.2.1本节课教学⽬标是:正确理解函数的概念,能⽤集合与对应的语⾔刻画函数。

高中数学《函数的概念》教学设计

高中数学《函数的概念》教学设计
高中数学《函数的概 念》教学设计
目录
• 课程背景与目标 • 函数概念引入 • 函数图像与性质 • 函数运算与变换 • 函数应用举例 • 课程总结与拓展
01
课程背景与目标
课程背景
01
函数是数学中的重要概念,贯穿整个数学体系,是连接 初、高中数学的桥梁。
02
在现代社会中,函数的应用广泛,涉及到经济、科技、 工程等多个领域。
y = a^x (a > 0, a ≠ 1) ,其图像是一条指数曲 线,具有单调性、无界 性等性质。
y = log_a(x) (a > 0, a ≠ 1),其图像是一条对 数曲线,具有单调性、 无界性等性质。
如y = sin(x)、y = cos(x)等,其图像是周 期性的波形曲线,具有 周期性、有界性等性质 。
函数的表示方法
解析法、列表法和图象法。其中解析法是用数学表达式表示 两个变量之间的对应关系;列表法是通过列出表格来表示两 个变量之间的对应关系;图象法是用图象来表示两个变量之 间的对应关系。
函数性质探讨
函数的单调性
当自变量x增大时,函数值f(x)随 着增大(或减小),则称该函数 在此区间内为增函数(或减函数
伸缩变换
对称变换
了解函数图像的对称性质,掌握关于坐标轴 对称和关于原点对称的变换规律。
掌握函数图像沿坐标轴伸缩的变换规律,理 解伸缩变换对函数解析式的影响。
02
01
翻折变换
了解函数图像的翻折性质,掌握关于坐标轴 翻折的变换规律。
04
03
05
函数应用举例
实际问题中的函数模型建立
经济学中的函数模型
01
学生自我评价报告
知识掌握情况
通过自我检测,评估自己对函数概念及相关知识点的掌握情况,找 出薄弱环节,以便后续针对性复习。

3.1.1函数概念(第1课时)教学设计.docx

3.1.1函数概念(第1课时)教学设计.docx

3.1.1函数的概念(第一课时)(人教A版普通高中教科书数学必修第一册第三章)一、教材地位本节课是普通高中课程标准实验教科书人教A版第三章第一节第一课时(第60~64页).1.概念本身角度:函数是高中数学最抽象的概念,初中曾用运动变化的观点给出函数的描述性定义,并把函数看作两个变量间的依赖关系,但这一定义有一定的阶段性和局限性.2.学科角度:函数是高中数学的核心概念,是整个高中函数知识体系的基石,它不仅将函数概念由“对应论”发展到“集合论”,更承上启下,为后继研究基本初等函数,比如指数函数、对数函数、幂函数、三角函数以及函数的性质等提供研究方法和理论依据,让我们体会到重要概念对数学发展和数学学习的巨大作用;同时,函数的基础知识在日常生活、社会经济、以及等其他学科也有着广泛应用.3.高考角度:函数是高考数学的热点,函数图象性质、函数与代数式方程不等式数列三角解析几何导数的结合问题常考常新,从基础题、中档题到压轴题,每年高考都是绝对重点,高考所考察的五大数学思想中的数形结合思想、函数与方程思想贯穿高中数学学习的全过程.有人说,“得函数者得数学,得数学者得高考”,更是形象的道出了函数在高考中的重要地位.二、学情分析1.从学生知识层面看:通过初中函数相关知识的学习,学生具备了一定的知识经验和基础;通过必修一第一章“集合”的学习,对集合思想的认识也日渐提高,为重新定义函数、从根本上揭示函数的本质提供了知识保证.2.从学生能力层面看:学生已有一定的分析、推理和概括能力,初步具备了运用数形结合思想解决问题的能力,但数形结合的意识和思维的深刻性还有待进一步加强.3.从学生情感培养方面看:多数学生对教学新内容的学习有很高学习兴趣和积极性,但探究能力以及合作交流等能力仍需要通过课堂主渠道加以培养和提高.三、教学目标1.知识与技能:会用集合与对应的语言来刻画函数,理解函数的概念;理解函数符号y=f(x)的含义;了解函数的三要素;会求一些简单函数的定义域.(重点)2.过程与方法:让学生亲身经历函数概念的形成过程,经历从具体到抽象、从特殊到一般、从感性到理性的认知过程,培养学生抽象概括能力,让学生学会数学表达和交流,激发数学学习兴趣,发展数学应用意识.(难点)3.情感、态度与价值观:培养学生细心观察、认真分析、严谨表达的良好思维习惯,养成用函数模型描述和解决现实世界中蕴含的规律,培养学生提出问题的能力,培养创新意识.四、教学重点用集合语言和对应关系刻画函数的概念.五、教学难点对函数概念的理解.六、教学过程1.函数概念的形成1.1创设情境,引发思考思考1:(1)若正方形的边长为1,则其周长l= ;(2)若正方形的边长为2,则其周长l= ; (3)若正方形的边长为x ,则其周长l= ;【预设答案】(1)4(2)8(3)4x【设计意图】通过具体的例子复习函数的概念,让学生再次体会函数高度“抽象”的作用.思考2:初中学习的函数的概念是什么?【预设答案】设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说y 是x 的函数.其中x 叫自变量,y 叫因变量.【设计意图】复习初中函数概念,强调函数是一种特殊的对应.思考3:请同学们考虑以下两个问题【设计意图】从初中的概念来看,这两组中的两个函数没什么不同,但我们有感觉它们是不同函数.让学生体会初中函数概念不够精确,从而有些问题解决不了.1.2探究典例,形成概念问题1: 某“复兴号”高速列车到350km/h 后保持匀速运行半小时.这段时间内,列车行进的路程S (单位:km )与运行时间t (单位:h )的关系可以表示为 S=350t.思考:根据对应关系S=350t ,这趟列车加速到350km/h 后,运行1h 就前进了350km ,这个说法正确吗?44y x l x ==(1)与周长是同一函数吗?22x y x y x==()与是同一函数吗?【预设答案】不正确.对应关系应为S=350t ,其中 }1750|{},5.00|{11≤≤=∈≤≤=∈s s B s t t A t .问题2 :某电气维修告诉要求工人每周工作至少1天,至多不超过6天.如果公司确定的工资标准是每人每天350元,而且每周付一次工资,那么你认为该怎样确定一个工人每周的工资?一个工人的工资w (单位:元)是他工作天数d 的函数吗?【预设答案】是函数,对应关系为w=350d,其中},6,5,4,3,2,1{2=∈A d}2100,1750,1400,1050,700,350{2=∈B w .思考:在问题1和问题2中的函数有相同的对应关系,你认为它们是同一个函数吗?为什么?【预设答案】不是.自变量的取值范围不一样.问题3 :如图,是北京市2016年11月23日的空气质量指数变化图.如何根据该图确定这一天内任一时刻th 的空气质量指数的值I ?你认为这里的I 是t 的函数吗?【预设答案】是,t 的变化范围是}240|{A 3≤≤=t t ,I 的范围是}1500|{I B 3<<=I .问题4: 国际上常用恩格尔系数)总支出金额食物支出金额=r r ( 反映一个地区人民生活质量的高低,恩格尔系数越低,生活质量越高.上表是我国某省城镇居民恩格尔系数变化情况,从表中可以看出,该省城镇居民的生活质量越来越高.你认为该表给出的对应关系,恩格尔系数r 是年份y 的函数吗?思考:上述问题1到问题4中的函数有哪些共同点和不同点?【预设答案】共同点有:(1)都包含两个非空数集,用A ,B 来表示;(2)都有一个对应关系不同点有:(1)(2)是通过解析式表示对应关系,(3)是通过图象,(4)是通过表格【设计意图】通过四个具体的例子,发现要在集合的基础上定义函数会比较准确,同时让学生体会函数对应关系的3种表示形式.函数概念:一般地,设A , B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A B →为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}()f x x A |∈叫做函数的值域.函数的三个要素:定义域,对应关系,值域.常见函数的三要素:正比例函数:y kx =的定义域是R ,值域也是R .对应关系f 把R 中的任意一个数x ,对应到R 中唯一确定的数(0)ax b a +≠.一次函数:(0)y ax b a =+≠的定义域是R ,值域也是R .对应关系f 把R 中的任意一个数x ,对应到R 中唯一确定的数(0)ax b a +≠.二次函数:2(0)y ax bx c a =++≠的定义域是R ,值域是B .当a >0时,244ac b B y y a ⎧⎫-⎪⎪=≥⎨⎬⎪⎪⎩⎭;当a <0时,244ac b B y y a ⎧⎫-⎪⎪=≤⎨⎬⎪⎪⎩⎭.对应关系f 把R 中的任意一个数x ,对应到B 中唯一确定的数2(0)ax bx c a ++≠. 反比例函数:(0)k y k x =≠的定义域为{}0x x ≠,对应关系为“倒数的k 倍”,值域为{}0y y ≠.反比例函数用函数定义叙述为:对于非空数集{}0A x x =≠中的任意一个x 值,按照对应关系f :“倒数(0)k k ≠倍”,在集合{}0B y y =≠中都有唯一确定的数k x 和它对应,那么此时f :A B →就是集合A 到集合B 的一个函数,记作()(0),.k f x k x A x=≠∉2.例题讲解,理解概念例1.判断下列对应是否是函数【预设答案】(1)是(2)是(3)不是【设计意图】让学生体会函数只能是“一对一”或“多对一”,不能“一对多”.例2. 判断下列图象能表示函数图象的是()【预设答案】D【设计意图】让学生体会概念中的“唯一”二字例3 .你能构建一个问题情景,使其中函数的对应关系为y=x(10-x)吗?【预设答案】长方形的周长为20,设一边长为x,面积为y,那么y=x(10-x),其中x的取值范围是A={x|0<x<10},y的取值范围是B={y|0<y≤25}.对应关系f把每一个长方形的边长x,对应到唯一确定的面积x(10-x)【设计意图】让学生体会数学建模,数学应用思想,同时巩固函数概念是建立在集合基础上的.3.课堂练习,巩固新知练习1.若函数y=f(x)的定义域为{x|−3≤x≤8,x≠5},值域为{y|−1≤y≤2,y≠0},则y=f(x)的图象可能是()A. B.C. D.【答案】B练习2.已知函数f(x),g(x)分别由下表给出.则g(f(5))=;f(g(2))=.【答案】4 3练习3.集合A,B与对应关系f,如图所示,f:A→B是否为从集合A到集合B的函数?如果是,那么定义值域与对应关系各是什么?【答案】由图知A中的任意一个数,B中都有唯一确定数,与之对应,所以f:A→B 是从A 到B的函数定义域是A={1,2,3,4,5},值域C={2,3,4,5}4.构建一个问题情景,使其中的变量关系能用解析式y=√x来描述.【答案】正方形的面积为x,其边长为y,则y=√x,其中x的取值范围是A={x|0<x},y的取值范围是B={y|0<y}4.课堂小结,思想升华本节课主要是在集合的基础上重新定义了函数,让函数的概念更加清晰准确.。

高中数学必修一《函数的概念及其表示》优质教案

高中数学必修一《函数的概念及其表示》优质教案

高中数学必修一《函数的概念及其表示》优质教案教材分析课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.课本将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.教学目标与素养课程目标1、明确函数的三种表示方法;2、在实际情境中,会根据不同的需要选择恰当的方法表示函数;3、通过具体实例,了解简单的分段函数,并能简单应用.数学学科素养1.数学抽象:函数解析法及能由条件求出解析式;2.逻辑推理:由条件求函数解析式;3.数学运算:由函数解析式求值及函数解析式的计算;4.数据分析:利用图像表示函数;5.数学建模:由实际问题构建合理的函数模型。

重难点重点:函数的三种表示方法,分段函数的概念.难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.课前准备教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

教学过程一、情景导入初中已经学过函数的三种表示法:列表法、图像法、解析法,那么这三种表示法定义是?优缺点是?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本67-68页,思考并完成以下问题1.表示两个变量之间函数关系的方法有几种?分别是什么?2.函数的各种表示法各有什么特点?3.什么是分段函数?分段函数是一个还是几个函数?4.怎样求分段函数的值?如何画分段函数的图象?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

函数的概念优秀教学设计

函数的概念优秀教学设计

函数的概念优秀教学设计函数是数学中的一个概念,它描述了一种特定的关系,将一个或多个自变量的取值映射到相应的因变量的取值。

函数通常用符号表示,例如f(x)=x^2,其中f(x)表示函数名,x表示自变量,x^2表示函数对自变量x的运算。

通过函数的定义,我们可以通过给定自变量的值来计算出相应的因变量的值。

在教学设计中,理解函数的概念和应用是非常重要的,因为函数是数学学科中的核心概念之一、在初中数学中,学生开始学习函数的基本概念和性质,例如定义域、值域、单调性、奇偶性等,并学习如何通过图像和方程式来描述函数。

进一步地,在高中数学中,学生将学习更加复杂的函数,例如指数函数、对数函数、三角函数以及其他特殊函数。

在教学设计中,以下是一些优秀的教学策略和活动,可以帮助学生更好地理解和应用函数的概念。

1.概念引入活动:引入函数的概念可以通过与学生日常生活相关的例子来进行,例如温度与时间的关系、距离与速度的关系等。

通过这些例子,学生可以探索其中存在的规律,并引导学生将这种规律转化为函数的表达式。

2.反问题解决活动:在教学中,教师可以提出一个问题,要求学生寻找一个特定的函数,满足给定的条件。

这种活动可以激发学生的思考和研究能力,帮助学生理解函数的多样性和灵活性。

3.图像展示活动:通过使用计算机或投影仪,展示各种函数的图像可以帮助学生更直观地理解函数的性质和特点。

教师可以让学生观察和比较不同函数的图像,解释图像上的特点与函数的关系。

4.探究性学习:教师可以给学生一些函数的简单表达式,并要求他们通过改变一些参数来观察函数的变化。

学生可以通过此过程来寻找函数的规律和性质,并进一步推广到其他类型的函数中。

5.制作折线图:通过要求学生制作一些与函数相关的折线图,可以帮助学生理解函数的定义和关系。

学生可以使用纸和铅笔或计算机工具来制作这些折线图,并通过折线图来描述和分析函数的特点。

6.探讨实际问题:教师可以提出一些实际问题,要求学生建立相应的函数模型来解决问题。

高中数学教案《函数的概念及其表示》

高中数学教案《函数的概念及其表示》

教学计划:《函数的概念及其表示》一、教学目标1.知识与技能:o学生能够理解并掌握函数的基本概念,包括自变量、因变量、函数定义域和值域。

o学生能够识别函数关系,并用不同的方式(如解析式、表格、图像)表示函数。

o学生能够区分函数与非函数关系,理解函数关系的唯一对应性。

2.过程与方法:o通过实例分析,引导学生从具体到抽象地理解函数概念。

o运用对比、归纳等方法,帮助学生掌握函数的不同表示方法。

o通过小组合作探究,培养学生的合作学习能力和问题解决能力。

3.情感态度与价值观:o激发学生对数学学习的兴趣,培养探究数学规律的精神。

o引导学生认识到函数在现实生活中的应用价值,增强数学应用的意识。

o通过解决问题,培养学生的耐心、细致和严谨的科学态度。

二、教学重点和难点●重点:函数的基本概念及其三种表示方法(解析式、表格、图像)。

●难点:理解函数关系的唯一对应性,区分函数与非函数关系;灵活运用不同方式表示函数。

三、教学过程1. 导入新课(5分钟)●生活实例引入:通过日常生活中的实例(如气温随时间变化、汽车速度与行驶时间的关系等),引导学生思考这些关系中是否存在一个变量随另一个变量变化而变化的规律。

●提出问题:这些关系中的两个变量之间是如何相互影响的?能否用数学语言来描述这种关系?●明确目标:引出函数的概念,并说明本节课将要学习的内容。

2. 概念讲解(15分钟)●函数定义:详细讲解函数的基本概念,包括自变量、因变量、函数关系以及定义域和值域的概念。

●实例分析:结合生活实例,分析哪些关系可以构成函数,哪些不能,强调函数关系的唯一对应性。

●表示方法:介绍函数的三种表示方法(解析式、表格、图像),并举例说明每种方法的应用场景。

3. 案例分析(10分钟)●典型例题:选取几道具有代表性的例题,通过分析题目中的变量关系,引导学生判断是否为函数关系,并尝试用不同方式表示该函数。

●师生互动:在例题讲解过程中,适时提问引导学生思考,鼓励学生尝试自己解答或提出疑问。

高中数学优质课《函数的概念》教学设计共4套

高中数学优质课《函数的概念》教学设计共4套
加深对函数图像的理解。
分析函数关系
学生分析实际问题中的函数关系, 如速度与时间的关系、成本与产量 的关系等,提高运用函数知识解决 实际问题的能力。
函数运算实践
学生进行函数运算实践,如函数的 四则运算、复合运算等,通过具体 操作加深对函数运算规则的理解。
展示评价:展示成果,互相学习
学生成果展示
学生展示自己的学习成果,如绘 制的函数图像、分析的实际问题 等,通过互相观摩和学习,拓宽
高中数学优质课《函数的概 念》教学设计共4套
目录
• 课程背景与目标 • 教学内容与方法 • 教学过程设计 • 学生活动设计 • 教学评价与反馈 • 教学资源与开发
01
课程背景与目标
高中数学课程标准要求
了解函数的有界性、单调性、周期 性和奇偶性等性质,理解复合函数 及分段函数的概念,了解反函数及 隐函数的概念。
分享生活中的函数实例
02
学生分享生活中与函数相关的实例,将抽象的数学概念与实际
生活相联系,提高学习兴趣。
探讨函数性质
03
学生探讨函数的性质,如单调性、奇偶性等,通过对比分析不
同函数的性质,加深对函数性质的理解。
动手实践:操作练习,巩固知识
绘制函数图像
学生动手绘制不同函数的图像, 通过观察图像的变化趋势和特征,
提问与回答 鼓励学生提出问题,并对学生的问题进行及时回 应和解答,通过学生的提问和回答情况来评价学 生的理解程度。
随堂测试 通过简短的随堂测试,了解学生对本节课内容的 掌握情况,及时发现学生的学习困难。
及时收集反馈信息,调整教学策略
01
02
03
学生反馈
在课后向学生收集对本节 课的反馈意见,包括教学 内容、教学方法、教学进 度等方面的意见和建议。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的概念(教案)
一、教学目标
(一)知识与技能目标
1、通过丰富实例,进一步体会函数是描述变量之间相互依赖的重要数学模型
2、用集合与对应的思想理解函数的概念,理解函数的三要素及函数符号的深刻含义
3、会求一些简单函数的定义域及值域
(二)过程与方法目标
1、从具体到抽象,从特殊到一般,培养学生抽象概括能力和逻辑思维能力
2、培养学生联系、对应、转化的辩证思想
2、强化“形”与“数”结合并相互转化的数学思想
(三)情感态度与价值观目标
1、渗透数学思想和文化,激发学生观察、分析、探求的兴趣和热情
2、强化学生参与意思,培养学生严谨的学习态度
3、树立“数学源于实际,有服务于实际”的数学应用意识
二、教学重、难点
重点:理解函数的概念,主要包括函数的定义和函数三要素的理解与认识;理解函数记号y=f(x)
难点:函数的定义和函数符号的理解与应用
三、教学方法
“问题式”+“探究式”+“启发式”
四、教学过程
1、创设情境,温故知新
问题一:在初中,我们学习过函数的概念,它是如何定义的?初中学习过哪些函数?
问题二:“y=100”能否表示函数?
师:问题二,学生用已有知识是不能回答的,这就是为什么我们要在高一重新学习函数的概念,请同学们快速看一下课本上的三个实例
2、讨论归纳,形成概念
分析实例一:用集合与对应的语言来讲述
h=130t-5t*t
A={t|0≤t ≤26} B={h| 0≤h≤845}
A B
师:A中的每一个时间t,通过解析式,在B中都能找到一个唯一的h与之对应
教师引导学生快速分析实例二、三
问题三:请同学们每四人一组,一组为单位讨论三个实例有哪些共同点?
同学回答,老师完善,共同点:
(1)都有两个非空数集A、B
(2)两个数集间都有某种确定的对应关系
(3)A中每一个数,通过对应B中都有唯一的一个数与之对应
问题四:函数能否看成两个集合的一种对应呢,若能,怎样定义?
师生一起得出函数的概念:
设A、B两个非空数集,如果按照某种对应关系f,是对于集合A中的任意一个数X,在集合B中都有唯一确定的f(x)和它对应,那么就称f:A-B为从集合A到集合B的一个函数,记作y=f(x),x∈A
其中x叫自变量,x的取值范围A叫函数的定义域,与x相对应的y值叫函数值,函数值的集合{f(x)|x ∈A}叫函数的值域,值域是集合B的子集。

教师引导学生加深对概念的认识,注意:
1)A、B是非空数集
2)f是对应法则,可是解析式、图像、表格
3)任意的x对唯一的y,即允许多对一
3)y的值是x在f这种对应法则下所得到的值
4)f(a)与f(x)的区别
函数三要素:定义域、对应关系、值域
师:从三个实例中我们可以看出值域是由定义域和对应关系确定的
函数相等:定义域相等、对应关系相同
师:为了更好的描述定义域及值域,我们给出了区间,请同学们仔细阅读区间的概念,然后填下表
教师说明以下注意:
1)区是集合
2)区间的左端点小于右端点
3)无穷大是一个符号,不是一个数,不能比较大小
4)以“+∞”“-∞”为区间的一端时,这一端必须是小括号
3、举例应用,深化目标
学生动手做课后练习,教师讲解的形式完成练习题
4、小结
教师归纳总结:(1)函数的定义
(2)函数的三要素
(3)函数相等
(4)区间
5、布置作业
书面作业习题1、2 A组1、2、4、5
思考题:试举出生活中的几个函数现象,用初中的概念难以解释,用高中概念容易理解。

相关文档
最新文档