材料物理性能-材料的热性能
材料物理性能(第三章-材料的热学性能)

2.光子热导(photon conductivity of heat)
固体中除了声子的热传导外,还有光子的热传导。
其辐射能量与温度的四次方成正比,例如,黑体单位
容积的辐射能ຫໍສະໝຸດ 第三节 材料的热传导一、固体材料热传导的宏观规律
当固体材料一端的温度比另一端高时,热量会从热 端自动地传向冷端,这个现象称为热传导。
傅里叶定律:Q dT S t ,它只适用于稳定
传热的条件,即
是常数dx。
式中,λ=导热系数,它的物理意义是指单位温度 梯度下,单位时间内通过单位垂直面积的热量,单位为 J/(m2·S·k)。 =x方向上的温度梯度。
根据热力学第二定律可以导出:
式中:V0=摩尔容积, (expansion coefficient), (compression coefficient)。
=体膨胀系数 =压缩系数
对于固体材料CP与CV差异很小,见图3.2。
一、晶态固体热容的经验定律(experience law) 和经典理论(classical theory) 一是元素的热容定律——杜隆一珀替定律:
第二节 材料的热膨胀
一、热膨胀系数(Thermal expansion coefficient) 物体的体积或长度随温度升高而增大的现象叫做
热膨胀。
式中,αl=线膨胀系数,即温度升高1K时,物体的 相对伸长。
物体在温度 T 时的长度lT为:
无机材料的
,αl通常随T升高而加大。
同理,物体体积随温度的增加可表示为:
一般耐火材料线膨胀系数,常指在20~1000℃范围内
材料物理性能-材料的热学性能0912

2
2
E
E T
2
e e
E
T
E
T
e
E
2T
e
E
2T
2
2 3 x x ex 1 x 2! 3!
1 1 2 T E E 2 T 2 T
元素 H B
11.3
C
7.5
O
F
Si
P
22.5
S
22.5
Cl
20.4
Cp /( J.K-1.mol-1 ) 9.6
16.7 20.9 15.9
江西理工大学应用科学学院
4.1 热 容
杜隆-珀替定律局限性:不能说明低温下,热容随温度的 降低而减小,在接近绝对零度时,热容按T的三次方趋近于零 的试验结果。
第二章 材料的热学性能
4.1 热容 4.2 材料的热膨胀性
4.3 材料的热传导
4.4 材料的热稳定性
江西理工大学应用科学学院
4.1 热 容
4.1.1 固体热容理论 1、热容量的经验定律 材料在温度上升或下降时要吸热或放热,在没有相变或化学 反应的条件下,材料温度升高1 K时所吸收的热量(Q)称作该材料 的热容。用C表示。 Q CT T T 显然,质量不同热容不同,温度不同热容也不同。比热容单 位:J/(Kg), 摩尔热容单位:J/(K mol)
爱因斯坦温度E确定:
取上式与实验结果拟合,使得在比热显著改变的温度范围内, 理论曲线与试验数据相当好的符合,与选取合适的E值。 对于大多数固体材料, E在100 ~ 300 K的范围内。
材料物理性能

材料物理性能材料的物理性能是指材料在受力、受热、受光、受电、受磁等外界作用下所表现出的性质和特点。
它是材料的内在本质,直接影响着材料的使用性能和应用范围。
材料的物理性能包括了热学性能、光学性能、电学性能、磁学性能等多个方面。
首先,热学性能是材料的一个重要物理性能指标。
热学性能包括导热性、热膨胀性和热稳定性等。
导热性是指材料传导热量的能力,通常用热导率来表示。
热膨胀性是指材料在温度变化下的体积变化情况,通常用线膨胀系数来表示。
热稳定性是指材料在高温环境下的性能表现,包括了热变形温度、热老化等指标。
这些性能对于材料在高温环境下的应用具有重要意义。
其次,光学性能是材料的另一个重要物理性能。
光学性能包括透光性、反射率、折射率等指标。
透光性是指材料对光的透过程度,通常用透光率来表示。
反射率是指材料对光的反射程度,通常用反射率来表示。
折射率是指材料对光的折射程度,通常用折射率来表示。
这些性能对于材料在光学器件、光学仪器等领域的应用具有重要意义。
此外,电学性能是材料的另一个重要物理性能。
电学性能包括导电性、介电常数、电阻率等指标。
导电性是指材料导电的能力,通常用电导率来表示。
介电常数是指材料在电场中的极化能力,通常用介电常数来表示。
电阻率是指材料对电流的阻碍程度,通常用电阻率来表示。
这些性能对于材料在电子器件、电气设备等领域的应用具有重要意义。
最后,磁学性能是材料的另一个重要物理性能。
磁学性能包括磁导率、磁饱和磁化强度、矫顽力等指标。
磁导率是指材料对磁场的导磁能力,通常用磁导率来表示。
磁饱和磁化强度是指材料在外磁场作用下的最大磁化强度,通常用磁饱和磁化强度来表示。
矫顽力是指材料在外磁场作用下的抗磁化能力,通常用矫顽力来表示。
这些性能对于材料在磁性材料、电机、传感器等领域的应用具有重要意义。
综上所述,材料的物理性能是材料的重要特性,直接影响着材料的使用性能和应用范围。
不同类型的材料具有不同的物理性能,因此在材料选择和应用过程中,需要充分考虑材料的物理性能指标,以确保材料能够满足特定的使用要求。
《材料物理性能》课后习题答案

《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。
则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。
0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=AA l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量1 / 101-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。
解:Maxwell 模型可以较好地模拟应力松弛过程:V oigt 模型可以较好地模拟应变蠕变过程:以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。
高分子材料的质量标准及检验方法

高分子材料的质量标准及检验方法高分子材料是一类重要的材料,主要包括塑料、橡胶和纤维。
高分子材料的质量标准和检验方法对于保证产品质量的稳定性和可靠性至关重要。
本文将从材料物理性能、化学性能、耐候性能、力学性能、热性能和表面性能等方面介绍高分子材料的质量标准及检验方法。
一、材料物理性能的质量标准及检验方法高分子材料的物理性能包括密度、熔点、玻璃转化温度等。
对于高分子材料来说,密度是一个重要的物理性能,它直接影响材料的重量和成本。
检验方法一般采用浮力法或密度计进行测定。
二、材料化学性能的质量标准及检验方法高分子材料的化学性能包括与酸、碱和溶剂的耐受性、吸湿性以及电气性质等。
检验方法主要包括酸碱溶胀实验、吸湿实验和电性能测试。
三、材料耐候性能的质量标准及检验方法高分子材料的耐候性能是指材料在光、热、氧等外界环境作用下的稳定性能。
检验方法主要包括光照老化试验、热氧老化试验等。
四、材料力学性能的质量标准及检验方法高分子材料的力学性能包括拉伸强度、弯曲强度和冲击强度等。
检验方法主要包括拉伸试验机、弯曲测试仪和冲击试验机。
五、材料热性能的质量标准及检验方法高分子材料的热性能包括熔融温度、热稳定性和热导率等。
检验方法主要包括热分析仪和热导率测试仪。
六、材料表面性能的质量标准及检验方法高分子材料的表面性能包括光泽度、表面硬度和耐刮花性等。
检验方法主要包括光泽度计、硬度计和耐刮花试验机。
总之,高分子材料的质量标准及检验方法是保证材料质量的重要手段。
通过对材料的物理性能、化学性能、耐候性能、力学性能、热性能和表面性能的检测,可以有效评估材料的性能,从而保证产品的质量稳定性和可靠性。
在实际生产过程中,应根据产品的需求和使用环境来选择合适的标准和检验方法,确保高分子材料的优良性能。
七、投料和原材料的质量标准及检验方法除了对成品的质量进行检验外,对投料和原材料的质量也是非常重要的。
投料和原材料的质量直接影响着最终产品的质量稳定性和可靠性。
材料物理性能第二章 材料的热学性能

原因:忽略振子之间的频率差别 忽略振子之间的相互作用 忽略低频的作用
2.德拜比热模型
德拜考虑了晶体中原子的相互作用,把晶体中原 子振动看成各向同性连续介质的弹性波,振动能量 量子化并假定原子振动频率不同,在0~ωD之间连续 分布。 式中,
=德拜特征温度
=德拜比热函数,
其中,
由上式可以得到如下的结论: • (1)当温度较高时,即, 即杜隆—珀替定律。 • (2)当温度很低时,即
度θD时,
低于θD时,CV~T3成正比,不同材
料θD也不同。例如,石墨θD=1973K,BeO 的θD =1173K,
Al2O3的θD=923K。
不同温度下某些陶瓷材料的热容
上图是几种材料的热容-温度曲线。这些材料的θD 约为熔点(热力学温度)的0.2-0.5倍。对于绝大多数 氧化物、碳化物,热容都是从低温时的一个低的数值 增加到1273K左右的近似于25J/K·mol的数值。温度进 一步增加,热容基本上没有什么变化。图中几条曲线 不仅形状相似,而且数值也很接近。
, ,计算得
这表明当T→0时,CV与T3成正
比并趋于0,这就是德拜T3定律,
它与实验结果十分吻合,温度越低,近似越好。说明低温时固体温度升高 吸收能量主要用于原子振动加剧。但T趋于ok时,热容和实验不符。原因: 忽略晶体的各向异性,忽略高频对热容的贡献。
四、材料的热容
1、无机材料的热容:根据德拜热容理论,在高于德拜温
P
-T
S T
V
V
=T
S V
T
V T
P
=T
P T
V
V T
P=-T
《材料物理性能》习题解答

《材料物理性能》习题解答材料物理性能习题与解答吴其胜盐城工学院材料工程学院2007,3目录1 材料的力学性能 (2)2 材料的热学性能 (12)3 材料的光学性能 (17)4 材料的电导性能 (20)5 材料的磁学性能 (29)6 材料的功能转换性能 (37)1材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:根据题意可得下表由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-2一试样长40cm,宽10cm,厚1cm ,受到应力为1000N 拉力,其杨氏模量为3.5×109 N/m 2,能伸长多少厘米?解:拉伸前后圆杆相关参数表体积V/mm 3 直径d/mm 圆面积S/mm 2 拉伸前1227.2 2.5 4.909 拉伸后1227.22.44.524 1cm 10cm40cmLoad Load)(0114.0105.310101401000940000cm E A l F l El l ==??===?-σε0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =?==-σ名义应力0851.0100=-=?=A A l lε名义应变)(99510524.445006MPa A F T =?==-σ真应力1-3一材料在室温时的杨氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。
解:根据可知:1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。
证:1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
材料的热学性能

《材料物理性能》——材料的热性能
材料的热容:杜隆—珀替定律
根据经典理论,每一个自由度的平均能量是 kT
Hale Waihona Puke 其中1 2kT
是平均动能,1 2
kT
是平均势能;
k 是玻耳兹曼常
数。
若固体有N个原子,则总平均能能量, E 3NkT
则摩尔原子比热为:
CV
E T
V
3Nk
24.9J
/ K mol
《材料物理性能》
第三章 材料的热学性能
《材料物理性能》——材料的热性能
4.1 引言
热学性能:包括热容、热膨胀、热传导 等,是材料的重要物理性能之一。它在材料 科学的相变研究中有着重要的理论意义;在 工程技术包括高技术工程中也占有重要位置。
《材料物理性能》——材料的热性能
4.2 材料的热容
固体热容理论与固体的晶格振动有关。现代研究确认, 晶格振动是在弹性范围内原子的不断交替聚拢和分离。这 种运动具有波的形式,称之为晶格波(又称点阵波)。
已证明电子的平均能量为,
EF
EF0
1
2
12
kT EF0
2
则电子摩尔热容为,
,z为金属原子价数
《材料物理性能》——材料的热性能 以铜为例,计算其自由电子热容为,
《材料物理性能》——材料的热性能 温度很低时,则电子热容与原子热容之比为,
金属热容需要同时考虑晶格振动和自由电子二部分 对热容贡献,金属热容可写成,
➢ 差热分析(DTA)
差热分析是在程序控制温度下, 测量处于同一条件下样品与参比物 的温度差和温度关系的一种技术。
参比物:又称为标准试样,往往是 稳定的物质,其导热、比热容等物 理性质与试样相近,但在应用的试 验温度内不发生组织结构变化。 试样和参比物在相同的条件下加热 和冷却。试样和参比物之间的温差 通常用对接的两支热电偶进行测定。 热电偶的两个接点分别与盛装试样 和参比物坩锅底部接触,或者分别 直接插入试样和参比物中。测得的 温差电动势经放大后由x—Y记录仪 直接把试样和参比物之间的温差记录下来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节、材料的热容
热分析及应用-----DSC 示差扫描量热测定时记录的热谱图称之为DSC 曲线,其纵坐标是试样与参比物的功率差dH/dt, 也称作热流率,单位为毫瓦(mW),横坐标为温 度(T)或时间(t)。一般在DSC热谱图中,吸热
第一节、材料的热容
热分析及应用-----DTA
第一节、材料的热容
热电偶的原理
第一节、材料的热容
热分析及应用-----DSC
第一节、材料的热容
DSC与DTA测定原理的不同
•DSC是在控制温度变化情况下,以温度(或时间) 为横坐标,以样品与参比物间温差为零所需供给 的热量为纵坐标所得的扫描曲线。
热容与相变
第一节、材料的热容
热分析及应用
热分析是跟据物质的温度变化所引起的 性能变化(如热量、质量、尺寸、结构 等)来确定状态变化的方法。
第一节、材料的热容
热分析及应用
第一节、材料的热容
热分析及应用-----DTA
第一节、材料的热容
热分析及应用-----DTA 差热分析(DAT)是在程序控制下,测量待测 物质和参比物质之间温度差和温度关系的一种 技术。 当试样发生任何物理或化学变化时,所释放或 吸收的热量使试样温度高于或低于参比物质的 温度,从而相应地在差热曲线上可得到放热峰 或吸热谷。
(endothermic)效应用凸起的峰值来表征 (热焓增加),
放热(exothermic)效应用反向的峰值表征(热焓减少)。
第一节、材料的热容
热分析及应用-----DSC
第一节、材料的热容
热分析及应用-----DSC
添加了稀土 Er 的合金在 540 ℃左右 出现新吸热 峰,可见有 稳定性高相 生成。
第一节、材料的热容
热分析及应用
第一节、材料的热容
有序-无序转变
第二节、材料的热膨胀
第二节、材料的热膨胀
第二节、材料的热膨胀
第二节、材o L L
第三节、材料的热传导
第三节、材料的热传导
固体的热传导
热的本质
热的本质
热的本质
第一节、材料的热容
第一节、材料的热容
晶格热熔
第一节、材料的热容
电子热熔
第一节、材料的热容
磁热熔
第一节、材料的热容
金属的热容
第一节、材料的热容
金属的热容
第一节、材料的热容
合金的热容
第一节、材料的热容
热容与相变
第一节、材料的热容
热容与相变
第一节、材料的热容
材料的热性能
热的本质是一种能量
传递热能的三种形式
热辐射,物体由于具有温度而辐射电磁波的现象。
一般的热辐射主要靠波长较长的可见光和红外线传 播。由于电磁波的传播无需任何介质,所以热辐射 是在真空中唯一的传热方式。
热对流(thermal convection)是指热量通过流动介 质,由空间的一处传播到另一处的现象。 西伯利亚寒流 大西洋暖流