2016年数学建模大作业题讲解
《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛B题,是一道涉及复杂系统分析与优化的实际问题。
该题目要求参赛者运用数学建模的方法,对给定的问题进行深入分析,并寻求最优解决方案。
本文将对B 题的解题过程进行详细分析,并总结经验教训。
二、题目概述B题主要围绕某大型网络公司的员工分配问题展开。
公司需根据员工的能力、需求以及项目的要求,合理分配员工到各个项目组,以实现公司整体效益的最大化。
该问题涉及到多目标决策、优化算法以及复杂系统分析等多个方面。
三、解题分析1. 问题理解:首先,我们需要对题目进行深入理解,明确问题的背景、目标和约束条件。
在这个阶段,我们需要对员工的能力、需求以及项目的要求进行详细的分析,为后续的建模打下基础。
2. 数学建模:根据问题的特点,我们选择建立多目标决策模型。
模型中,我们将员工的能力、需求以及项目的要求作为决策变量,以公司整体效益作为目标函数。
同时,我们还需要考虑各种约束条件,如员工数量的限制、项目需求的满足等。
3. 算法设计:在建立模型后,我们需要设计合适的算法来求解模型。
在这个阶段,我们选择了遗传算法和模拟退火算法进行求解。
遗传算法能够在大范围内搜索最优解,而模拟退火算法则能够在局部范围内进行精细搜索,两种算法的结合能够更好地求解该问题。
4. 求解与优化:在算法设计完成后,我们开始进行求解与优化。
首先,我们使用遗传算法对模型进行粗略求解,得到一组初步的解决方案。
然后,我们使用模拟退火算法对初步解决方案进行优化,以得到更优的解决方案。
在优化过程中,我们还需要不断调整模型的参数和算法的参数,以获得更好的求解效果。
5. 结果分析:在得到求解结果后,我们需要对结果进行分析。
首先,我们需要对结果进行验证,确保结果的正确性和有效性。
然后,我们需要对结果进行敏感性分析,分析各种因素对结果的影响程度。
最后,我们需要提出一些管理建议和改进措施,以帮助公司更好地解决实际问题。
2016年全国大学生数学建模竞赛B题解题分析与总结

2016年全国大学生数学建模竞赛B题解题分析与总结2016年全国大学生数学建模竞赛B题解题分析与总结一、题目分析2016年全国大学生数学建模竞赛B题是一个与经济学、金融学相关的问题,要求参赛者通过对问题的深入分析和建模,以及对模型的求解和结果的解释,提出合理的结论。
二、问题描述本题的题目为《贷款利率调控模型》。
题目给出了一组数据,包括贷款利率、消费者价格指数、人均可支配收入、外汇储备等指标,要求参赛者针对这些指标进行分析,并建立合适的模型来解释这些指标之间的关系。
三、解题思路1. 数据分析:首先,我们需要对给定的数据进行分析。
通过绘制图表和计算一些统计量,我们可以对这些数据的变化和趋势进行初步了解。
2. 建立模型:在了解了数据的基本特征之后,我们需要以此为基础,建立起合适的数学模型。
这个模型应该能够描述贷款利率与消费者价格指数、人均可支配收入、外汇储备之间的关系,并能够进行预测。
3. 参数估计:建立好模型之后,我们需要对模型中的参数进行估计。
这需要依赖于数学推导和数据拟合的方法,通过最小二乘法等方法,确定模型的参数。
4. 模型求解:有了模型和参数之后,我们可以使用计算机软件进行模型的求解。
通过数值计算的方法,我们可以得到模型的解析解或数值解,并进行结果的分析和解释。
5. 结论与反思:最后,我们需要根据模型的结果,对问题进行结论和反思。
我们可以分析模型的合理性、可靠性,以及对解决实际问题的指导意义。
同时,我们也可以对模型的不足之处进行总结,并提出改进的建议。
四、模型建立与结果解释在解题的过程中,我们可以考虑建立如下的模型:贷款利率=消费者价格指数+人均可支配收入+外汇储备。
通过对这三个指标的分析,我们可以发现它们之间存在着一定的关系。
消费者价格指数和人均可支配收入可以反映经济的收入水平和购买力,而外汇储备可以反映国家的经济实力。
在建立了模型之后,我们可以对模型进行求解,并得到相应的结果。
根据模型的求解结果可以得出以下结论:贷款利率与消费者价格指数、人均可支配收入和外汇储备之间存在着一定的关系。
2016数学建模国赛赛题

2016数学建模国赛赛题
2016年数学建模国赛赛题一般是指《数学建模入门教程》中的赛题,主要
有以下三类:
1. 问题一:水深测量与海洋动力现象模拟。
要求:使用集中质量法将系统中的各个物体视为一个质点,对各个物体建立静力平衡方程,在水深18m时给定浮标在海水中所受浮力,从而根据建
立的平衡方程求出各物体的倾斜角度,再根据几何关系求出海域的模拟深度。
通过不断修正浮标的浮力,使得海域的模拟深度等于18m,最终求得风速
分别为12m/s和24m/s时浮标的吃水深度和各节钢管的倾斜角度。
2. 问题二:交通流模型与小区开放对周边道路通行的影响。
要求:利用元胞自动机的方法,分别分析不同道路车量位置与车流量变化、负荷系数以及基于交通流的车速。
先对不同小区进行划分,再利用问题一的方法和结论,分别模拟不同小区、不同路段开放小区对车辆通行情况的分析。
最后根据第一问选取出的六个指标,依据其计算公式,分别得出所有样本的所有指标值。
再根据这些指标值,利用投影寻踪法,得到不同小区、不同路段下,开放小区对周围道路通行的影响。
3. 问题三: Braess 悖论。
要求:对于这个问题没有给出具体的要求,因为这是一个理论问题,主要探讨的是网络流理论中的一个著名悖论。
请注意,由于题目较为复杂,建议在数学建模课程或相关论坛中寻找更详细的解答。
2016高教社杯全国大学生数学建模竞赛题目A题解题思路

2016高教社杯全国大学生数学建模竞赛题目A题系泊系统的设计分析初稿,旨在交流,有各种做题思路,大家自由发挥!不保证正确,如有错误,欢迎指正!注意1:程序为最初稿,只是证明解的存在性,可以使用二分法、牛顿法等进行进一步求解!2:剩下的可以使用锚链线等更复杂的理论:请继续查阅文献,给文章加分3:此外可以化下面的流程图,解释求解程序,给文章加分4:剩下题目问题原则上是把问题做的更复杂,考虑更多的受力,请大家自行脑补。
5:第一天说了对系缆力的计算,目前主要有三种模型:悬链线模型(我们下面说的第三种静力学分析)、以多体动力学理论为基础的集中质量一弹簧模型(我们下面说的第二种,需要matlab做常微分方程数值解)以及细长杆模型(我们下面说的第一种,力学有限元分析))。
查阅参考文献《深海系泊系统动力特性研究进展》,请大家自行选择各类方法。
1. 某型传输节点选用II型电焊锚链22.05m,选用的重物球的质量为1200kg。
现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025×103kg/m3的海域。
若海水静止,分别计算海面风速为12m/s和24m/s时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。
1. 某型传输节点选用II型电焊锚链22.05m,选用的重物球的质量为1200kg。
现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025×103kg/m3的海域。
若海水静止,分别计算海面风速为12m/s和24m/s时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。
分析:为简化起见, 按平浮处理,风引起的水平力x F()()220.625,0.6252x F v S h r h h v θ'==⨯-浮力f F 为2f F g r h ρπ'=其中h '为正浮吃水深度。
则对浮标的方程有 1111011011sin ,cos sin ,cos x f x f F T F T G F T F G T θθθθ==+=-= (1)其中0G 为浮标自重,00G m g =,0m 为浮标的质量为1000kg 。
《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言全国大学生数学建模竞赛(CUMCM)是衡量各高校数学类学科学生学习与实践能力的标志性竞赛之一。
其中,B题以真实问题的复杂性吸引了广大参赛选手的关注。
本文将对B题的具体题目内容、解题过程、常见方法和误区进行分析,并结合实例对竞赛结果进行总结,以期为其他参赛同学提供一定的参考。
二、题目分析B题通常关注某一实际领域的复杂问题,涉及多个因素的综合考量。
其要求参赛者通过建立数学模型,解决实际问题。
具体问题包括某个地区的旅游经济预测和资源合理配置。
针对此问题,首先需要对旅游业的各项数据进行详细分析,然后构建适当的数学模型,并使用合适的数学工具和软件进行计算和模拟。
三、解题过程1. 数据收集与分析:收集该地区的历史旅游数据,包括游客数量、消费水平、旅游景点分布等。
同时,分析该地区的经济、文化、交通等影响旅游业的因素。
2. 模型构建:根据收集的数据和实际情况,选择合适的数学模型进行建模。
常见的模型包括时间序列预测模型(如ARIMA 模型)、多元回归模型等。
3. 模型求解与验证:利用数学软件(如MATLAB、SPSS等)对模型进行求解,并对模型的预测结果进行验证。
验证方法包括与历史数据进行对比、进行敏感性分析等。
4. 资源合理配置:根据预测结果和实际情况,制定合理的资源分配方案,如旅游景点的开发策略、交通设施的优化配置等。
四、常见方法与误区1. 常见方法:在建模过程中,应选择合适的数学模型和方法。
对于时间序列预测问题,常用的有ARIMA模型、指数平滑法等;对于多元回归问题,则需要考虑各因素之间的相互关系。
同时,还应充分利用计算机技术进行数据分析和模拟。
2. 误区提示:在建模过程中,要避免陷入一些常见的误区。
例如,过分追求模型的复杂性和精确度而忽视模型的实用性和可解释性;忽视数据的预处理和清洗工作;忽略模型的验证和修正等。
五、实例分析以某次B题竞赛的优秀解决方案为例,详细分析其解题过程和关键点。
数学建模2016A题

承诺书参赛队员 (打印并签名) :题目系泊系统的设计问题分析摘要本文主要研究在风力和海水的作用下,钢管与浮标的受力平衡问题。
根据钢桶和钢管分段受力分析,对于锚链结合悬链线法进行求解,进一步可推知其他解。
对于问题一:该题通过对整个系统的各部分进行受力分析并结合悬链线模型来进行解答,首先是假设锚链没有被拉起甚至当风速较小的时候有部分拖地,然后求解锚链与海床的夹角刚好开始从零增大的情况得到临界值为26.47m/s,证明假设成立即可建立悬链线锚角为零的特殊模型求解。
对于问题二:在第一问的基础上使用模型列出方程组进行求解得到第一小问结果,再通过改变重球的重量比较各倾角的变化来得到一个重球重量的范围。
对于问题三:由于从静态的海水转化为有水流速度的动态海水系统,所以在问题1和问题2所建立的模型中要附加一个近海水流力。
通过对浮标、钢管、钢桶的受力分析及递推原理和锚链的悬链式方程,得到锚链型号Ⅰ-Ⅴ在临界条件为1.5928下重物球2887.107、2794.959、2661.586、2491.84、2282.809及形状。
关键词受力分析、悬链线、线性规划、非线性方程组、近海水流力系泊系统的设计问题分析一.问题重述近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成。
某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。
系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。
锚的质量为600kg,锚链选用无档普通链环,钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。
要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度,否则锚会被拖行,致使节点移位丢失。
水声通讯系统安装在一个长1m、外径30cm的密封圆柱形钢桶内,设备和钢桶总质量为100kg。
钢桶上接第4节钢管,下接电焊锚链。
钢桶竖直时,水声通讯设备的工作效果最佳。
若钢桶倾斜,则影响设备的工作效果。
《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文

《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛(CUMCM)是面向全国各高校学生的大型数学建模类比赛。
在众多赛题中,B题以其复杂的实际问题背景和深入的应用数学知识引起了广泛关注。
本文旨在针对B题的解题过程进行详细分析,并做出相应的总结。
二、题目概述B题主要描述了一个实际生活中遇到的问题:基于网络平台的交通流量预测。
题目要求参赛者根据历史交通流量数据,分析交通流量的变化规律,并建立数学模型进行预测。
三、解题分析1. 数据收集与预处理首先,我们需要收集相关的历史交通流量数据。
这些数据可能包括时间、地点、交通流量等信息。
收集到的原始数据需要进行清洗和预处理,例如去除异常值、缺失值等,以获得更为准确的数据。
2. 建立数学模型根据数据的特点和问题需求,我们选择合适的数学模型进行建模。
考虑到交通流量与时间的关系较为密切,我们可以选择时间序列分析模型,如ARIMA模型等。
此外,考虑到不同地点之间的交通流量可能存在相互影响,我们还可以引入空间相关性分析,如空间自回归模型等。
3. 模型优化与验证建立数学模型后,我们需要对模型进行优化和验证。
这包括调整模型的参数、对模型进行诊断分析等。
我们可以通过对比模型的预测值与实际值,计算误差指标(如均方误差、平均绝对误差等)来评估模型的性能。
同时,我们还可以使用交叉验证等方法来验证模型的稳定性。
4. 模型应用与结果展示最后,我们将建立的数学模型应用于实际问题中,对未来的交通流量进行预测。
我们将预测结果以图表等形式进行展示,方便评委和观众理解。
同时,我们还可以对结果进行解释和讨论,说明模型的优点和局限性。
四、总结通过本文总结:经过详细的分析与探讨,针对2016年全国大学生数学建模竞赛B题,我们采取了有效的解决策略。
从数据收集与预处理到模型建立与优化,每一步都紧密联系实际,充分考虑了交通流量数据的特性和问题需求。
在建模过程中,我们选择了合适的时间序列分析模型和空间相关性分析模型,旨在捕捉交通流量的变化规律。
2016数学建模d题

2016数学建模d题(最新版)目录1.2016 年数学建模竞赛 D 题概述2.题目背景及要求3.题目分析4.解题思路与方法5.结论正文【2016 年数学建模竞赛 D 题概述】2016 年数学建模竞赛 D 题是一道涉及运筹学、图论和最短路径问题的题目,要求参赛选手具备一定的数学基础和编程能力。
题目要求参赛选手分析一个快递公司的运营情况,通过构建数学模型来优化快递员的派送路线,从而提高派送效率。
【题目背景及要求】随着电子商务的快速发展,快递行业也呈现出高速增长的态势。
为了降低运营成本、提高服务质量,快递公司需要对快递员的派送路线进行合理规划。
题目要求参赛选手根据给定的城市地图、快递员的位置、派送任务以及时间限制等因素,构建一个最优的派送路线。
【题目分析】题目的核心是要求建立一个最优的派送路线,可以通过图论中的最短路径问题来解决。
首先,将城市地图抽象为一个加权图,其中节点表示快递员的位置,边表示相邻位置之间的距离。
然后,通过最短路径算法(如Dijkstra 算法或 A*算法)求解从快递员位置到所有派送任务的最短路径,从而得到最优派送路线。
【解题思路与方法】1.根据题目给出的数据,构建城市地图的加权图模型。
2.选择合适的最短路径算法(如 Dijkstra 算法或 A*算法)。
3.编写程序实现最短路径算法,求解从快递员位置到所有派送任务的最短路径。
4.根据求解结果,得到最优派送路线。
【结论】通过以上步骤,可以得到 2016 年数学建模竞赛 D 题的解答。
构建合理的数学模型,结合图论中的最短路径问题,可以有效地解决快递员的派送路线优化问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学模型课程期末大作业题要求:1)该类题目大部分为优划问题,有一些差分方程,微分方程问题,要求提交一篇完整格式的建模论文,文字使用小四号宋体,公式用word的公式编辑器编写,正文中不得出现程序以及程序冗长的输出结果,程序以附录形式附在论文的后面,若为规划求解必须用lingo集合形式编程,其它可用Matlab或Mathmatica编写。
2)论文以纸质文档提交,同时要交一份文章和程序电子文档,由班长统一收上来,我要验证程序。
问题1某厂拥有4台磨床,2台立式钻床,3台卧式钻床,一台镗床和一台刨床,用以生产7种产品,记作p1至p7。
工厂收益规定作产品售价减去原材料费用之余。
每种产品单件的收益及所需各机床的加工工时(以小时计)列于下表(表1):表到6月底每种产品有存货50件。
工厂每周工作6天,每天2班,每班8小时。
不需要考虑排队等待加工的问题。
在工厂计划问题中,各台机床的停工维修不是规定了月份,而是选择最合适的月份维修。
除了磨床外,每月机床在这6个月中的一个月中必须停工维修;6个月中4台磨床只有2台需要维修。
扩展工厂计划模型,以使可作上述灵活安排维修时间的决策。
停工时间的这种灵活性价值若何?注意,可假设每月仅有24个工作日。
问题2:在某给定区域内均匀分布若干个几何形状相同的小区域(小区域为边长a的正三角形)。
在每个区域中心安排一个寻呼台,管理部门将拿出一贯频域区间由于安排这些寻呼台,这个频域区间被规则地分成若干频域区间,分别被依次标号为:1、2、3、……,每一个寻呼台被分配给一个具有标号的频率小区间,只要不相互干扰,标号相同的频域小区间可以被分配多个寻呼台使用,为了避免干扰,在安排过程中,应满足以下要求:1)、距离为2a以内的两个寻呼台的编号至少必须相差2,在4a以内的寻呼台编号不能相同;2)、除1)以外并考虑三角形区域在三个方向任意延伸的情况;3)、除条件1),2)外,但要求距离在2a以内的寻呼台编号至少相差R,此时能够得到什么结果?请你在上述各种情况条件下建立数学模型,确立需要的频域区间的最小长度,即要求给出各种不同分配方案中所使用的最大编号达到最小。
问题3:某办公大楼有十一层高,办公室都安排在7,8,9,10,11层上.假设办公人员都乘电梯上楼,每层有60人办公.现有三台电梯A、B、C可利用,每层楼之间电梯的运行时间是3秒,最底层(一层)停留时间是20秒,其他各层若停留,则停留时间为10秒.每台电梯的最大的容量是10人,在上班前电梯只在7,8,9,10,11层停靠.为简单起见,假设早晨8∶00以前办公人员已陆续到达一层,能保证每部电梯在底层的等待时间内(20秒)能达到电梯的最大容量,电梯在各层的相应的停留时间内办公人员能完成出入电梯.当无人使用电梯时,电梯应在底层待命.请问:把这些人都送到相应的办公楼层,要用多少时间?怎样调度电梯能使得办公人员到达相应楼层所需总的时间尽可能的少?请给出一种具体实用的电梯运行方案.问题4:一项食品加工工业,为将几种粗油精炼,然后加以混合成为成品油。
原料油有两大类,共5种:植物油2种,分别记为V1和V2;非植物油3种,记为O1、O2和O3。
各种原料油均从市场采购。
现在(一月份)和未来半年中,市场价格植物油和非植物油要在不同的生产线精炼。
每个月最多可精练植物油200吨,非植物油250吨。
精练过程中没有重量损失。
精练费用可以忽略。
每种原料油最多可存储1000吨备用。
存贮费为每吨每月50元。
成品油和经过精练的原料油不能贮存。
为了使公司获得最大利润,应该取什么样的采购加工方案。
现存有5种原料油每种500吨。
要求在六月底仍然有这么多存货。
研究总利润和采购与加工方案适应不同的未来市场价格变化。
考虑如下的价格变化方式:2月份植物油价上升x%,非植物油价上升2x%;3月份植物油价上升4x%;其余月份保持这种线性的上升势头。
对于不同的x值(直到20),就方案的变化及对总利润的影响,作出全面计划。
对于食品加工问题,附加下列条件:(1)每个月最多使用3种原料油;(2)在一个月中,一种原料油如被使用,则至少要用20吨;(3)如果某月使用了原料油V1和V2,则必须使用O3。
扩展食品加工模型,以包含这些限制条件,并求出新的最优解。
问题5:某厂有4台磨床,2台立钻,3台水平钻,1台镗床和1台刨床,用来生产7种产品,已知生产单位各种产品所需的有关设备台时以及它们的利润如表所示:台镗床,4月—1台立钻,5月—1台磨床和1台立钻,6月—1台刨床和1台水平钻,被维修的设备在当月内不能安排生产。
又知从1月到6月份市场对上述7种产品最大需求量如表所示:( 表2 )量均不得超过100件。
现在无库存,要求6月末各种产品各贮存50件。
若该厂每月工作24天,每天两班,每班8小时,假定不考虑产品在各种设备上的加工顺序,要求:(a)该厂如何安排计划,使总利润最大;(b)在什么价格的条件下,该厂可考虑租用或购买有关的设备。
问题6:有一块一定面积的草场放牧羊群,管理者要估计草场能放牧多少羊,每年保留多少母羊羔,夏季要储存多少草供冬季之用为解决这些问题调查了如下背景材料:和部分母羊卖掉,保持羊群数量不变。
问题7:27个立方体空盒,排成3×3×3的三维阵列,如图1所示.如果三个盒在同一条水平线上,或同一条垂直线上,或同一条对角线上,则认为是三盒一线.这样的线共有49条;水平线18条,垂直线9条,水平面对角线6条,垂直面对角线12条,对角面对角线4条.现在有13个白球—0,14个黑球—x,每个盒中放入一球.如何投放,使有单一色球的线数最少?对一般n×n×n的三维阵列进行讨论,并对4×4×4,求解上列类似的问题问题8:甲市一家大公司由5个部门(A、B、C、D、E)组成。
现要将它的几个部门迁出甲市,迁至乙市或丙市。
除去因政府鼓励这样做以外,还有用房便宜、招问题9:一家大公司有二个分部D1和D2。
该公司的业务是向零售商供应石油产品和酒精。
现在要将零售商划分给二个分部,由分部向属于它的零售商供货。
这种划分要尽可能地使分部D1占有40%的市场,D2占有60%。
零售商共23家,记作M1到M23。
其中M1至M8在1区,M9至M18在2区,M19至M23在3区。
有好的发展前途的零售商作为A类,其余为B类。
各零售商目前估计占有的销售额,及所据有的货点数给出在表1(见附表)中。
要求对分部D1和D2的这一划分。
在下述七个方面,都接近于6035/40比例,具体说,在每个方面,D1所占份额在%至%45之间,当然D 2所占份额在%65至%55之间。
这七个方面是: (1) 货点总数;(2) 酒精市场占有份额;(3) 区1的油品市场占有份额; (4) 区2的油品市场占有份额; (5) 区3的油品市场占有份额; (6) A 类零售商数; (7) B 类零售商数。
第一步目标是根据七个方面都接近于60/40比例的要求找一个可行解,也就是说看这种划分法是否存在,如果存在,找出一种分法。
进一步,如果存在多种划分法的话,按下列两种目标分别求最优解: 目标(i )划分的七个方面的百分数对60/40的偏差总和最小; 目标(ii )最大偏差为最小。
问题10:某国政府要为其牛奶、奶油和奶酪等奶制品定价。
所有这些产品都直接或间接国家的原奶生产。
原奶首先要分离成脂肪和奶粉两种组份,去掉供生产出口产品和农场消费的产品的部分后,余下的共有60万吨脂肪和70万吨奶粉,可用于生产牛奶、奶油和两种奶酪,供国内全年消费。
E : 价格提高百分数需求降低百分数=E各种产品的E 值,可以根据往年的价格和需求变化情况的统计数据,用数理统计方法求出。
另外,两种奶酪的需求,随它们价格的相对变化,在某种程度上可以相互替代。
表现这一规律要用需求关于价格的交叉伸缩性概念。
从产品A 到B 的交叉伸缩性E 12定义作 E 12价格提高百分数需求提高百分数B A =奶酪1到奶酪2的E 12值和奶酪2到奶酪1的E 21值,同样可以凭数据用统计方法求出。
已经求出牛奶、奶油、奶酪1和奶酪2的E 值依次为0.4,2.7,1.1和0.4,以及E 12=0.1,E 21=0.4。
试求4种产品的价格,使所导致的需求使销售总收入为最大。
然而,政策不允许某种价格指标上升。
这使得新的价格必须使消费的总费用较上一年度不增加。
因此,对问题的一个特别重要的附加要求,是对这一政策限制的经济代价,给出数量表示。
问题11:某地区有4个矿区,产同一种矿石。
某采矿公司获得了这些矿在未来连续5年中的开采权。
但在每年度中,该公司最多有能力开3个矿,而有一矿闲置。
对于闲置的矿,如果这5年期内随后的某年还要开采,则不能关闭;如果从闲置起在这5年内不再开采,就关闭。
对开采和保持不关闭的矿,公司应交付土地使用费。
各矿每年土地使用额见表1第2行。
各矿每年矿砂产量上限如表1第3行。
不同矿所产矿砂质量不同。
矿砂质量同一质量指数表示,见表1第4行。
将不同矿的矿砂混合所成的矿砂,其质量指数为各组份的线性组合,组合系数为各组份在混成矿砂中所占的重量百分数。
例如,等量的二矿砂混合,混成矿砂的质量指数为二组份指数的平均值。
每年公司将各矿全年产出的矿砂混合,要生成具有约定质量指数的矿砂。
不同年度的约定质量指数如表2所示。
各年度成品矿砂售价每吨10元。
年度总收入和费用开支,为扣除物价上涨价因素,以逐年9折计入5年总收入和费用中。
问题12:几个发电站负责满足下述电力负荷要求。
在一天中0点至6点15000(MW,兆瓦)6点至9点30000(MW,兆瓦)9点至15点25000(MW,兆瓦)15点至18点40000(MW,兆瓦)18点至24点27000(MW,兆瓦)有三种类型的发电机可投入运输。
1型12台,2型10台,3型5台,转的水平不能超出这一范围。
第4列给出在最低水平运转的每小时费用。
第5列为在高于最低水平运转时,每超出一兆瓦,每小时的费用。
另外,每开动一发电机也需要费用,这给出在第6列。
在满足估计的负载要求之外,在每开动一发电机应足够多,使得当负载增加不超过15%时,能够通调高运转着的发电机的输出(在最高水平界定的范围内)满足增载的要求。
试求在一天中的各段时间应使那些发电机运转,使总费用最低?在一天中的每段时间,电力生产的边际费用各为多少?也就是说应当为电定什么价?将后备输出保证的指标15%加以降低,费用节省情况如何?也就是说这一供电保险性的费用如何?问题13:某公司正经历一系列的变化,这要影响到它在未来几年的人力需求。
由于装备了新机器,对不熟练工人的需求相对减少,对熟练和不熟练工人的需求相对增加;同时,预期下一年度的贸易量将下降,从而减少对各类岗位人力的需求。
据估计,当前及以后三年需要的人员数如表1:2、再培训;3、解雇和超员雇佣。