炉渣性质

炉渣性质
炉渣性质

1)掌握熔渣的以下化学特性

将炉渣中的氧化物分为三类:

(1)酸性氧化物:2SiO 、25P O 、25V O 、23Fe O 等;

(2)碱性氧化物:CaO 、MgO 、FeO 、MnO 、23V O 等;

(3)两性氧化物:23Al O 、2TiO 、23Cr O 等。

碱度的三种定义

(1)过剩碱 根据分子理论,假设炉渣中有22RO SiO ?,254RO P O ?,23RO Fe O ?,233RO Al O ?等复杂化合物存在。炉渣中碱性氧化物的浓度就要降低。实际的碱性氧化物数

B n 叫超额碱或过剩碱,其中CaO CaO MgO FeO MnO n n n n n =+++

+∑

(2)碱度223%%%CaO SiO Al O +,223%%%%CaO MgO SiO Al O ++,225

%%%CaO SiO P O +

(3)光学碱度

i N -氧化物i 中阳离子的当量分数。具体计算i i i i i m x N m x =

∑ ,其中 i m -氧化物i 中的氧原子数;i x -氧化物i 在熔渣中的摩尔分数。

熔渣的氧化还原能力 定义%FeO ∑表示渣的氧化性。认为渣中只有FeO 提供的氧才能进入钢液,对钢液中的元素进行氧化。渣中23Fe O 和FeO 的量是不断变化的,所以讨论渣的氧化性,有必要将23Fe O 也折算成FeO ,就有两种算法:

(1)全氧法

23%% 1.35%FeO FeO Fe O =+∑

(2)全铁法 23

%%0.9%FeO FeO Fe O =+∑ 注:决定炉渣向钢液传氧的反应是

[]%FeO

O K a ?=或

[]0%FeO

O L a = 实验测得:6320lg 2.734K

T ?=-+ T =1873K ,K ?或00.23L =。 令[]0%FeO

O L a '=-代表实际熔渣中的值。 当0

0L L '>时,0000ln ln ln 0L G RT L RT L RT L ''?=-+=>,反应逆向进行,钢液中的氧向熔渣传递;

当0

0L L '<时,00ln 0L G RT L '?=<,反应正向进行,熔渣中的氧向钢液传递。

炉渣冶金性能测试实验报告

炉渣冶金性能测试实验报告 院系: 冶金与资源学院 班级:冶105 指导老师: 组长: 组员: 实验地点: 安徽工业大学 炉渣冶金性能测试 文献综述 1目前连铸保护渣的状况 1. 1国外状况 鉴于连铸保护渣技术在现代连铸技术中的重要地位, 工业发达国家将连铸保护渣技术列入高科技范畴, 各研究所、高等院校和企

业都投入大量人力、物力进行开发研究。欧洲煤钢联在20 世纪80 年代末、90 年代初投入大量资金对保护渣原材料、基本组成及特性、在连铸过程中的行为作用和连铸保护渣工业化生产等17 个项目进行了系统研究, 取得了很好效果, 促进了连铸技术的发展;美国材料协会从1996 年开始研究和建立连铸保护渣生产和使用技术标准, 大大促进了保护渣技术的发展; 日本和韩国除了进行大量保护渣基础理论研究外, 还不断开发连铸保护渣生产的在线检测和控制技术。这些研究和开发一方面形成了连铸保护渣的产业( 如英国Foseco、德国Metal-lurgica 和Stollberg、韩国Stollburg、日本板田和品川等一批生产工艺先进、开发能力较强的连铸保护渣专业化生产厂) , 另一方面大大促进了保护渣理论的深化和提高。总之, 国外主要进行了三方面的工作: ( 1) 进行保护渣基础理论研究, 其目的是开发出适合各种连铸品种和工艺要求的保护渣; ( 2) 采用了计算机模拟技术及专家系统, 进行结晶器内保护渣熔化特性模拟及保护渣成分设计; ( 3) 建造先进的保护渣生产厂, 生产性能稳定和高质量的保护渣, 并使之商品化, 我国各钢厂进口的保护渣多数从这些厂购进。目前工业发达国家已经做到连铸保护渣系列化、商品化。 1. 2国内状况 我国连铸保护渣自1972 年开始研制, 至今已有30多年的历史, 已经具有研究开发保护渣的能力, 并建成了一批保护渣生产厂。除

高炉炉渣处理方法

编号:SM-ZD-70391 高炉炉渣处理方法 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

高炉炉渣处理方法 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1. 概述: 高炉熔渣处理方法主要分为出干渣和水淬渣,由于干渣处理环境污染较为严重,且资源利用率低,现在已很少使用,一般只在事故处理时,设置干渣坑或渣罐出渣;目前,高炉熔渣处理主要采用水淬渣工艺,水渣可以作为水泥原料,或用于制造渣砖、轻质混凝土砌块,使资源得到合理的利用。 1.1水淬渣的按其形成过程,可以分为两大类: A:高炉熔渣直接水淬工艺。脱水方法主要有渣池法或底滤法、因巴法、拉萨法及笼法等。其主要工艺过程是高炉熔渣渣流被高压水水淬,然后进行渣水输送和渣水分离。 B :高炉熔渣先机械破碎后水淬工艺。主要代表为图拉法和HK法等。其主要工艺过程是高炉熔渣流首先被机械破碎,在抛射到空中时进行水淬粒化,然后进行渣水分离和输送。 1.2 按水渣的脱水方式可分为:

生活垃圾焚烧炉渣性质及处置技术

1、生活垃圾焚烧炉渣性质 (1)炉渣的物理性能 生活垃圾焚烧炉渣是生活垃圾焚烧的副产物,包括炉排上残留的焚烧残渣和从炉排间掉落的颗粒物,呈黑褐色,原炉渣有刺激性气味,经过处理后气味减弱。未经处理的焚烧炉渣主要由灰渣、碎玻璃和砖块、瓷碎片、木屑,以及少量碎布条、塑料、金属制品等物质组成。碎玻璃、瓷碎片等主要来自于工程中的建筑垃圾,但只要其粒径大小不超过5mm,就不会影响炉渣多孔砖的整体性能。金属制品主要来自于人们的生活用品,如易拉罐、钉子、铁罐等,并且其中的单质铁会氧化,产生锈蚀,影响砖的性能。布条、塑料等物质是由于生活垃圾在焚烧过程中燃烧不够充分而未能去除。 炉渣中还含有极少量的有色金属,在公路基层应用过程中可能会由于和碱反应产生H2而破坏路面,大颗粒金属可能会损坏施工设备,对施工的危害较大,应尽可能地除去;炉渣中的可燃物含量较低,5mm以上颗粒中的可燃物含量在0.06~1.34%。可燃物的存在不利于资源化利用,如影响应用时路面的长期稳定性,影响无机结合料与炉渣的结合,而降低材料强度。因此,该将这些物质尽量去除。经过预处理的炉渣只含有少量的碎玻璃、砖块和瓷碎片,布条、塑料等有机物几乎全部去除。由于炉渣主要物理组分质地坚硬,因而作为集料使用时能保证一定的强度。 (2)炉渣的含水率、热灼减率、堆积密度、吸水率 由于水淬降温排渣作用,炉渣的含水率约为12.0%~18.9%,随着堆积时间、天气等因素上下波动;炉渣热灼减率反映垃圾的焚烧效果,一般较低,为

1.57%~3.16%;炉渣堆积密度在1150kg/m3~1350kg/m3之间,吸水率为37%左右。说明炉渣是一种多孔的轻质材料,强度不高。 (3)炉渣的粒径分布 炉渣粒径分布较均匀,主要集中在2~50mm的围(占60.8%~7.68%),小于0.074mm的颗粒含量在0.06%~1.36%。基本符合道路建材中集料的级配要求。 (4)炉渣化学成分 预处理后的炉渣主要化学成分及含量为:硅35%~50%、钙7%~15%、铝3.5%~7.0%、铁3.0%~6.0%、钠2.5%~8.0%、钾1.3%~3.0%、磷0.7%~3.0%,不同地点、不同批次的炉渣主要化学组成接近,由此可认为预处理后的炉渣的化学成分相对比较稳定。 (5)炉渣矿物组成 对预处理后的炉渣取样进行X衍射,X衍射结果显示,炉渣的主要矿物为石英(Quartz)、钙长石(Anorthite)、斜方沸石(Gismondine),其他的矿物峰比较弱,含量很少。各矿物衍射峰均比较尖锐,说明结晶程度较高,且石英、钙长石、斜方沸石的水化活性都不高,据此初步判断炉渣的活性不高。炉渣表面很粗糙,呈不规则角状,孔隙率较高,孔隙直径也比较大。炉渣部分位置晶体生长良好,要为棒状、针状和粒状晶体,但是发育不是很均匀,可能是因为焚烧过程中温度和空气分布不均,停留时间不同以及炉渣组分复杂的缘故。 (6)炉渣的轻漂物含量

造铜锍过程中锍与渣的分离(通用版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 造铜锍过程中锍与渣的分离(通 用版)

造铜锍过程中锍与渣的分离(通用版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 炉渣和铜锍相的分离 1)在造锍熔炼中,炉渣的主要成分是FeO和SiO2,铜锍相Cu2S 和FeS。所以当炉渣和铜锍共存时,最重要的关系是FeS―FeO―SiO2和Cu2S―FeS―FeO。根据研究,无SiO2存在时,FeO和FeS完全互溶,但当加入SiO2时,均相溶液出现分层;SiO2足量时,两相几乎完全分离。 另外,当渣中存在CaO或Al2O3时,将对FeS―FeO―SiO2系的互溶性质产生很大影响,它们的存在均降低FeS在渣中的溶解度。所以,高CaO和高Al2O3炉渣,炉渣和锍相的分离特性将进一步加强。 2)这就解释了在铜冶炼厂熔炼炉出现的排放过程中冰铜、炉渣明显分离,冰铜和炉渣流动性级差大的情况。针对这一情况,为保证炉渣的正常排放,一是降低操作熔池面;二是在铜溜槽可承受范围内尽可能提高炉渣温度;三是通过配比计算和精良的操作,将炉渣组分严格控制在低熔点区域,提高炉渣流动性。另外,适当增加搅动,也将

高炉炉渣资源化利用研究与现状

高炉炉渣资源化利用研究与现状 摘要:钢铁生产行业在高速发展的同时,高炉炼铁工艺产生的高炉渣不断累积。由于缺乏有效的资源化利用方式,高炉矿渣就地堆积,占用了大量土地资源,并对周边的土壤及水体环境造成了污染。有效利用高炉矿渣等二次资源,减少高炉矿渣对环境的污染,达到高炉矿渣的减量化、无害化、资源化处理,并进一步提高高炉矿渣基产品的附加值,是我国钢铁行业可持续发展的有力保障,对于建立环境友好型、资源节约型社会具有促进意义。 关键词:高炉矿渣;制备方法;陶瓷纤维;资源化 高炉矿渣是在高炉炼铁过程中,铁矿石中含有的SiO},A1}03等杂质与熔剂中的CaO,Mg0等反应生成硅酸盐熔融物,经水淬处理得到含有较多孔隙且无定形、不规则的副产物[y0作为我国国民经济一大支柱的钢铁生产行业,在全行业高速发展的同时,其主要的冶炼工艺—高炉炼铁工艺产生的高炉矿渣不断累积。由于缺乏有效的资源化利用方式,高炉矿渣就地堆积,占用了大量的土地资源,并对周边的土壤及水体环境造成了污染。就普通的炼铁工艺而言,每冶炼It铁矿石会产生0.5一0.9t的矿渣,如不能合理地处理大储存量的高炉矿渣,不仅会造成环境污染,浪费大量能源,且会给我国经济建设带来巨大的压力,不利于钢铁行业的可持续发展。近年来,国内的高炉矿渣主要应用于建筑材料和混凝土掺合料,其附加值较低,大量高炉矿渣等二次资源被浪费。因此,如何对高炉矿渣更好的资源化利用,是当今钢铁行业面临的又一主要问题[0据不完全统计,我国矿业固体废弃物累计超过70亿t,占地6万多h时。高效的开发和利用工业二次资源,变废为宝、化害为利,实现工业的可持续发展显得尤为重要[[3]

冰铜主要性质都有哪些呢

冰铜主要性质都有哪些呢? 冰铜主要性质都有哪些呢? 熔点:940~1130oC,随冰铜品位变化 比重:4.0~5.2,远高于炉渣比重(3~3.7); 粘度:η=2.4×10-3Pa·s,比炉渣粘度低很多(0.5~2Pa·s) 表面张力:与铁橄榄石(2FeO·SiO2)熔体间的界面张力约为20~60N/m,其值很小,由此可判断冰铜容易悬浮在熔渣中。 冰铜的主要成分Cu2S和FeS都是贵金属的强有力的捕捉剂。 冰铜品位是生产中的一个重要问题。太低会使后续吹炼时间拉长、费用增加;太高则使炉渣中的含铜量增加,产生浪费。 铜在渣和冰铜中的平衡浓度遵循分配定律铜价 对铜熔炼,K=0.01。

最常采用的冰铜品位为30~40%。不过,为了减少熔炼能耗,冰铜品位有越来越高的趋势,但一般不宜超过70%。至于炉渣中的铜,可以回收。 生冰铜 含铜率 在20%~50%之间 含硫率 在23%~27%之间. 处理冰铜特点 不需要燃料 冰铜主要由硫化铜和硫化铁互相溶解形成的,它的含铜率在20%~50%之间,含硫率在23%~27%之间. 冰铜较重,沉于下层,可以从高炉的出料口流出来,废矿渣则从上部排出。 冰铜的形成无法避免,不过可以再利用: 处理冰铜,可采用斜吹卧式转炉,特点是不需要燃料,依靠铜水中铁和硫的氧化反应放出热量提供全部热,而水排带动风箱不停的吹入足够的空气。冰铜经过这种吹炼,能够生成含铜品位高于98%的粗铜,熔化的铜汁倒入模具,就成了黄澄澄、金灿灿的铜锭。这种新式斜吹卧式转炉热容量大、作业周期内温度变化小、生产率高;采用的新型炉衬寿命长,节约维护时间;采用独特的新型支承装置,有效降低炉身高度;炉体封头采用球形封头,

高Al2O3炉渣对高炉生产的影响1

高Al2O3炉渣对高炉生产的影响 黄溆 摘要:高炉炉渣中Al2O3含量偏高易造成炉渣粘度增高,流动性变差,引起炉墙粘结与炉缸堆积,直接影响高炉炉况。对此应制定科学的操作方法与操作方针,适当提高炉温水平,降低炉渣碱度,使炉渣保持良好的流动性与稳定性,下部调剂应提高鼓风动能,进一步活跃炉缸,同时要加强入炉原料管理,减少入炉粉末,采用强度和高温冶金性能好的焦炭,才能保证炉况顺行,取得良好的冶炼指标。关键词:高炉;Al2O3;流动性;碱度;炉温 1 引言 云南天高镍业有限公司高炉炉渣中Al2O3含量平均在17%左右,最高时可达到21%。炉渣Al2O3含量高时炉渣的流动性和稳定性都将变差,易引起炉墙粘结与炉缸堆积,破坏高炉冶炼的正常进程,给高炉操作带来一系列的问题。引起炉况不顺,影响产量与质量。因此,Al2O3含量高的炉渣严重制约了高炉的正常生产。 2Al2O3含量对炉渣性能的影响 Al2O3属于中性,但在高炉冶炼中可认为是酸性物质,其熔点是2050℃,在高炉冶炼中与SiO2混合后仍产生高熔点(1545℃)的物质,使渣铁流动性差,分离困难。当加入碱性物质如CaO或MgO后,尽管CaO的熔点是2570℃,MgO 熔点是2800℃,但与SiO2和Al2O3结合后生成低熔点(低于1400℃)的物质,在高炉内熔化,形成流动性良好的炉渣,使渣铁分离,保证高炉正常生产。 2.1 Al2O3小于15%时能够改善炉渣的稳定性 当Al2O3含量在5%~20%、MgO含量小于20%时,在CaO/SiO2约为1.0的区域里熔化温度较低;当Al2O3含量低时,随着碱度的增加,炉渣熔化温度增加较快;当Al2O3含量大于10%后,随碱度增加,熔化温度增高减缓,熔化温度区

不同渣型的铜熔炼中冰铜品位对伴生元素分配行为的影响

研究简报 不同渣型的铜熔炼中冰铜品位对 伴生元素分配行为的影响 谭鹏夫 张传福 (中南工业大学有色冶金系 长沙410083) 摘 要 利用已开发的多相多成份系统平衡计算模型,对铜熔炼过程进行了模拟,研究了 冰铜品位对伴生元素Ni 、Co 、Sn 、Pb 、Zn 、As 、Sb 和Bi 在造硅酸铁炉渣和铁酸钙炉渣的铜熔 炼体系中分配行为的影响.结果表明:在生产高品位冰铜时,As 、Sb 和Bi 的脱除率较低,铁 酸钙炉渣对脱除有害杂质As 和Sb 比硅酸铁炉渣有效得多,N i 、Co 、Pb 和Zn 则大量进入这 两种渣中,得以脱除. 关键词 铜熔炼,分配率,冰铜品位,平衡计算模型 中图分类号 TF811,O242 1 前 言 铜冶炼的关键技术在于控制伴生元素的行为,因为优质铜是由伴生元素的有效控制和脱除产生的.由于节能和改善环境的需要,硫化矿熔炼已逐步采用富氧和生产高品位冰铜等强化熔炼措施,因此极大改变了硫化矿中伴生元素在熔炼和吹炼过程中的分配行为.同时,随着矿石品位的下降及其成份的复杂化,矿石中的杂质元素对环境的污染及在产品中的富集亦日趋严峻,从而导致冶炼过程操作困难和产品质量下降. Itagaki 和Yazawa [1]在热力学数据的基础上评价了第VA 族元素As 、Sb 和Bi 在造硅酸铁炉 渣的铜熔炼中的分配行为.Chaubal [2]和Seo 等[3]以传质方程为基础,开发了As 、Sb 和Bi 在铜闪 速熔炼过程中的挥发模型.但他们均未考虑Ni 、Co 、Sn 、Pb 和Zn 在铜冶炼中的分配,也未讨论伴生元素在造铁酸钙炉渣的铜冶炼中的行为.本研究利用已开发的多相多组份系统平衡计算模型,对铜熔炼过程进行了模拟,研究了冰铜品位对伴生元素Ni 、Co 、Sb 、Pb 和Zn 分配行为的影响.2 伴生元素在铜冶炼过程中分配行为的数学模型 在铜火法冶炼的提铜期,冶炼过程的物理化学性质基本是不变的.伴生元素的行为主要受金属铜相的存在所控制.而在提取冰铜时,伴生元素的行为是过程的另一重要操作参数 冰铜 国家经贸委资助项目 收稿日期: 1997-04-14,修回日期: 1997-05-15谭鹏夫:男,27岁,博士后,有色冶金专业 第19卷第2期 1998年 5月化 工 冶 金Engineering Chem istry &Metallurgy Vol 19No 2 M ay 1998

#炉渣利用技术 炉渣利用工艺

炉渣利用技术炉渣利用工艺 1 用于流化床锅炉的链带式排渣控制冷却器 2 高炉水碎炉渣或其粒度调整物的防凝结剂及防凝结方法 3 高炉铁水渣铁分离装置 4 烟道灰、炉渣活化剂 5 高效利用工业炉熔渣显热的新一步法矿棉技术 6 一种电炉炼钢吹氧喷粉氧燃助熔及造泡沫渣工艺 7 钢包炉用脱氧造渣剂 8 用气、水反冲高炉水渣滤层的方法 9 旋风炉炉渣生产岩棉热衔接工艺及所采用的补热炉 10 用于液体炉渣脱铬和/或脱镍的方法 11 一种电渣炉控制系统 12 用锅炉废渣灰制水硬性凝固剂方法 13 粉煤灰炉渣砼小型空心砌块 14 炼钢电弧炉泡沫渣控制方法 15 危险废弃物及医疗垃圾处理用的溶渣焚烧炉及工艺方法 16 用于氧化处理炼钢厂炉渣的方法及所得到的LD渣 17 一种控制转炉炉底上涨溅渣的方法 18 一种用镍熔炼炉渣和钢渣的混合渣炼铁的方法 19 型煤炉正块缓漏卸双向分离排渣器 20 转炉出钢用挡渣锥 21 一种冶金炉风口、渣口表面强化的方法 22 用含钛高炉渣制备光催化材料的方法 23 一种以炉渣为基料的合成材料及其生产工艺 24 轻质隔声炉渣混凝土建筑板材 25 炉渣冷却机 26 利用沸腾炉渣制造泡沫型隔热防水保温材料 27 利用电厂炉渣生产水泥的方法 28 粒化高炉矿渣水泥砂浆 29 防御液态排渣炉析铁熔蚀的金属陶瓷涂层 30 转炉溅渣护炉方法 31 造气炉渣运用煅烧石灰的方法 32 一种石灰质碳化煤球(棒)造气炉渣的新用途 33 直流电弧电渣加热钢包炉及其控制方法 34 一种利用石灰质碳化煤球造气炉渣生产的路面砖及其方法 35 用于沸腾炉的层燃式灰渣燃烬冷却床 36 用浓盐酸高温高压处理锅炉灰渣浸取其中三氧化二铝的综合利用方法 37 稀土精矿渣电弧炉冶炼稀土中间合金 38 稀土精矿球团(或块)矿热炉制备稀土精矿渣和含铌磷铁 39 低温干馏、炉渣再燃、刮板传动式锅炉 40 用喷粉方法处理熔渣生产高价值炉渣制品 41 促进粒状炉渣脱水用的混合剂和使用方法

冶金炉渣性能研究

实验一冶金炉渣性能研究 保护渣的作用 在浇注过程中,要向结晶器钢水面上不断添加粉末状或颗粒状的渣料,称为保护渣。保护渣的作用有以下几方面: (1)绝热保温防止散热; (2)隔开空气,防止空气中的氧进入钢水发生二次氧化,影响钢的质量; (3)吸收溶解从钢水中上浮到钢渣界面的夹杂物,净化钢液; (4)在结晶器壁与凝固壳之间有一层渣膜起润滑作用,减少拉坯阻力,防止凝壳与铜板的粘结; (5)充填坯壳与结晶器之间的气隙,改善结晶器传热。 一种好的保护渣,应能全面发挥上述五个方面作用,以达到提高铸坯表面质量,保证连铸顺行的目的。 保护渣的种类 根据设计的保护渣组成,再选用合适的原料经过破碎、球磨、混合等制作工序就制成了保护渣。有四种类型。 (1)粉状保护渣:是多种粉状物料的机械混合物。在长途动输过程中,由于受到长时间的震动,使不同比重的物料偏析,渣料均匀状态受到破坏,影响使用效果的稳定性。同时,向结晶器添加渣粉时,粉尘飞扬,污染了环境。 (2)颗粒保护渣:为了克服污染环境的缺点,在粉状渣中配加适量的粘结剂,做成似小米粒的颗粒保护渣。制作工艺复杂,成本有所增加。 (3)预熔型保护渣:将各造渣料混匀后放入预熔炉熔化成一体,冷却后破碎磨细,并添加适当熔速调节剂,就得到预熔性粉状保护渣。预熔保护渣还可进一步加工成颗粒保护渣。预熔保护渣制作工艺复杂,成本较高。但优点是提高保护渣成渣的均匀性。 (4)发热型保护渣:在渣粉中加入发热剂(如铝粉),使其氧化放出热量,很快形成液渣层。但这种渣成渣速度不易控制,成本较高,故应用较少。 连铸结晶器保护渣的原来按构成材料的功能可分为,基料(包括天然的和人工合成的——烧结型、预熔型,其中有水泥熟料、硅灰石、石英、玻璃粉等)、溶剂(主要有纯碱、冰晶石、莹石及含氟化合物等),溶速控制剂——碳质材料(炭黑、石墨和焦炭等)。 连铸结晶器保护渣的品种繁多:(1)、按基料的化学成分可分为:Sio2——CaO——AL2O3、sio2——AL2O3——caF2、SIO2——AL2O3——na2o,其中sio2——cao——al2o3最为普遍。在此基础上加入少量添加剂(碱金属或碱土金属氟化物、氟化物、硼化物等)和控制溶速的炭质材料(炭黑、石墨和焦炭等)。(2)、按形状可分为:粉状连铸结晶器保护渣(机械混合成形)、颗粒连铸结晶器保护渣实心颗粒渣,圆盘造粒法成型的是球型实心颗粒连铸结晶器保护渣)、中空球形颗粒连铸结晶器保护渣(采用喷雾造粒法成型)。(3)、按使用的原材料可分为原始材料混合型、半预溶型和预溶型。预溶连铸结晶器保护渣还可进一步制造成预溶颗粒保护渣。(4)、按铸坯断面分:方坯(细分成:小方坯、大方坯、不锈钢方坯连铸结晶器保护渣);矩形坯;板坯(细分成:低碳钢板坯、中碳钢板坯、高碳钢板坯、超低碳钢板坯、09cu钢板坯、大板坯高拉速、宽版坯连铸结晶器保护渣);薄板坯;圆坯;异形(H形)坯连铸结晶器保护渣、发热型开浇渣等;(5)、按拉坯速度分:中低拉速、高拉速连铸结晶器保护渣;(6)、按钢种分:低碳钢、中碳钢、高碳钢、低合金钢、合金钢连铸结晶器保护渣。 钢种与保护渣的关系

高炉炉渣处理方法参考文本

高炉炉渣处理方法参考文 本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

高炉炉渣处理方法参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1. 概述: 高炉熔渣处理方法主要分为出干渣和水淬渣,由于干 渣处理环境污染较为严重,且资源利用率低,现在已很少 使用,一般只在事故处理时,设置干渣坑或渣罐出渣;目 前,高炉熔渣处理主要采用水淬渣工艺,水渣可以作为水 泥原料,或用于制造渣砖、轻质混凝土砌块,使资源得到 合理的利用。 1.1水淬渣的按其形成过程,可以分为两大类: A:高炉熔渣直接水淬工艺。脱水方法主要有渣池法或 底滤法、因巴法、拉萨法及笼法等。其主要工艺过程是高 炉熔渣渣流被高压水水淬,然后进行渣水输送和渣水分 离。

B :高炉熔渣先机械破碎后水淬工艺。主要代表为图拉法和HK法等。其主要工艺过程是高炉熔渣流首先被机械破碎,在抛射到空中时进行水淬粒化,然后进行渣水分离和输送。 1.2 按水渣的脱水方式可分为: A:转鼓脱水法。经水淬或机械粒化后的水渣流到转鼓脱水器进行脱水,前者为“INBA”法(因巴法),后者为“TYNA”法(图拉法);图拉法在我国已获得国家发明专利,专利名称为“冶金熔渣粒化装置”,专利权人为“中冶集团包头钢铁设计研究总院”,为俄罗斯人与中国人共同发明。 B:渣池过滤法:渣水混合物流人沉渣池,采用抓斗吊车抓渣,渣池内的水则通过渣池底部或侧部的过滤层进行排水。底滤式加反冲洗装置,一般称为“OCP”法,即“底滤法”;

炉渣性质

1)掌握熔渣的以下化学特性 将炉渣中的氧化物分为三类: (1)酸性氧化物:2SiO 、25P O 、25V O 、23Fe O 等; (2)碱性氧化物:CaO 、MgO 、FeO 、MnO 、23V O 等; (3)两性氧化物:23Al O 、2TiO 、23Cr O 等。 碱度的三种定义 (1)过剩碱 根据分子理论,假设炉渣中有22RO SiO ?,254RO P O ?,23RO Fe O ?,233RO Al O ?等复杂化合物存在。炉渣中碱性氧化物的浓度就要降低。实际的碱性氧化物数 B n 叫超额碱或过剩碱,其中CaO CaO MgO FeO MnO n n n n n =+++ +∑ (2)碱度223%%%CaO SiO Al O +,223%%%%CaO MgO SiO Al O ++,225 %%%CaO SiO P O + (3)光学碱度 i N -氧化物i 中阳离子的当量分数。具体计算i i i i i m x N m x = ∑ ,其中 i m -氧化物i 中的氧原子数;i x -氧化物i 在熔渣中的摩尔分数。 熔渣的氧化还原能力 定义%FeO ∑表示渣的氧化性。认为渣中只有FeO 提供的氧才能进入钢液,对钢液中的元素进行氧化。渣中23Fe O 和FeO 的量是不断变化的,所以讨论渣的氧化性,有必要将23Fe O 也折算成FeO ,就有两种算法: (1)全氧法 23%% 1.35%FeO FeO Fe O =+∑ (2)全铁法 23 %%0.9%FeO FeO Fe O =+∑ 注:决定炉渣向钢液传氧的反应是 []%FeO O K a ?=或

电炉教材

1.5.1火法炼铜 火法炼铜时当今生产铜的主要方法,世界上80%以上的铜是用火法从硫化铜精矿中提取的。火法炼铜最突出的特点时适应性强、能耗低、生产效率高。 硫化铜精矿的火法熔炼,一般包括三个过程。第一个过程时将铜矿石熔炼成冰铜,第二个过程是将冰铜吹炼成粗铜,最后把粗铜精炼成纯铜。精炼分为火法精炼和电解精炼。1.5.2湿法炼铜 湿法炼铜是在溶液中进行的一种提铜方法,无论贫矿、富矿、氧化矿或硫化矿,都可用湿法炼铜的方法提取铜。 湿法炼铜时用适当的溶剂浸出铜矿石,使铜以离子状态进入溶液,脉石及其它杂质不溶解。浸出后经澄清和过滤,得到含铜浸出液和由脉石组成的不溶残渣及浸出渣。浸出过程中,由于一些金属和非金属杂质与铜一起进入溶液,浸出液须净化,净化后的浸出液用置换、还原、电积等方法将铜提取出来。湿法炼铜工艺流程图如图1-2所示。 第2章冰铜熔炼 2.1概述 冰铜熔炼时在高温和氧化气氛条件下将硫化铜精矿熔化生产MeS共熔体的方法,又称造锍熔炼。冰铜熔炼将精矿中的铜富集于冰铜中,而大部分铁的氧化物与加入的熔剂造渣。冰铜与炉渣由于性质差别极大而分离。 根据炉料受热方式、热源、炉料所处的状态、气氛氧化程度,冰铜熔炼分为鼓风炉熔炼、反射炉熔炼、电炉熔炼、闪速熔炼及一步炼铜等。尽管设备不同,冶炼过程的实质是相同的,都属于氧化熔炼。 铜精矿首先熔炼获得冰铜,然后将冰铜吹炼成粗铜,再获得纯度较高的粗铜,将粗铜进行精炼,即火法精炼和电解精炼,这些过程都包含了氧化过程。 2.2冰铜熔炼的基本原理 冰铜熔炼所用炉料主要是硫化铜精矿和含铜的返料,除含有Cu、Fe、S等元素外,还含有一定量的脉石。如用一般熔炼方法如反射炉处理S/Cu比值高的精矿,得到的冰铜品位低,此时要先进行氧化焙烧,脱去部分硫后熔炼,才能获得要求较高品位的冰铜。如采用闪速熔炼或一步炼铜法则不受S/Cu的限制。硫含量大,自热能力好。 炉料中的化合物分如下几种: (1) 硫化物 熔炼生精矿以CuS、FeS、FeS2为主;焙砂以Cu2S、FeS为主,还有少量的ZnS、NiS、PbS等。 (2) 氧化物 Fe2O3、Fe3O4、CuO、Cu2O、ZnO、MeO、Al2O3。如炉料为焙烧氧化物较多,生精矿中氧化物较少。 (3)脉石 CaCO3、MgCO3、SiO2、Al2O3等。 其中硫化物和氧化物数量占80%以上。熔炼过程实际上时铁和铜的化合物及脉石在高温和氧化气氛条件下进行的一系列化学反应,并生产MeS相和MeO相,即冰铜和炉渣,二者因性质和密度不同而分离。 熔炼的炉料还包括加入的熔剂如石英石、石灰石等,与精矿中部分铁和脉石形成炉渣。 2.2.1熔炼过程的化学反应

高炉炉渣处理方法.docx

高炉炉渣处理方法 1.概述: 高炉熔渣处理方法主要分为出干渣和水淬渣,由于干渣处理环境 污染较为严重,且资源利用率低,现在已很少使用,一般只在事 故处理时,设置干渣坑或渣罐出渣;目前,高炉熔渣处理主要采 用水淬渣工艺,水渣可以作为水泥原料,或用于制造渣砖、轻质 混凝土砌块,使资源得到合理的利用。 1.1 水淬渣的按其形成过程,可以分为两大类: A:高炉熔渣直接水淬工艺。脱水方法主要有渣池法或底滤法、 因巴法、拉萨法及笼法等。其主要工艺过程是高炉熔渣渣流被高 压水水淬,然后进行渣水输送和渣水分离。 B:高炉熔渣先机械破碎后水淬工艺。主要代表为图拉法和HK法等。其主要工艺过程是高炉熔渣流首先被机械破碎,在抛射到空 中时进行水淬粒化,然后进行渣水分离和输送。 1.2 按水渣的脱水方式可分为: A:转鼓脱水法。经水淬或机械粒化后的水渣流到转鼓脱水器进 行脱水,前者为INBA 法(因巴法),后者为 TYNA法(图拉法); 图拉法在我国已获得国家发明专利,专利名称为冶金熔渣粒化装 置,专利权人为中冶集团包头钢铁设计研究总院,为俄罗斯人与 中国人共同发明。 B:渣池过滤法:渣水混合物流人沉渣池,采用抓斗吊车抓渣, 渣池内的水则通过渣池底部或侧部的过滤层进行排水。底滤式加

反冲洗装置,一般称为OCP法,即底滤法; C:脱水槽式:水淬后的渣浆经渣浆泵输送到脱水槽内进行脱水。这种方法就是通常所说的RASA法,即拉萨法; D:提升脱水式:高炉熔渣渣流首先被机械破碎,进行水淬后, 在池内用提升脱水实现渣水分离,提升脱水器可采用螺旋输送机和斗式提升机。前者即通常所说的笼法,后者称为HK法。 下面分别介绍各种高炉熔渣处理方法的工艺流程和技术特点,TYNA法(图拉法)将作为重点介绍。 2.各种水渣处理方法的工艺流程及特点: 2.1OCP法(底滤法) 高炉熔渣在冲制箱内由多孔喷头喷出的高压水进行水淬,水淬渣流经粒化槽,然后进入沉渣池,沉渣池中的水渣由抓斗吊抓出堆 放于渣场继续脱水。沉渣池内的水及悬浮物通过分配渠流入过滤池,过滤池内设有砾石过滤层,过滤后的水经由集水管由泵加压 后送入冷却塔冷却,循环使用,水量损失由新水补充。 底滤法冲渣水压力一般为0.3~0.4MPa,渣水比为 1:10~1: 15,水渣含水率为10%~15%,作业率 100%,出铁场附近可不设干渣坑。 2.2RASA法(拉萨法) 拉萨法水冲渣系统是由日本钢管公司与英国RASA贸易公司共同研制成功的。 1967 年在日本福山钢铁厂1#2004M3高炉上首次使用。我国上海宝钢1#高炉( 4063m3)首次从日本拉萨商社引进

炉渣的主要成分

矿中的脉石、炉料中的熔剂和其他造渣组分在火法冶金过程中形成的金属硅酸盐、亚铁酸盐和铝酸盐等混合物。此外,炉渣还含有少量的金属硫化物、金属和气体。从广义说,有色金属的吹炼渣、黄渣、蒸馏罐渣、精炼渣等都属有色金属冶金炉渣。 炉渣富集了炉料中的脉石成分和不希望进入主金属的杂质,是一个成分复杂的多元体系。炉渣的主要成分为氧化物。可将构成炉渣的氧化物分为酸性氧化物(如SiO2、Fe2O。等)、碱性氧化物(如FeO、CaO、MgO等)和两性氧化物(如Al2O3、ZnO等)。它们之间的区别在于各氧化物对氧离子的亲疏关系,容易放出氧离子的为碱性氧化物,反之为酸性氧化物。这些氧化物相互结合成各种化合物、固溶体及共晶混合物。 炉渣组成的来源有色金属冶金炉渣中的组分主要来源于五个方面:(1)矿石或精矿中的脉石,如SiO2、CaO、Al2O3、MgO等;(2)炉料在熔炼过程中生成的氧化物,如FeO、Fe3O4等;(3)为满足熔炼需要而加入的熔剂,如SiO2、CaO、FeO、Fe3O4等;(4)熔蚀或冲刷下来的炉衬材料,如MgO、SiO2、Al2O3等;(5)燃料燃烧的灰分,如Al2O3、SiO2等。 有色金属冶金炉渣属FeO–CaO–SiO2系,主要是由FeO、CaO、SiO2组成的硅酸盐,三者之和约占渣量75%~85%,有时甚至达90%。因此,渣的性质在很大程度上由这三个组分所决定。

在冶炼过程中的作用炉渣是火法冶金的必然产物,其量又相当大。例如反射炉炼铜产出的炉渣约为熔锍质量的200%~500%。炉渣在冶炼过程中主要起八方面的作用。 (1)熔融炉渣富集了炉料中几乎全部的脉石和大部分的杂质,并在造渣过程中完成了金属的某些熔炼和精炼过程。例如铜、镍硫化矿造锍熔炼时,铜、镍等硫化物与硫化亚铁富集为熔锍,而铁的氧化物与脉石、熔剂和燃料灰分等形成熔渣。(2)熔炼生成的金属或锍熔体液滴分散在熔渣中,它们的汇合长大和澄清分离都是在熔渣介质中进行的。因此,熔渣对熔炼生成的金属或熔锍与造渣成分分离的程度起着重要的作用。(3)覆盖在金属或熔锍表面的熔渣层起保护金属和熔锍的作用。(4)熔渣在冶炼过程中除富集炉料中的脉石等成分外,有时还起富集有价组分的作用,如钛精矿还原熔炼所得的高钛渣,以及吹炼含钒和含铌的生铁所得的钒渣和铌渣等都是提取钛、钒和铌等的原料。(5)熔渣在一些冶炼过程中还起着特殊作用,在烧结焙烧过程中造渣成分起到粘合结块的作用;在鼓风炉熔炼过程中,炉渣的组成基本上决定了炉内的温度,低熔点渣型的强化熔炼只能提高炉子生产能力而不能提高炉内温度,要提高炉内温度必须选择熔点高的渣型;在电炉熔炼时,炉渣起电阻发热体作用。(6)炉渣的性质决定着熔炼过程的燃料消耗量,热焓量大的和熔点高的炉渣,熔炼的燃料消耗量也增加。(7)炉渣的性质和熔炼产出的渣量是影响金属回收率的一个重要因素,因为渣含金属的损失是冶金过程中金属损失

冶金炉渣的研究及综合利用思路

第33卷 第1期 2011-1(下) 【111】 收稿日期:2010-11-13 作者简介:姚艳玲(1971-),山西阳高人,硕士研究生,研究方向为冶金技术。 0 引言 随着我国冶金行业的迅猛发展,累积堆存和新增的冶金产生的固体废弃物也日益增加,不仅占地多、严重污染周边环境,而且浪费了大量资源。其中各种冶炼渣是主要的废弃物,主要包括高炉渣、转炉渣、电炉渣和炉外精炼渣等。对环境的治理是实现社会持续发展的重要手段。固体废弃物的处理是环境治理的重要方面,冶金工业作为一个固体废弃物排出量较大的工业部门,其治理程度直接影响到环境治理水平,进行这方面的研究符合国家的产业政策,有广阔的发展前景。近几年冶金技术发展迅速,工艺过程中产生了越来越多的冶炼渣,这部分废弃物的有效利用值得我们去进一步研究。 1 冶金炉渣利用的必要性 随着冶金行业的快速发展,各国的矿产资源也在日益减少。同样,中国矿产资源也面临着严重的危机。如何能更好的利用有限的资源创造更多的财富是我们时刻要重视的。 钢铁工业是原材料工业,也是基础工业。它的发展是和整体经济发展规模和速度相适应的。钢铁产品又是用途广、用量大的材料,钢铁工业和各经济部门的发展密切相关,各经济部门使用钢材的和品种质量是不尽相同的,因此产业结构的变化和发展将直接影响到钢铁工业的发展速度和产品结构。在快速发展中的中国,基础设施、工业、建筑业发展较快,钢材消费量增长较快。所以冶金行业产生的炉渣也就相应的较多。如何 更好的利用这些弃渣是值得我们研究的。 企业的原料条件不同,冶炼工艺不同,炉渣的产出量和炉渣成分也不同,不同的企业可能采用不同的炉外精炼设备,其精炼渣会有所不同,特钢企业还可能在连铸之后,设有电渣炉等进一步的精炼设备,产出的还有电渣冶炼废渣,因而有必要从系统利用的角度出发,进行炼钢炉渣的综合利用研究。 2 冶金渣的综合利用状况 钢铁冶金工业遍及全国各主要城市,所产生的固体废物占固体废物总量的18%,渣中含有各种有用元素如Fe、Mn、Cr、Mo、Ni、AI 等金属元素和Ca、Mg、Si 等非金属元素,是一项可再利用的大宗二次资源。 钢铁冶金工业所产生的固体废物主要有高炉渣、钢渣、铁台金渣等,中国钢铁渣堆弃量约3亿,占地3万亩。2002年全国钢产量总计约为8389万吨,但缺乏全量和高附加值的利用技术,特别是对共生复合矿渣中共生的金属元素的分离和利用以及通过共生元素的分离全面经济地对炉渣进行综合利用缺乏系统研究,平均利用率约为60%。下面我们就冶金炉渣目前的综合利用情况作一下总结和分析。 3 高炉渣的综合利用 高炉渣是钢铁冶金工业中数量最多的一种渣。目前, 80%以上的高炉渣得到了利用,但利用的主要途径是生产水泥和筑路材料。高炉渣是冶炼生 冶金炉渣的研究及综合利用思路 Smelting slag, research and comprehensive utilization of ideas 姚艳玲1,周 俊2 YAO Y an-ling 1, ZHOU Jun 2 (1. 包头职业技术学院,包头 014030;2. 西北工业大学 航空学院,西安 710072) 摘 要: 随着冶金行业的快速发展,冶金业对资源的利用也越来越多,产生的炉渣也就相对增加。 本文针对冶金炉渣利用的必要性进行了分析,并对钢铁冶金中产生的高炉渣,钢渣的利用现状及不足进行了研究,最后对冶金炉渣的综合利用进行了设计构思,从而达到冶金炉渣的高效利用。 关键词: 冶金;炉渣;综合利用 中图分类号:TP391 文献标识码:A 文章编号:1009-0134(2011)1(下)-0111-03Doi: 10.3969/j.issn.1009-0134.2011.1(下).37

高炉渣与转炉渣综合利用

高炉渣与转炉渣综合利用 摘要:转炉炼钢过程中的主要副产品是转炉渣,目前我国转炉渣的利用率仅为10%。为提高转炉渣的利用率,应按照分析成分、制定利用方案、综合处理、分级利用 4 个主要步骤,根据当地的实际情况,建立不同适应性的阶梯利用方式,以实现最好的社会效益、环境效益和经济效益。介绍了当前国内外高炉渣综合回收与利用现状,对比分析了高炉渣各种处理工艺的优点和不足,展望了高炉渣回收与利用的发展趋势。 关键词:普通高炉渣;含钛高炉渣;综合利用转炉渣;综合处理;利用;分析 1高炉渣处理工艺与综合利用 高炉渣是冶炼生铁过程中从高炉中排出的副产品,是我国现阶段最主要的冶炼废渣。在20世纪70年代以前,一直作为工业废弃物堆放。随着钢铁工业的发展,各种高炉渣的堆积量日益增大,高炉渣的堆积不仅对环境造成了严重污染,也是一种资源的严重浪费,随着世界范围资源的日益贫乏,对高炉渣进行综合利用,变废为宝已刻不容缓。 1.1高炉渣的化学成分 高炉渣有普通高炉渣和含钛高炉渣。普通高炉渣的化学成分与普通硅酸盐水泥类似,主要为CaO、MgO、SiO2、Al2O3和MnO。含钛高炉渣中除含有上述物质外,还含有大量的TiO2。见表1 表 1 高炉渣的化学成分 高炉渣的处理工艺可分为水淬粒化工艺、干式粒化工艺和化学粒化工艺。在我国工业生产中,主要以水淬粒化工艺作为高炉渣的处理工艺,但水渣处理工艺存在以下问题 : 新水消耗量大、熔渣余热没有回收、系统维护工作量大、冲渣产生的二氧化硫和硫化氢等气态硫化物带来空气污染。粉磨时,水渣必须烘干,要消耗大量能源。因此,利用干法将高炉渣粒化作为水泥原料,同时高效利用炉渣显热,减少对环境的污染,是高炉渣处理的发展趋势。 1.2国内外高炉渣处理工艺概况 1.2.1 水淬粒化工艺 水淬粒化工艺就是将熔融状态的高炉渣置于水中急速冷却,限制其结晶,并使其在热应力作用下发生粒化。水淬后得到沙粒状的粒化渣,绝大部分为非晶态。其主要方法有:底滤法、因巴法、图拉法、拉萨法等。水淬粒化工艺处理的高炉渣,玻璃质(非晶体)含量超过95%,可以用作硅酸盐水泥的部分替代品,生产普通酸盐水泥。但此法不可避免地释放出大

LF炉精炼渣的组成及冶金性能的分析

LF炉精炼渣的组成及冶金性能的分析 冉锐 摘要: 钢水炉外精炼是当前国内外炼钢工业的前沿新技术.随着纯净钢生产技术的进步和连铸技术的发展,以及降低生产成本的要求,炉外精炼工艺与(略).日本、欧美等先进的钢铁生产国家,炉外精炼比超过90%,其中真空精炼比超过50%,有些钢厂已经达到100%.钢水炉外精炼是高技术含量新产品的质量保证基础,是现代炼钢生产流程与产品高质量水平的标志.各种炉外精炼设备的冶金功能主要包括:熔池搅拌功能,(略)和温度,保证钢材质量均匀;提纯精炼功能,通过钢渣反应、真空冶炼以及喷射冶金等方法,去除钢中S、P、C、N、H(略)质和夹杂物,提高钢水纯净度;钢水升温和控温功能,对钢水实现成分微调;生产调节功能(略)连铸生产.介绍了几种常见的炉外精炼工艺:LF、RH、VD与VOD和CAS和气体搅拌等精炼工艺的特点. 从埋弧渣的物理性能和化学成分入手,探索其熔化性能,脱硫脱氧能力等物化性能,研究埋弧渣的成分和其发泡效果. 埋弧基渣的储泡能力与炉渣的物理化学性能有关,炉渣的物理性能指炉渣的密度,粘度,表面张力. 关键字: 钢水炉外精炼.纯净钢.泡沫渣.脱硫. 前言 随着社会经济的高速发展,对钢铁产品的要求也越来越高,比如与传统板坯相比,薄板坯连铸的结晶器热流大,在弯月面附近处的凝固坯壳产生较高的表面张力,往往导致形成纵向表面裂纹。尤其是碳含量在0065%~0.15%范围内时,凝固过程中形成单向奥氏体的温度愈高,铸态钢奥氏体晶粒就愈大,钢的塑性就愈低,就愈易产生表面裂纹。为此应尽量避开这一碳含量区域。如果生产冷轧带卷,必须有高质量的钢水,尤其对原料的要求很高;若电炉炼钢,应加海绵铁并使用优质废钢;对铝和氮的要求也很严格,以避免氮化铝的析出,脆化奥氏体晶界面,使连铸坯出现角横裂或振痕处的横裂。而国外许多大型钢铁企业都非常重视LF炉精炼工艺的改进,值得我们国家的钢铁企业学习借鉴. 炉外精炼技术的特点与功能 炉外精炼是指在钢包中进行冶炼的过程,是将真空处理、吹氩搅拌、加热控温、喂线喷粉、微合金化等技术以不同形式组合起来,出钢前尽量除去氧化渣,在钢包内重新造还原渣,保持包内还原性气氛。炉外精炼的目的是降低钢中的C、P、S、O、H、N、等元素在钢中的含量,以免产生偏析、白点、大颗粒夹杂物,降低钢的抗拉强度、韧性、疲劳强度、抗裂性等性能。这些工作只有在精炼炉上进行,其特点与功能如下: 1)可以改变冶金反应条件。炼钢中脱氧、脱碳、脱气的反应产物为气体,精炼可以在真空条件下进行,有利于反应的正向进行,通常工作压力≥50Pa,适于对钢液脱气。 2)可以加快熔池的传质速度。液相传质速度决定冶金反应速度的快慢,精炼过程采用多种搅拌形式(气体搅拌、电磁搅拌、机械搅拌)使系统内的熔体产生流动,加速熔体内传热、传质的过程,达到混合均匀的目的。 3)可以增大渣钢反应的面积。各种精炼设备均有搅拌装置,搅拌过程中可以使钢渣乳化,合金、钢渣随气泡上浮过程中发生熔化、熔解、聚合反应,通常1吨钢液的渣钢反应面积为0.8~1.3mm2,当渣量为原来的6%时,钢渣乳化后形成半径为0.3mm的渣滴,反应界面会增大1000倍。微合金化、变性处理就是利用这个原理提高精炼效果。 4)可以在电炉(转炉)和连铸之间起到缓冲作用,精炼炉具有灵活性,使作业时间、温度控制较为协调,与连铸形成更加通畅的生产流程。 3 炉外精炼技术在生产中的应用目前得到公认并被广泛应用的炉外精炼方法有:LF法、RH 法、VOD法。

造铜锍过程中锍与渣的分离

仅供参考[整理] 安全管理文书 造铜锍过程中锍与渣的分离 日期:__________________ 单位:__________________ 第1 页共4 页

造铜锍过程中锍与渣的分离 炉渣和铜锍相的分离 1)在造锍熔炼中,炉渣的主要成分是FeO和SiO2,铜锍相Cu2S 和FeS。所以当炉渣和铜锍共存时,最重要的关系是FeS―FeO―SiO2 和Cu2S―FeS―FeO。根据研究,无SiO2存在时,FeO和FeS完全互溶,但当加入SiO2时,均相溶液出现分层;SiO2足量时,两相几乎完全分离。 另外,当渣中存在CaO或Al2O3时,将对FeS―FeO―SiO2系的互溶性质产生很大影响,它们的存在均降低FeS在渣中的溶解度。所以,高CaO和高Al2O3炉渣,炉渣和锍相的分离特性将进一步加强。 2)这就解释了在铜冶炼厂熔炼炉出现的排放过程中冰铜、炉渣明显分离,冰铜和炉渣流动性级差大的情况。针对这一情况,为保证炉渣的正常排放,一是降低操作熔池面;二是在铜溜槽可承受范围内尽可能提高炉渣温度;三是通过配比计算和精良的操作,将炉渣组分严格控制在低熔点区域,提高炉渣流动性。另外,适当增加搅动,也将会有一定帮助。 3)同时,由于炉渣溶解FeS的能力降低,使得反应: Fe3O4+SiO2+FeS===2FeOSiO2+SO2的反应不能在炉渣熔池中完成,使得很容易形成高磁性铁或高硅两个极端的高熔点炉渣。除调整控制精矿配比外,应考虑通过进一步加强横向搅动,来促使精矿落入炉渣熔池后,能在渣层中即充分完成其分解和造渣反应,形成尽可能多的铁橄榄石炉渣。 4、炉渣成分对炉渣性质的影响 SiO2FeOFe3O4Fe2O3CaOAl2O3MgO温度升高 第 2 页共 4 页

相关文档
最新文档