高分子化学课件第三章 自由基共聚合

合集下载

高分子化学-第3章 自由基聚合

高分子化学-第3章 自由基聚合

3. 4
聚合物的平均聚合度
1、动力学链长和聚合度
(1)动力学链长υ (kinetic chain length)的定义
每个活性种从引发阶段到终止阶段所消耗单体分子数。无 链转移时,动力学链长为增长速率和引发速率的比。 依据稳态时引发速率等于终止速率,则动力学链长可表 示为增长速率与终止速率的比: 即为单体消耗速率与
自由基产生(或消失) 速率之比
3. 4
聚合物的平均聚合度
如将稳态时的自由基浓度 入上式,可得下式:
,代
3. 4
聚合物的平均聚合度
若自由基聚合反应由引发剂引发时,
引发速率Ri = 2 f kd[I],则:
3. 4
聚合物的平均聚合度
可知动力学链长与引发速率存在以下关系:
1) 动力学链长与单体浓度的一次方成正比,与 引发剂浓度平方根成反比。 2) 说明了在自由基聚合体系中,增加引发剂用 量虽然可以提高聚合速率,但又使聚合物相对分子 质量降低。由此说明引发剂在自由基聚合中的重要
(1)温度对聚合速率的影响
总聚合速率常数k与温度T(K)遵循Arrhenius经验公式: 由前面推导可知: k=Ae-E/RT
k=kp(kd/kt)1/2
因此:
3.5 影响自由基聚合反应的因素
从而可知,总活化能E=(Ep-Et/2)+Ed/2
由Ep、 Et和Ed的大小可以得到总活化能E约为83 kJ/mol,为正值,表明温度升高,速率常数增大k增大。
3.5 影响自由基聚合反应的因素
1. 链自由基的双基终止过程的三步曲:
1) 链自由基的平移;
2) 链段重排,使活性中心靠近;
3) 双基相互反应而使链终止。
第二步(链段重排)是 控制步骤,受体系粘度 影响显著。

高分子化学课件第三章 自由基共聚合

高分子化学课件第三章 自由基共聚合

m1= d[M1] = k11[M1*][M1] + k21[M2*][M1] (i)
m2 d[M2]
k12[M1*][M2] + k22[M2*][M2]
第三章 自由基共聚合
(3)假设共聚反应是一个稳态过程,即总的活性中心的浓 度[M1*+M2*]恒定,[M1*]和[M2*]的消耗速率等于[M1*]和 [M2*]的生成速率,并且 M1* 转变为M2*的速率等于M2*转 变为M1*的速率;
二元共聚合的理论研究较系统深入,而三元及三元以上共 聚合复杂,理论研究很少,但实际应用的例子颇多。ABS, SBS
三元以上聚合,一般以两种单体确定主要性质,另外单体 改性。
二元共聚物根据两单体单元在分子链上的排列方式可分四 类:
第三章 自由基共聚合
(1)无规共聚物(random copolymer) 两种单体单元的排列没有一定顺序,A单体单元相邻的单
第三章 自由基共聚合
四种竞争链增长反应:
k11 M1* + M1
k12 M1* + M2
k21 M2* + M1
k22 M2* + M2
M1* R11 = k11[M1*][M1]
M2* R12 = k12[M1*][M2]
M1*
R21 = k21[M2*][M1]
M2* R22 = k22[M2*][M2]
若含一段A链与一段B链,如~AAAAAAA-BBBBBBBBBB~, 称AB型二嵌段共聚物;如果是由一段A链接一段B链再届一 段A链,如~AAAAAA-BB~BBB-AAAAAAA~,则称ABA型 三嵌段共聚物;若由多段A链和多段B链组成,则称(AB)n型 多嵌段共聚物。
第三章 自由基共聚合

自由基共聚合反应

自由基共聚合反应
自由基共聚合反应涉及到复杂的化学反应机理,通过研究自由基共聚合反应的动力学过 程,可以深入了解聚合反应的机理和动力学行为。
反应条件优化
通过对自由基共聚合反应的动力学研究,可以优化聚合反应的条件,提高聚合效率和产 物的性能。
动力学模型建立
基于自由基共聚合反应的动力学研究,可以建立反应动力学模型,用于预测聚合反应的 过程和结果。
特点
自由基共聚合反应具有高分子化合物 的多样性、可调控性和功能性等特点 ,广泛应用于高分子合成领域。
自由基共聚合反应的重要性
合成高分子材料
自由基共聚合反应是合成高分子 材料的重要手段之一,通过调节 单体种类和聚合条件,可以获得 具有特定性能和用途的高分子材 料。
促进高分子科学的
发展
自由基共聚合反应的研究有助于 深入了解高分子化合物的结构和 性能,推动高分子科学的发展。
链引发
链引发是自由基共聚合反应的起 始步骤,涉及到引发剂的分解和
自由基的产生。
引发剂在加热或光照条件下分解, 产生自由基活性中心,这些自由 基能够与单体分子结合,形成单
体自由基。
链引发阶段需要能量输入,以克 服活化能垒,启动聚合反应。
链增长
链增长是自由基共聚合反应的核心步 骤,涉及单体分子在自由基活性中心 上的加成反应。
材料科学
新材料开发
01
自由基共聚合反应可以用于开发新型高分子材料,如功能性高
分子、生物相容性高分ቤተ መጻሕፍቲ ባይዱ等。
复合材料
02
通过自由基共聚合反应可以将两种或多种材料结合在一起,制
备出具有优异性能的复合材料。
高分子膜
03
利用自由基共聚合反应可以制备高分子膜,用于分离、过滤和
渗透等应用。

高分子化学导论第3章_自由基聚合机理及分子量链转移

高分子化学导论第3章_自由基聚合机理及分子量链转移

链转移与链终止反应
链转移 自由基与其他非自由基分子的反应
链终止 自由基与自由基的反应
引发 增长
E (kJ/mol)
k
特点
Ed:105~150 Ei: 21~34
Ep=20~34
kd: 10- 4~10- 6s-1 慢引发 kp=102~104l/mol·s 快增长
终止 Et=8~21
kt=106~108l/mol·s 速终止
如:过氧化乙酰环己烷磺酰(ACSP)
2) 无机过氧化物——过硫酸盐 过硫酸钾,过硫酸铵
O
O
KO S O O S OK
O
O
O 2 KO S O
O
K2S2O8
2KSO4
水溶性引发剂
可单独使用,还可与适当的还原剂构成氧化 还原体系,在室温或更低温度下引发聚合
3. 氧化-还原体系引发剂
由氧化剂与还原剂组合在一起,通过电子转移 反应(氧化-还原反应),产生自由基而引发单 体进行聚合 特点: 活化能低,可在室温或更低温度下引发聚合 引发速率快,即活性大 种类多
歧化终止的结果:
Xn与链自由基中的单体单元数相同。
每个大分子只有一端为引发剂残基,
另一端为饱和或不饱和(两者各半)。
终止方式与单体种类、聚合条件有关 St:偶合终止为主 MMA:>60℃歧化终止为主
< 60℃两种终止方式均有
链终止的特点: Et(终止活化能)很低,8-21KJ/mol Rt(终止速率)极高 双基终止受扩散控制
均裂(homolysis) 共价键上一对电子分属两个基团,带独 电子的基团呈中性,称为自由基
RR
2R
异裂(heterolysis) 共价键上一对电子全部归属于某一基团, 形成阴离子,另一缺电子的基团,称做阳 离子

高分子化学第三章 自由基聚合

高分子化学第三章 自由基聚合

• 链转移反应前后,自由基的数目未变。
35
1. 向单体转移
· ~~CH2-CH + CH2=CH Cl Cl
· ~~CH=CH + CH3-CH Cl Cl
• 注意CH2=CHCl单体
36
2. 向溶剂或链转移剂转移
X ~~CH2CH · + YS X ~~CH2CHY + S ·
• 溶剂:
• 链转移剂:有较强的链转移能力的化合
1 2
[I ]
1
2
[M ] (3—35式)
注意本方程的适用范围
73
二、温度对聚合速率的影响
• 阿累尼乌斯公式:K=Ae–Ea/RT
其中:K=kp(kd/kt)½ 则:Ea=Ep+Ed/2–Et/2
74
一般情况下: Ep≈29kJ•mol–1, Ed≈126kJ•mol–1 Et≈17kJ•mol–1
10
一、 聚合的可能性
• 主要取决于双键上取代基的空间 效应
11
1.烯类单体: CXY=CMN
(1)一取代( CH2=CHX)
可均聚合
12
(2)二取代
(CH2=CXY、CHX=CHY) (a)1,1——二取代:一般不考虑空 间位阻效应,可均聚合。
注意:CH2=C(Ar)2只能形成二聚体
13
(b)1,2——二取代
54
2.半衰期
[I] ln = Kd t [I0]
• 60℃
ln2 t½ = K d
(3—17)
t½ >6h,低活性引发剂 1h< t½ <6h,中活性引发剂 t½ <1h,高活性引发剂
55
3. 引发效率

第3章自由基聚合反应

第3章自由基聚合反应

高分子化学
第3章 自由基聚合反应
3.3-3.4
3.3.3.2 引发剂效率
引发聚合的引发剂占引发剂分解和消耗总量的分率称为引发 剂效率(initiator efficiency),用f表示。 诱导分解(inducer decomposition) 诱导分解是指自由基向引发剂的转移反应。
f:一般为0.8,?过氧源自二异丙苯高分子化学第3章 自由基聚合反应
3.3-3.4
主要类型: 氢过氧化物:
如:特丁基过氧化氢(t-BHP)、异丙苯过氧化氢(CHP)
过氧化二烷基
如:过氧化二特丁基、过氧化二异丙苯
低活性
过氧化二酰基
如:BPO、过氧化十二酰(LPO)
过氧化酯类
如:过氧化特戊酸特丁酯(BPP)、过氧化苯甲酸特丁酯
Mx + ROOH
Mx OH + RO
过氧化物引发剂容易发生诱导分解,而偶氮类引发剂不 容易诱导分解。 诱导分解的结果:引发效率下降
高分子化学
第3章 自由基聚合反应
3.3-3.4
笼蔽效应(cage effect) 在溶液聚合反应中,浓度很低的引发剂分子被溶剂分子 包围,像处在笼子中一样。引发剂分解成初级自由基后,其 寿命非常短,只有10-11~10-9s,,必须及时扩散出溶剂笼子, 才能引发单体聚合。否则部分初级自由基来不及扩散就偶合 成稳定物质,使初级自由基浓度下降,致使引发效率降低。
3.3-3.4
向溶剂和链转移剂的转移反应也会使引发效率下降。 此外,引发剂、单体的种类、浓度、溶剂的种类、体系粘 度、反应方法、反应温度等都会影响引发效率。
表3-13 偶氮二异丁腈的引发效率(f)
单体 丙烯腈 苯乙烯 醋酸乙烯
f/% 约100 约80 68~82

高分子化学 3-自由基聚合

高分子化学 3-自由基聚合

1第三章自由基聚合Free Radical Polymerization3.1 加聚和连锁聚合概述3.2 烯类单体对聚合机理的选择性3.3 聚合热力学和聚合-解聚平衡3.4 自由基聚合机理3.5 引发剂3.6 其它引发反应3.7 聚合速率3.8 动力学链长和聚合度3.9 链转移反应和聚合度3.10 聚合度分布3.11 阻聚和缓聚3.12 自由基寿命和链增长、链终止速率常数的测定3.13 可控/活性自由基聚合33.1加聚和连锁聚合反应概述连锁聚合反应:通过单体和反应活性中心之间的反应来进行的聚合反应。

这些活性中心通常并不能由单体直接产生,而需要在聚合体系中加入某种化合物,该化合物在一定条件下生成聚合反应活性中心,再通过反应活性中心与单体加成生成新的反应活性中心,如此反复生成聚合物链。

引发剂(Initiator ):在反应体系中加入的能产生聚合反应活性中心的化合物。

引发剂(或其一部分)在反应后成为所得聚合物分子的组成部分。

引发剂与催化剂?4根据引发活性种与链增长活性中心的不同,连锁聚合反应可分为自由基聚合(Free Radical)、阳离子聚合(Cationic)、阴离子聚合(Anionic)和配位聚合(Coordination Polymerization)等。

引发剂分解成活性中心时,共价键有两种裂解形式:均裂和异裂。

均裂的结果产生两个自由基;异裂的结果形成阴离子和阳离子。

R R 2R ABA+B5I R R +MR M RM +M RM 2RM 2+MRM 3RM n-1+MRM n RM n 死聚合物链引发链增长链终止(初级活性种)(单体活性种)(活性链)聚合过程中有时还会发生链转移反应,但不是必须经过的基元反应。

自由基连锁聚合的各基元反应-链引发、链增长和链终止:6连锁聚合反应的基本特征:a. 聚合过程一般由多个基元反应组成;b. 各基元反应机理不同,反应速率和活化能差别较大;c. 单体只能与活性中心反应生成新的活性中心,单体之间不能反应;d. 反应体系始终是由单体、聚合产物和微量引发剂及含活性中心的增长链所组成;e. 聚合产物的分子量一般不随单体转化率而变。

高分子化学 第3章 3-6节

高分子化学 第3章 3-6节

③氯乙烯-醋酸乙烯酯共聚物常用作涂料和粘合剂等。
用马来酸酐作为第三单体共聚,可提高其对基 材的粘结性。
④(甲基)丙烯酸酯、苯乙烯、(甲基)丙烯酸等原材进
行的多元共聚产物,在建筑涂料、粘合剂、纺 织助剂等方面均有广泛用途。其中不乏四元以 至更多单体的乳液共聚,以调节产物的性能。 (甲基)丙烯酸的作用是提高乳液的稳定性和对 基层的粘结性。
两种单体或两种自由基的活性只有与同种
自由基或单体反应才能比较。竞聚率可以 用以判别单体或自由基的相对活性。
3.5.1单体的相对活性 竞聚率的倒数(1/r1= k12/k11)来表示 意义: 代表了某自由基同另一单体反应的增长速 率常数与该自由基同其自身单体反应的增长速 率常数之比值。 因此: 两种单体对同一种链自由基的反应速率常 数之比时,链自由基相同,单体不同,可衡量 两单体相对活性。 取不同第二单体,可以列出一系列单体的 相对活性
若M1,M2都带有或都不带有共轭取代基时,易 共聚(单体活性相近),如苯乙烯和丁二烯; 醋酸乙烯和氯乙烯。 当一种单体带有取代基,另一不带共轭 取代基时, 不易共聚: 如本例中,VAc(0.01)~ St (55)不易共聚 ??? 甚至将少量St加入到VAc中相当于阻聚剂???
VAc St
②/①=100,③/④=50M,单体活性St是 VAc的50~100倍 ②/③=1586,①/④=793,VAc •是St •的 700~1600倍
凡不带有共轭取代基的单 体,其均聚速率大于带有共 轭取代基的单体:VAc ( kp=2300 ) > St (kp=145 )
R· M R· ① + R· Ms Rs·② + Rs· Ms Rs·③ + Rs· M R· ④ + ②>①>③>④
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
共聚物不是几种单体各自均聚物的混合物。
第三章 自由基共聚合
(2)共聚合的意义: ➢ 实际应用:开发聚合物新品种;提高聚合物的综合性能,通 过共聚反应可吸取几种均聚物的长处,改进多种性能,如机械 性能、溶解性能、抗腐蚀性能和老化性能等,从而获得综合性 能均衡优良的聚合物。 ➢ 扩大合成聚合物原料范围 ➢ PAN、ECDP、涂料染色、印花粘合剂
链(支链)与之相连。
AAAAAA AA AA AA AA AA AAA AA AA A BBBBBBBBBB BB BBBBB
命名时常以主链聚合物的名称+“接”+支链聚合物名称。
第三章 自由基共聚合
3.2 二元共聚合物的组成
共聚物性能 密切相关 共聚物组成
不相等 但相关
单体组成
共同决定
单体单元含量
单体相对活性
与连接方式
二元共聚产物的组成(单体单元的含量)与单体组成及 单体相对活性之间的关系可从动力学上进行推导。
第三章 自由基共聚合
共聚反应的反应机理与均聚反应基本相同,包括链引发、 链增长、链转移和链终止等基元反应,但在链增长过程中其增 长链活性中心是多样的。
共有: 2 种引发反应 4 种增长反应 3 种终止反应
体单元是随机的,可以是A单体单元,也可以是B单体单元。 AAABAABAABBABABAAB
这类共聚物命名时,常以单体名称间加“-”或“/”加后缀共聚 物,如: 乙烯-丙烯共聚物
第三章 自由基共聚合
(2)交替共聚物(alternating copolymer) 两单体单元在分子链上有规律地交替排列,A单体单元
若含一段A链与一段B链,如~AAAAAAA-BBBBBBBBBB~, 称AB型二嵌段共聚物;如果是由一段A链接一段B链再届一 段A链,如~AAAAAA-BB~BBB-AAAAAAA~,则称ABA型 三嵌段共聚物;若由多段A链和多段B链组成,则称(AB)n型 多嵌段共聚物。
第三章 自由基共聚合
(4)接枝共聚物(graft copolymer) 以其中一单体组成的长链为主链,另一单体组成的链为侧
m1= d[M1] = k11[M1*][M1] + k21[M2*][M1] (i)
m2 d[M2]
k12[M1*][M2] + k22[M2*][M2]
第三章 自由基共聚合
(3)假设共聚反应是一个稳态过程,即总的活性中心的浓 度[M1*+M2*]恒定,[M1*]和[M2*]的消耗速率等于[M1*]和 [M2*]的生成速率,并且 M1* 转变为M2*的速率等于M2*转 变为M1*的速率;
相邻的肯定是B单体单元。 ABABABABABABABABABABABAB
命名与无规共聚物类似,但在后缀“共聚物”前加“交替”, 如:苯乙烯-马来酸酐交替共聚物
第三章 自由基共聚合
(3)嵌段共聚物(block copolymer) 两单体单元在分子链上成段排列。 ~AAAAAAAAAAAAABBBBBBBBBBBBB~
动力学推导时,与均聚反应做相似的假设:
第三章 自由基共聚合
(1)自由基的活性与链的长短无关,也与前末端单元结构无 关,仅取决于末端单体单元;
M 2 M 1 *= M 1 M 1 * = M 1 * M 1 M 2 *= M 2 M 2 * = M 2 *
即,体系中就只存在两种链增长活性中心,这样共聚合的链增 长反应就可简化为这两种活性中心分别与两种单体之间进行的 四个竞争反应:
(I) (II) (III) (IV)
其中活性链末端与同种单体之间的链增长反应称为同系链增长 反应(如反应I和IV)(均聚);而与不同中单体之间的反应 称为交叉链增长反应(如反应II和III)(共聚)。
第三章 自由基共聚合
(2)聚合产物分子量很大时,可忽略链引发和链转移反应的单 体消耗,即单体仅消耗于链增长反应,因此共聚物的组成仅由 链增长反应决定; M1仅消耗于反应(I)和(III):

k12[M1*][M2] = k21[M2*][M1]
高分子化学课件第三章 自由基共聚 合
第三章 自由基共聚合
3.1 引 言
(1)共聚物的含义: 只有一种单体参与的连锁聚合反应为均聚反应(homo-
polymerization ),其聚合产物分子结构中只含一种单体单元, 称为均聚物(homopolymer)。
由两种或两种以上单体参与的连锁聚合反应称为共聚合 反应(copolymerization),相应地,其聚合产物分子结构中含 有两种或两种以上的单体单元,称为共聚物(copolymer)。
第三章 自由基共聚合
(2)共聚合的意义: 理论研究:通过共聚反应研究可了解不同单体和链活性种的聚 合活性大小、有关单体结构与聚合活性之间的关系、聚合反应 机理多方面的信息等,完善高分子化学理论体系。 (3)类型: 聚合反应机理:自由基共聚合、离子共聚合和配位共聚合。
第三章 自由基共聚合
单体种类多少:二元共聚合、三元共聚合等,依此类推。
-d[M1] / dt = k11[M1*][M1] + k21[M2*][M1] M2仅消耗于反应(II)和(IV):
-d[M2] / dt = k12[M1*][M2] + k22[M2*][M2]
第三章 自由基共聚合
由于单体的消耗全部用于共聚物的组成,因此共聚物分子中两 单体单元的摩尔比等于两种单体的消耗速率之比:
二元共聚合的理论研究较系统深入,而三元及三元以上共 聚合复杂,理论研究很少,但实际应用的例子颇多。ABS, SBS
三元以上聚合,一般以两种单ቤተ መጻሕፍቲ ባይዱ确定主要性质,另外单体 改性。
二元共聚物根据两单体单元在分子链上的排列方式可分四 类:
第三章 自由基共聚合
(1)无规共聚物(random copolymer) 两种单体单元的排列没有一定顺序,A单体单元相邻的单
第三章 自由基共聚合
四种竞争链增长反应:
k11 M1* + M1
k12 M1* + M2
k21 M2* + M1
k22 M2* + M2
M1* R11 = k11[M1*][M1]
M2* R12 = k12[M1*][M2]
M1*
R21 = k21[M2*][M1]
M2* R22 = k22[M2*][M2]
相关文档
最新文档