材料物理性能(第三章-材料的热学性能)
材料的热学性能

材料的热学性能
材料的热学性能是指材料在热学方面的性质和特性,包括热传导、热膨胀、比
热容等。
这些性能对于材料的应用和工程设计具有重要意义。
下面将分别介绍材料的热传导、热膨胀和比热容这三个方面的性能。
首先,热传导是材料的一个重要热学性能。
热传导是指材料内部热量传递的能力。
热传导系数是衡量材料热传导性能的一个重要参数。
通常情况下,金属材料的热传导性能较好,而绝缘材料的热传导性能较差。
在工程设计中,需要根据材料的热传导性能选择合适的材料,以确保热量能够有效传递和分布。
其次,热膨胀是材料的另一个重要热学性能。
热膨胀系数是衡量材料热膨胀性
能的参数。
当材料受热时,由于分子热运动增强,材料会膨胀。
不同材料的热膨胀性能各不相同,这对于工程设计和材料选择都具有重要影响。
例如,在建筑工程中,需要考虑材料的热膨胀性能,以避免因温度变化引起的结构变形和损坏。
最后,比热容是材料的又一个重要热学性能。
比热容是指单位质量材料升高1
摄氏度所需吸收或放出的热量。
不同材料的比热容各不相同,这也会对材料的热学性能产生影响。
在工程设计中,需要考虑材料的比热容,以确保在温度变化时能够有效地储存或释放热量。
综上所述,材料的热学性能对于材料的应用和工程设计具有重要意义。
热传导、热膨胀和比热容是材料的重要热学性能,它们直接影响着材料在温度变化时的性能表现。
因此,在工程设计和材料选择中,需要充分考虑材料的热学性能,以确保材料能够满足实际应用的需求。
材料的热学性--3

2.热膨胀与温度、热容关系
dL 1dr1tg
Ld T r0d Tr0d Tr0
2.热膨胀与温度、热容关系
热膨胀是固体材料受 热以后晶格振动加剧而 引起的容积膨胀,而晶 格振动的激化就是热运 动能量的增大。升高单 位温度时能量的增量也 就是热容的定义。所以 热膨胀系数显然与热容 密切相关并有着相似的 规律
总则:用照相方法直接记录出膨胀曲线。
将试样的膨胀通过一根传递杆引出,传递杆推 动一个带小镜的光三角架(或其它光杠杆机械) 转动,将试样的膨胀量转成光点的位移量,并 借助于照像或光电转换的主法观察和测量光点 的位移。 既可直接测得伸长量,又可用示差法测得标准 试样和待测试样的差。
2、直接观测法:
利用双筒望远镜、垂高计、比长仪等仪 器直接观测加热过程中试样两标距间的 长度,从而计算出膨胀系数。
比热容:
焓和热容是材料发生相变时的重要参量。
热分析
研究焓和温度的关系,可以确定热容的变 化和相变潜热。热分析法是建立在热测量 和温度测量基础上的现代测试方法。
热分析:程序控制温度,测量物质的物理 性质和温度关系的技术。
热分析方法的种类:
差热分析(DTA)探测过程中的热效应并确定热 效应的大小和发生温度。
材料的热学性能
任何材料在使用的过程中都会受到热影响 或产生热效应。一些场合要求材料具有特 殊的热学性能—低膨胀性能、好的隔热性 能、高的导热性能等。材料的热学性能在 材料的相变研究中具有重要意义。
材料的热学性能主要包括:
热容(thermal content) 热膨胀(thermal expansion) 热传导(heat conductivity)
《材料物理性能》课后习题答案

《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。
则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。
0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=AA l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量1 / 101-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。
解:Maxwell 模型可以较好地模拟应力松弛过程:V oigt 模型可以较好地模拟应变蠕变过程:以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。
第三章无机材料的热学性能PPT课件

Vi
WiV i
代入(4-28)式,整理得
iWiKi / i WiKi / i
.
(4-29)
35
1 V 2 (2 1 ) ( 4 K G 1 ( 1 3 K 3 2 K 2 4 ) [ G 4 1 V ) 2 2 G 1 ( ( K K 2 2 K K 1 1 ) ) ( 1 6 3 G K 1 1 2 K 2 1 2 G 4 G 1 K 1 K 2 ) 1 ]
几种陶瓷材料的. 热容-温度曲线
19
CaO+SiO2与CaSiO3的热容-温度曲线
.
20
虽然固体材料的摩尔热容不是结构敏感的,但是单位体积的热容却与气孔 率有关。多孔材料因为质量轻,所以热容小,因此提高轻质隔热砖的温度 所需要的热量远低于致密的耐火砖。
材料热容与温度关系应有实验来精确测定,经验公式:
对于圆柱体薄釉样品,有如下表达式:
釉1 E(T0T) (釉坯 )A A 坯
(4-33)
坯1 E(T0T) (坯釉)A A釉 坯 .
(4-34)
39
4.3 无机材料的热传导
4.3.1 固体材料热传导的宏观规律
当固体材料的一端的温度比另一端高时,热量就会从热端自动 传向冷端,这个现象称为热传导。
QdTSt
人们发现德拜理论在低温下还不能完全符合事实,显然是由于 晶体毕竟不是一个连续体。
实际上电子运动能量的变化对热容也会有贡献,只是在温度不 太低时,这部分的影响远小于晶格振动能量的影响,一般可以 忽略不计,只有在极低的温度下,才成为不可忽略的部分。
.
18
4.1.2.3 无机材料的热容 无机材料的热容与键的强度、材料的弹性模量、熔点等有关。 陶瓷材料的热容与材料结构的关系是不大的。 相变时由于热量的不连续变化,所以热容也出现了突变。
材料的热学性能

《材料物理性能》——材料的热性能
材料的热容:杜隆—珀替定律
根据经典理论,每一个自由度的平均能量是 kT
Hale Waihona Puke 其中1 2kT
是平均动能,1 2
kT
是平均势能;
k 是玻耳兹曼常
数。
若固体有N个原子,则总平均能能量, E 3NkT
则摩尔原子比热为:
CV
E T
V
3Nk
24.9J
/ K mol
《材料物理性能》
第三章 材料的热学性能
《材料物理性能》——材料的热性能
4.1 引言
热学性能:包括热容、热膨胀、热传导 等,是材料的重要物理性能之一。它在材料 科学的相变研究中有着重要的理论意义;在 工程技术包括高技术工程中也占有重要位置。
《材料物理性能》——材料的热性能
4.2 材料的热容
固体热容理论与固体的晶格振动有关。现代研究确认, 晶格振动是在弹性范围内原子的不断交替聚拢和分离。这 种运动具有波的形式,称之为晶格波(又称点阵波)。
已证明电子的平均能量为,
EF
EF0
1
2
12
kT EF0
2
则电子摩尔热容为,
,z为金属原子价数
《材料物理性能》——材料的热性能 以铜为例,计算其自由电子热容为,
《材料物理性能》——材料的热性能 温度很低时,则电子热容与原子热容之比为,
金属热容需要同时考虑晶格振动和自由电子二部分 对热容贡献,金属热容可写成,
➢ 差热分析(DTA)
差热分析是在程序控制温度下, 测量处于同一条件下样品与参比物 的温度差和温度关系的一种技术。
参比物:又称为标准试样,往往是 稳定的物质,其导热、比热容等物 理性质与试样相近,但在应用的试 验温度内不发生组织结构变化。 试样和参比物在相同的条件下加热 和冷却。试样和参比物之间的温差 通常用对接的两支热电偶进行测定。 热电偶的两个接点分别与盛装试样 和参比物坩锅底部接触,或者分别 直接插入试样和参比物中。测得的 温差电动势经放大后由x—Y记录仪 直接把试样和参比物之间的温差记录下来。
材料物理性能热学性能

无机材料物理性能
46
热应力实际是材料膨胀的应力,有: =E 所以, =(370103MPa) (8.58 10-3) =3170MPa
无机材料物理性能
47
抗热冲击断裂性能
第一热应力断裂抵抗因子R
f (1 ) R E
评估的基础:材料中的热应力不大于材料的强度 不足:将问题绝对化,没有考虑材料的性能、应力的 分布、产生的速率和时间等
无机材料物理性能
7
晶态固体热容的量子理论
是固体物理学的内容,在教材中有 在比较低的温度,Cv=AT3 Above Debye temperature, Cv=3R
无机材料物理性能
8
无机材料的热容
材料的热容和温度关系由实验决定,一 般采用如下经验公式(这在今后的工作及 研究中十分常见,如热力学计算):
Vt Vc (1 v t )
无机材料物理性能 10
实质:原子的热振动 无机材料的热导率小于金属材料和高分 子材料
无机材料物理性能
11
体膨胀系数和线膨胀系数可以根据基础的物理 和数学知识推导。如立方体是:v3l 当材料在使用中有明显温度变化,热膨胀系数 是材料非常重要的性能,热应力是由于热膨胀 系数不同
无机材料物理性能
16
陶瓷制品表面的釉的热膨胀系数小于陶 瓷胚体的热膨胀系数 合适的热膨胀系数是材料制备和性能中 重要的因素
无机材料物理性能
17
例题
一根1m长的Al2O3 炉管从室温 (25oC)加热 到1000oC时,假使在此过程中,材料的热 膨胀系数为8.810-6 mm/(mm•oC) ,计算 管的膨胀量是多少?
第三章 无机材料热学性能

热容在高于德拜 温度后,趋于一 个常熟(1273k)
3. 与结构的关系
1)结构紧密的晶体,膨胀系数较大。无定形的 玻璃,则往往有较小的膨胀系数。
2)温度变化时引发晶型转换,也会引起体积变 化。当温度从室温升高到1000℃以上时,氧化 锆晶体从室温的单斜晶型转变为四方晶型,发生 了4%的体积收缩。
2.不稳定传热规律: T 2T t Cp x2
物质种类
纯金属 金属合金 液态金属 非金属固体 非金属液体 绝热材料 气体
热导率(W/(m·K) 100~1400 50~500 30~300 0.05~50 0.5~5 0.05~1 0.005~0.5
固体材料热传导机理
气体热传导:质点间的直接碰撞来传递热能。 金属热传导:大量的自由电子运动来实现。晶格
E Cv ( T )V 3R 25J /(K mol)
热容的量子理论
要点:固体晶格振动的能量是量子化的,角频率为
ωi的谐振子的振动能量Ei为(略去零点能):
Ei n i
利用玻尔兹曼统计理论,得到温度T时平均能量为:
Ei
i
ei kT 1
则具有N个原子且每个原子有3个自由度的1摩尔固体 的平均能量为:
E
3N i 1
i
ei kT 1
只要知道ω,就可求出Cv。
爱因斯坦模型
假设晶体的原子振动相互独立 3N个振动模频率 一样, 1 2 3N E
ωE为爱因斯坦频率,
E
E
kB
为爱因斯坦温度
比热容简化为:
CV
3NkB
(
E T
)2
exp(E / T ) exp(E / T 1)2
讨论上式:T E , CV 3NK
材料的热性能

材料的热性能
材料的热性能是指材料在热力学条件下的热传导、热膨胀、比热容等性能表现。
热性能的好坏直接影响着材料在实际工程中的应用效果,因此对于材料的热性能进行深入的研究和分析具有重要意义。
首先,热传导是材料热性能的重要指标之一。
热传导是指材料内部传热的能力,通常用热导率来表示。
热导率越大,材料的热传导能力越强。
在实际工程中,需要考虑材料的热传导性能,以确保材料在高温或低温环境下的稳定性和安全性。
其次,材料的热膨胀性能也是热性能的重要指标之一。
材料在受热时会发生热
膨胀,而热膨胀系数则是衡量材料热膨胀性能的重要参数。
热膨胀系数大的材料在受热时容易发生变形或开裂,而热膨胀系数小的材料则具有较好的热膨胀性能,适用于高温环境下的工程应用。
另外,比热容也是反映材料热性能的重要参数之一。
比热容是指单位质量材料
升高1摄氏度所需的热量,通常用来描述材料的热惯性。
比热容大的材料在受热时能够吸收更多的热量,具有较好的热稳定性,适用于需要长时间保持稳定温度的工程场合。
综上所述,材料的热性能是影响材料工程应用的重要因素。
在材料设计和选材
过程中,需要充分考虑材料的热传导、热膨胀、比热容等性能,以确保材料在实际工程中具有良好的热稳定性和安全性。
因此,对材料的热性能进行深入的研究和分析,对于提高材料工程应用的效果具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、材料的热容
根据德拜热容理论,在高于德拜温度θD时,
低于θD时,CV~T3成正比,不同材料θD也不同。例如,石
墨θD=1973K,BeO 的θD =1173K,Al2O3的θD=923K。
图3.3 是几种材料的热容 - 温度曲线。这些材料的 θD
约为熔点(热力学温度)的0.2-0.5倍。对于绝大多数氧 化物、碳化物,热容都是从低温时的一个低的数值增 加到 1273K 左右的近似于 25J/K· mol 的数值。温度进一 步增加,热容基本上没有什么变化。图中几条曲线不 仅形状相似,而且数值也很接近。 无机材料的热容与材料结构的关系是不大的,如图 3.4所示。CaO和SiO21∶1的混合物与CaSiO3的热容-温
式中第一项为常数,第二项为零,则
式中,
则,
;
;如果只考虑上式的前两项,
即点阵能曲线是抛物线。原子间的引力为: 式中β是微观弹性系数,为线性简谐振动,平衡位置仍在
r0处,上式只适用于热容CV的分析。
但对于热膨胀问题,如果还只考虑前两项,就会 得出所有固体物三次抛物线,即固体的热振动 是非线性振动。用波尔兹曼统计法,可算出平均位移
Q S t ,它只适用于稳定 傅里叶定律: dx 传热的条件,即 是常数。 dT
式中,λ=导热系数,它的物理意义是指单位温度 梯度下,单位时间内通过单位垂直面积的热量,单位为 J/(m2· S· k)。 =x方向上的温度梯度。
当
<0时 ΔQ>0,热量沿 x 轴正方向传递。
式中,
n——折射率,
——斯蒂芬—波尔兹曼常数,
——光速。
由于辐射传热中,容积热容相当于提高辐射温
度所需能量
同时
则: =描述介质
式中,lr=辐射线光子的平均自由程,
中这种辐射能的传递能力,取决于光子的平均自由
程lr。对于无机材料只有在1500℃以上时,光子传导
才是主要的。
三、影响热导率的因素 由于无机材料中热传导机构和过程是很复杂的,下面
=爱因
斯坦温度(einstein temperature)。 当T很高时, ,则:
则
即在高温时,爱因斯坦的简化模型与杜隆—珀替 公式相一致。
但在低温时,即 ,
即说明CV值按指数规律随温度T而变化,而不是 从实验中得出的按T3变化的规律。这样在低温区域, 爱斯斯坦模型与实验值相差较大,这是因为原子振动 间有耦合作用的结果。
>0时,ΔQ<0,热量沿 x 轴负方向传递。 对于非稳定传热过程:
式中: =密度(density), =恒压热容。
二、固体材料热传导的微观机理(micro-mechanism) 气体导热——质点间直接碰撞;金属导热——自由 电子间碰撞;固体导热——晶格振动(格波)=声子碰 撞,并且格波分为声频支和光频支两类。
1. 声子和声子传导
根据量子理论、一个谐振子的能量是不连续的,能量 的变化不能取任意值,而只能是最小能量单元——量子 (quantum)的整数倍。一个量子所具有的能量为hv。晶 格振动的能量同样是量子化的。声频支格波(acoustic frequency)—弹性波—声波(acoustic wave)—声子。把 声频波的量子称为声子,其具有的能量为 hv=hω ,固体热 传导公式:
=普朗克常数, = 园频率。
根据麦克斯威—波尔兹曼分配定律可推导出, 在温度为T时,一个振子的平均能量为:
将上式中多项式展开各取前几项,化简得:
在高温时,
所以
即每个振子单向振动的总能量与经典理论一致。 由于1mol固体中有N个原子,每个原子的热振动自 由度是3,所以1mol固体的振动可看做3N个振子的 合成运动,则1mol固体的平均能量为:
根据经典理论,1mol 固体中有
个原子,总能量为
= 6.023×1023 / mol =阿佛加德罗常数, = R/N = 1.381×10-23 J/K = 玻尔茨曼常数, = 8.314 J/ (k· mol),T=热力学温度(K)。
按热容定义:
由上式可知,热容是与温度T无关的常数 (constant),这就是杜隆一珀替定律。 对于双原子的固体化合物,1mol中的原子数为2N,故 摩尔热容为
式中:V0=摩尔容积, (expansion coefficient), (compression coefficient)。
=体膨胀系数 =压缩系数
对于固体材料CP与CV差异很小,见图3.2。
一、晶态固体热容的经验定律(experience law) 和经典理论(classical theory) 一是元素的热容定律——杜隆一珀替定律: 恒压下元素的原子热容为
(average displacement)。
由此得热膨胀系数:
式中,
、β、 均为常数,似乎α也是常数。但若再多
考虑,δ4,δ5, …时,则可得到α~T变化规律。
三、热膨胀和其他性能关系
1.热膨胀和结合能、熔点的关系 质点间结合力愈强,热膨胀系数愈小,见表3.2。
表3.2
2.热膨胀与温度、热容关系
只定性讨论(qualitative analysis)热导率的主要因素:
1.温度(temperature)
a. 在温度不太高的范围内,主要是声子传导
。
b. 热容C在低温下与T3成正比,所以λ也近似与T3成正
比。
c. 声子平均自由程 l 随温度升 高而降低。实验表明,低温下l 值 的上限为晶粒的线度,高温下l 值
的下限为晶格间距。
d. 例如Al2O3在低温40k处,λ值
出现极大值,见图3.9。 2 . 显 微 结 构 的 影 响 ( microstructure) (1)结晶构造的影响
声子传导与晶格振动的非谐 性有关,晶体结构愈复杂,晶格 振动的非谐性程度愈大,格波受 到的散射愈大,因此,声子平均 自由程较小,热导率较低,见图 3.10。 (2)各向异性晶体的热导率 非等轴晶系的晶体热导率呈 各向异性。温度升高,晶体结构 总是趋于更好的对称。因此,不 同方向的λ差异变小。
度曲线基本重合。
固体材料CP与温度T 的关系应由实验精确测 定,大多数材料经验公 式:
式中CP的单位为4.18 J/
(k· mol),见表3.1。
表3.1 某些无机材料的热容-温度关系经验方程式系数
第二节 材料的热膨胀
一、热膨胀系数(Thermal expansion coefficient) 物体的体积或长度随温度升高而增大的现象叫做 热膨胀。
另外,
(动能kinetic energy)i=热量 (quantity of heat)
即:各质点热运动时动能总和就是该物 体的热量。弹性波(格波):包括振 动频率低的声频支和振动频率高的光 频支。
声频支可以看成是相邻原子具有相同的 振动方向。由于两种原子的质量不同,振幅 也不同,所以两原子间会有相对运动。
对于三原子的固态化合物的摩尔热容 :
其余依此类推。
杜隆—珀替定律在高温时与实验结果很吻合。 但在低温时,CV 的实验值并不是一个恒量, 下面将要作详细讨论。
二、晶态固体热容的量子理论(quantum theory)
普朗克提出振子能量的量子化理论。质点的能量 都是以 hv 为最小单位.
式中,
=普朗克常数,
2.德拜比热模型
德拜考虑了晶体中原子的相互作用,把晶 体近似为连续介质(continuous medium)。
式中, =德拜特征温度
=德拜比热函数,
其中,
由上式可以得到如下的结论:
• (1)当温度较高时,即,
即杜隆—珀替定律。
,
• (2)当温度很低时,即
,计算得
这表明当T→0时,CV与T3成正比并趋于0,这就是 德拜T3定律,它与实验结果十分吻合,温度越低,近 似越好。
式中,αl=线膨胀系数,即温度升高1K时,物体的 相对伸长。 物体在温度 T 时的长度lT为:
无机材料的
,αl通常随T升高而加大。
同理,物体体积随温度的增加可表示为:
式中,αV体膨胀系数,相当于温度升高1k时物体体积 相对增长值。 对于物体是立方体(cube) 由于αl 值很小,可略
以上的高次项,则:
关系,为研究新材料、探索新工艺打下理论基础。
热性能的物理本质:晶格热振动(lattice heat vibration),根据牛顿第二定律,简谐振动方程 (simple harmonic vibration equation)为:
式中: = 微观弹性模量( micro-elastic- modulus ), = 质点质量(mass), = 质点在x方向上位移(displacement)。
与上式比较,就有以下近似关系: 对于各向异性的晶体(crystal),各晶轴方向的线膨胀 系数不同,假如分别为αa、αb、αc,则 同样忽略α二次方以上项:
所以 一般膨胀系数的精确表达式:
一般耐火材料线膨胀系数,常指在20~1000℃范围内 的αl平均值。一般αl愈小,材料热稳定性愈好。例如Si3N4 的αl=2.7×10-6/K。
二、固体材料热膨胀机理(heat expansion mechanism) 所谓线性振动是指质点间的作用力与距离成正比, 即微观弹性模量β为常数。非线性振动是指作用力并不简 单地与位移成正比,热振动不是左右对称的线性振动而是 非线性振动。见图3.5、图3.6。 在双原子模型中,如左原子视为不动,则右原子所具 有的点阵能 为最小值,如有伸长量 时,点阵能变 为 。 将此通式展开
见图3.7。温度T低,tgθ小,则α
小;反之,温度T愈高,α愈大。热膨胀是固体材料受热以
后晶格振动加剧而引起的容积膨胀,而晶格振动的激化就
是热运动能量的增大。升高单位温度时能量的增量也就是 热容的定义。所以热膨胀系数显然与热容密切相关并有着 相似的规律。见图3.8。