第三章--自由基聚合

合集下载

第三章__自由基聚合

第三章__自由基聚合

第三章自由基聚合思考题下列烯类单体适用于何种机理聚合自由基聚合、阳离子聚合还是阴离子聚合并说明原因。

(1)CH2——CHCl (2)CH2=CCl2 (3)CH2=CHCN (4)CH2=C(CN)2(5)CH2=CHCH3 (6)CH2=C(CH3)2 (7)CH2=CHC6H5(8)CF2=CF2 (9)CH2=C(CN)COOR (10)CH2=C(CH3)-CH =CH2答可以通过列表说明各单体的聚合机理,如下表:思考题下列单体能否进行自由基聚合,并说明原因。

(1)CH2=C(C6H5)2(2)CH3CH=CHCOOCH3(3)CH2=C(CH3)C2H5(4)ClCH=CHCl (5)CH2=CHOCOCH3 (6)CH2=C(CH3)COOCH3(7)CH3CH=CHCH3 (8)CF2=CFCl答 (1) CH2=C(C6H5)2不能进行自由基聚合,因为l,1-双取代的取代基空间位阻大,只形成二聚体。

(2) CH3CH=CHCOOCH3不能进行自由基聚合,因为1,2-双取代,单体结构对称,空间阻碍大。

(3) CH2=C(CH3)C2H5不能进行自由基聚合,两个取代基均为供电基团,只能进行阳离子聚合。

(4)ClCH=CHCl不能进行自由基聚合,因为1,2-双取代,单体结构对称,空间阻碍大。

(5)CH2=CHOCOCH3能进行自由基聚合,因为-COCH3为吸电子基团,利于自由基聚合。

(6) CH2=C(CH3)COOCH3能进行自由基聚合,因为l,1-双取代,极化程度大,甲基体积小,为供电子基团,而-COOCH3为吸电子基团,共轭效应使自由基稳定。

(7) CH3CH=CHCH3不能进行自由基聚合,因为1,2-双取代,单体结构对称空间阻碍大。

(8) CF2=CFCl能进行自由基聚合,F原子体积小,Cl有弱吸电子作用。

思考题为什么说传统自由基聚合的机理特征是慢引发、快增长、速终止在聚合过程中,聚合物的聚合度、转化率,聚合产物中的物种变化趋向如何答自由基聚合机理由链引发、链增长、链终止等基元反应组成,链引发是形成单体自由基(活性种)的反应,引发剂引发由2步反应组成,第一步为引发剂分解,形成初级自由基,第二步为初级自由基与单体加成,形成单体自由基。

高分子化学-第3章 自由基聚合

高分子化学-第3章 自由基聚合

3. 4
聚合物的平均聚合度
1、动力学链长和聚合度
(1)动力学链长υ (kinetic chain length)的定义
每个活性种从引发阶段到终止阶段所消耗单体分子数。无 链转移时,动力学链长为增长速率和引发速率的比。 依据稳态时引发速率等于终止速率,则动力学链长可表 示为增长速率与终止速率的比: 即为单体消耗速率与
自由基产生(或消失) 速率之比
3. 4
聚合物的平均聚合度
如将稳态时的自由基浓度 入上式,可得下式:
,代
3. 4
聚合物的平均聚合度
若自由基聚合反应由引发剂引发时,
引发速率Ri = 2 f kd[I],则:
3. 4
聚合物的平均聚合度
可知动力学链长与引发速率存在以下关系:
1) 动力学链长与单体浓度的一次方成正比,与 引发剂浓度平方根成反比。 2) 说明了在自由基聚合体系中,增加引发剂用 量虽然可以提高聚合速率,但又使聚合物相对分子 质量降低。由此说明引发剂在自由基聚合中的重要
(1)温度对聚合速率的影响
总聚合速率常数k与温度T(K)遵循Arrhenius经验公式: 由前面推导可知: k=Ae-E/RT
k=kp(kd/kt)1/2
因此:
3.5 影响自由基聚合反应的因素
从而可知,总活化能E=(Ep-Et/2)+Ed/2
由Ep、 Et和Ed的大小可以得到总活化能E约为83 kJ/mol,为正值,表明温度升高,速率常数增大k增大。
3.5 影响自由基聚合反应的因素
1. 链自由基的双基终止过程的三步曲:
1) 链自由基的平移;
2) 链段重排,使活性中心靠近;
3) 双基相互反应而使链终止。
第二步(链段重排)是 控制步骤,受体系粘度 影响显著。

第三章自由基聚合

第三章自由基聚合
低,位阻效应大,一般不能自聚合。但有时能与其他单 体共聚,如马来酸酐能与苯乙烯共聚。
HC CH
Cl
O O O
C H
C H
Cl
(3) 三取代、四取代,一般不能聚合,但也有例外:取 代基为小体积的氟代乙烯 。
F F C H C H F F C H C F F F H2C C F F C C F
F
(1) 1, 1 双取代烯类单体CH2=CXY ,通常,比单取代更 易聚合,若两个取代基均体积较大(如1,1-2苯基乙烯), 则只能形成二聚体。
(2) 具有共轭效应的烯类单体 ∏电子云流动性大,易诱导极化,可随进攻试剂 性质的不同而取不同的电子云流向,可进行多种机 理的聚合反应(自由基、阴离子和阳离子聚合)。 如苯乙烯、甲基苯乙烯、丁二烯及异戊二烯等等 。 + + R H2C CH R H2C CH
+

单烯CH2=CHX中取代基电负性不同和聚合倾向的关系图
(二) 位阻效应
位阻效应是由取代基的体积、数量、位置等 所引起的。在动力学上它对聚合能力有显著的影 响,但它不涉及对活性种的选择。
(1) 1, 1 双取代烯类单体CH2=CXY ,通常,比单取代更
易聚合,但两个取代基均体积较大(如1,1-2苯基乙烯),
则只能形成二聚体。
H2C
C
(2) 1,2 双取代的烯类化合物,因结构对称,极化程度
第三章 自由基聚合
1. 单体聚合的选择性 2. 四种基元反应及自由基聚合的特征 3. 引发反应、引发剂种类及其使用条件 4. 聚合速率方程的推导、公式、使用 5. 聚合速率以及分子量的影响因素 6. 分子量的公式及其使用条件 7. 阻聚剂和烯丙基的自阻聚作用

高分子化学第三章 自由基聚合

高分子化学第三章 自由基聚合

• 链转移反应前后,自由基的数目未变。
35
1. 向单体转移
· ~~CH2-CH + CH2=CH Cl Cl
· ~~CH=CH + CH3-CH Cl Cl
• 注意CH2=CHCl单体
36
2. 向溶剂或链转移剂转移
X ~~CH2CH · + YS X ~~CH2CHY + S ·
• 溶剂:
• 链转移剂:有较强的链转移能力的化合
1 2
[I ]
1
2
[M ] (3—35式)
注意本方程的适用范围
73
二、温度对聚合速率的影响
• 阿累尼乌斯公式:K=Ae–Ea/RT
其中:K=kp(kd/kt)½ 则:Ea=Ep+Ed/2–Et/2
74
一般情况下: Ep≈29kJ•mol–1, Ed≈126kJ•mol–1 Et≈17kJ•mol–1
10
一、 聚合的可能性
• 主要取决于双键上取代基的空间 效应
11
1.烯类单体: CXY=CMN
(1)一取代( CH2=CHX)
可均聚合
12
(2)二取代
(CH2=CXY、CHX=CHY) (a)1,1——二取代:一般不考虑空 间位阻效应,可均聚合。
注意:CH2=C(Ar)2只能形成二聚体
13
(b)1,2——二取代
54
2.半衰期
[I] ln = Kd t [I0]
• 60℃
ln2 t½ = K d
(3—17)
t½ >6h,低活性引发剂 1h< t½ <6h,中活性引发剂 t½ <1h,高活性引发剂
55
3. 引发效率

高分子化学 3-自由基聚合

高分子化学 3-自由基聚合

1第三章自由基聚合Free Radical Polymerization3.1 加聚和连锁聚合概述3.2 烯类单体对聚合机理的选择性3.3 聚合热力学和聚合-解聚平衡3.4 自由基聚合机理3.5 引发剂3.6 其它引发反应3.7 聚合速率3.8 动力学链长和聚合度3.9 链转移反应和聚合度3.10 聚合度分布3.11 阻聚和缓聚3.12 自由基寿命和链增长、链终止速率常数的测定3.13 可控/活性自由基聚合33.1加聚和连锁聚合反应概述连锁聚合反应:通过单体和反应活性中心之间的反应来进行的聚合反应。

这些活性中心通常并不能由单体直接产生,而需要在聚合体系中加入某种化合物,该化合物在一定条件下生成聚合反应活性中心,再通过反应活性中心与单体加成生成新的反应活性中心,如此反复生成聚合物链。

引发剂(Initiator ):在反应体系中加入的能产生聚合反应活性中心的化合物。

引发剂(或其一部分)在反应后成为所得聚合物分子的组成部分。

引发剂与催化剂?4根据引发活性种与链增长活性中心的不同,连锁聚合反应可分为自由基聚合(Free Radical)、阳离子聚合(Cationic)、阴离子聚合(Anionic)和配位聚合(Coordination Polymerization)等。

引发剂分解成活性中心时,共价键有两种裂解形式:均裂和异裂。

均裂的结果产生两个自由基;异裂的结果形成阴离子和阳离子。

R R 2R ABA+B5I R R +MR M RM +M RM 2RM 2+MRM 3RM n-1+MRM n RM n 死聚合物链引发链增长链终止(初级活性种)(单体活性种)(活性链)聚合过程中有时还会发生链转移反应,但不是必须经过的基元反应。

自由基连锁聚合的各基元反应-链引发、链增长和链终止:6连锁聚合反应的基本特征:a. 聚合过程一般由多个基元反应组成;b. 各基元反应机理不同,反应速率和活化能差别较大;c. 单体只能与活性中心反应生成新的活性中心,单体之间不能反应;d. 反应体系始终是由单体、聚合产物和微量引发剂及含活性中心的增长链所组成;e. 聚合产物的分子量一般不随单体转化率而变。

第三章 自由基聚合(PDF)

第三章 自由基聚合(PDF)

不过,带代一个推电子甲基的丙烯却不能进行阳离子 聚合,只能进行配位聚合。
3)具有共轭效应的单体,三种聚合都能进行。 乙烯分子高度对称,聚合活性很低。由于取代基使烯 烃分子对称性改变,从而导致其聚合活性的提高。 取代基与聚合反应类型简列:
_
NO2 ;
_
CN;
_
_ CH=CH ; _ C H ; _ CH ; _ OR COOR; 2 6 5 3 自由基聚合 阳离子聚合
CH3 CH2 C COOCH3 CH3 CH2 C CH3 CH3 CH2 C
-△H=56 .5
51.5
35 KJ/mol
2)、共轭效应使聚合热降低
CH2 CH CH2 CH CN CH2 CH CH CH2
-△H=69.9
72.4
72.8 KJ/mol
3)、强电负性取代基使聚合热升高
CH2 CH Cl
.
CH3 CH3 H3C C N N C CH3 CN CN
CH3 2 H3C C CN
+ N2
偶氮二异丁腈(AIBN)
v 发生单电子转移的氧化还原反应:
HO
OH + Fe
2+
HO + OH + Fe3+
-
2)自由基的活性
a. 不稳定原因 b. 影响活性的因素:共轭效应,吸电子诱导效应,位阻效应 c. 活性顺序 d.适合自由基聚合的活性范围(与单体的活性有关)
双键断裂能 例如:乙烯 ⊿ Ef=ε m+ε p=607 - 2×347.7 = - 88.4 kJ.mol -1 (实测值? H=-95 kJ.mol -1)
化学键键能
化学键 键能 (kJ/mol) 138.9 160.7 259.4 291.6 化学键 键能 (kJ/mol) 328.4 347.7 351.5 390.8 化学键 键能 (kJ/mol) 413.4 436.0 462.8 607

第三章自由基共聚合

第三章自由基共聚合

无规共聚物名称中,放在前面的单体为主单体,后为第二单体 如:氯乙烯-co-醋酸乙烯酯共聚物 嵌段共聚物名称中的前后单体代表聚合的次序 接枝共聚物名称中,前面的单体为主链,后面的单体为支链 如:聚丙烯-g-丙烯酸
三 、研究共聚反应的意义 ⒈ 对聚合物进行改性
通过共聚,可以改善聚合物的许多性能,如机械性能、 弹性塑性、柔顺性、玻璃化温度、塑化温度、熔点、 溶解性能、染色性能和表面性能等等。性能改变的程 度与第二、第三单体的种类、数量以及单体单元的排 布方式有关。
M1代表丁二烯单体单元,M2代表苯乙烯单体单元。
(2)大分子主链上含M1单体单元(或也含M2单体单元),支链上含M2,M3两种单 单元。如ABS树脂
M1M1M1 M1M1M1M1 M2M2M3 M1M1M1M1M1 M3M3M2M2
M1代表丁二烯(B)单体单元,M2代表丙烯腈(A)单体单元, M3代表苯乙烯 (S)单体单元。
共聚物的命名:
聚- 两单体名称以短线相连,前面加“聚”字 如聚丁二烯-苯乙烯 -共聚物 两单体名称以短线相连,后面加“共聚物” 如乙烯-丙烯 共聚物、氯乙烯-醋酸乙烯共聚物

在两单体间插入符号表明共聚物的类型 co alt b g copolymer 无规 alternating 交替(alternate交替的, 轮流的) block 嵌段(block [blCk] 木块, 石块, 块, 街区) graft 接枝(graft 嫁接, (接技用的)嫩枝)
主单体 乙烯 乙烯 异丁烯 丁二烯 丁二烯 苯乙烯 氯乙烯 MMA 丙烯腈
第二单体 丙烯 苯乙烯 丙烯腈 丙烯腈
改进的性能和主要用途 破坏结晶,增加柔性和弹性。其为乙丙橡胶。 增加强度。其为通用橡胶。 增加耐油性。其为丁-苯橡胶。 提高抗冲性能。其为增韧塑料。

第三章自由基聚合工艺

第三章自由基聚合工艺
第3章 自由基聚合生产工艺
3.1 自由基聚合工艺基础 3.2 本体聚合生产工艺 3.3 悬浮聚合生产工艺 3.4 溶液聚合生产工艺 3.5 乳液聚合生产工艺
3.1 自由基聚合工艺基础
◆自由基聚合反应是当前高分子合成工业中应用最广泛 的化学反应之一
◆自由基聚合反应适用单体:乙烯基单体、二烯烃类单 体
影响聚合物平均分子量的主要因素:反应温度、引发 剂浓度和单体浓度、链转移剂的种类和用量
(1)聚合反应温度升高,所得聚合物的平均分子量降低 (2)引发剂用量对聚合物平均分子量发生显著的影响。
(动力学链长V=K[M]/[I]0.5
(3)链转移反应导致所得聚合物的分子量显著降低,对 获得高分子量聚合物不利,但可用来控制产品的平均 分子量,甚至还可用来控制产品的分子量。
混炼后用于成型 注塑成型用 假牙齿、牙托等
聚合物溶液 直接用于纺丝或溶解后
或颗粒
纺丝
聚合物溶液 直接用来转化为聚乙烯 醇
表2 四种聚合方法的工艺特点
聚合方法
聚合 主要操作方式 过程 反应温度控制
单体转换率 分离 工序复杂程度 回收 及后 动力消耗 处理 过程 产品纯度
废水废气
本体聚 乳液聚合 合
连续 连续
7.氯乙烯自由聚合时,聚合速率用 引发剂用量 调 节,而聚合物的相对分子质量用 聚合温度 控制。
第3章 自由基聚合生产工艺
3.1 自由基聚合工艺基础 3.2 本体聚合生产工艺 3.3 悬浮聚合生产工艺 3.4 溶液聚合生产工艺 3.5 乳液聚合生产工艺
3.2 本体聚合生产工艺
本体聚合:单体中加有少量引发剂或不加引发剂依赖热 引发,而无其他反应介质存在的聚合实施方法。
① 过氧化物类
通式:R-O-O-H 或 R-O-O-R (R可为烷基、芳基、酰基、碳酸酯基、磺酰基等)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章自由基聚合思考题3.2 下列烯类单体适用于何种机理聚合?自由基聚合、阳离子聚合还是阴离子聚合?并说明原因。

(1)CH2——CHCl (2)CH2=CCl2(3)CH2=CHCN(4)CH2=C(CN)2(5)CH2=CHCH3(6)CH2=C(CH3)2(7)CH2=CHC6H5(8)CF2=CF2(9)CH2=C(CN)COOR (10)CH2=C(CH3)-CH=CH2答可以通过列表说明各单体的聚合机理,如下表:思考题3.3 下列单体能否进行自由基聚合,并说明原因。

(1)CH2=C(C6H5)2(2)CH3CH=CHCOOCH3(3)CH2=C(CH3)C2H5(4)ClCH=CHCl (5)CH2=CHOCOCH3(6)CH2=C(CH3)COOCH3(7)CH3CH=CHCH3(8)CF2=CFCl答(1) CH2=C(C6H5)2不能进行自由基聚合,因为l,1-双取代的取代基空间位阻大,只形成二聚体。

(2) CH3CH=CHCOOCH3不能进行自由基聚合,因为1,2-双取代,单体结构对称,空间阻碍大。

(3) CH2=C(CH3)C2H5不能进行自由基聚合,两个取代基均为供电基团,只能进行阳离子聚合。

(4)ClCH=CHCl不能进行自由基聚合,因为1,2-双取代,单体结构对称,空间阻碍大。

(5)CH2=CHOCOCH3能进行自由基聚合,因为-COCH3为吸电子基团,利于自由基聚合。

(6) CH2=C(CH3)COOCH3能进行自由基聚合,因为l,1-双取代,极化程度大,甲基体积小,为供电子基团,而-COOCH3为吸电子基团,共轭效应使自由基稳定。

(7) CH3CH=CHCH3不能进行自由基聚合,因为1,2-双取代,单体结构对称空间阻碍大。

(8) CF2=CFCl能进行自由基聚合,F原子体积小,Cl有弱吸电子作用。

思考题3.7为什么说传统自由基聚合的机理特征是慢引发、快增长、速终止?在聚合过程中,聚合物的聚合度、转化率,聚合产物中的物种变化趋向如何?答自由基聚合机理由链引发、链增长、链终止等基元反应组成,链引发是形成单体自由基(活性种)的反应,引发剂引发由2步反应组成,第一步为引发剂分解,形成初级自由基,第二步为初级自由基与单体加成,形成单体自由基。

以上2步反应动力学行为有所不同。

第一步引发剂分解是吸热反应,活化能高,反应速率和分解速率常数小。

第二步是放热反应,活化能低,反应速率大,因此总引发速率由第一步反应控制。

链增长是单体自由基打开烯类分子的丌键,加成,形成新自由基,新自由基的活性并不衰减,继续与烯类单体连锁加成,形成结构单元更多的链自由基的过程。

链增长反应活化能低,约20~34kJ·mol-1,增长极快。

链终止是自由基相互作用而终止的反应。

链终止活化能很低,仅8-21kJ·mol-1,甚至低至零。

终止速率常数极高,为106~108L·mol-1。

比较上述三种反应的相对难易程度,可以将传统自由基聚合的机理特征描述成慢引发、快增长、速终止。

在自由基聚合过程中,只有链增长反应才使聚合度增加,增长极快,ls内就可使聚合度增长到成千上万,不能停留在中间阶段。

因此反应产物中除少量引发剂外,仅由单体和聚合物组成。

前后生成的聚合物分子量变化不大,随着聚合的进行,单体浓度渐降,转化率逐渐升高,聚合物浓度相应增加。

延长聚合时间主要是提高转化率。

聚合过程体系黏度增加,将使速率和分子量同时增加。

思考题3.8 过氧化二苯甲酰和偶氮二异丁腈是常用的引发剂,有几种方法可以促使其分解成自由基?写出分解反应式。

这两种引发剂的诱导分解和笼蔽效应有何特点,对引发剂效率的影响如何?答加热和光照两种方法可以促使过氧化二苯甲酰和偶氮二异丁腈分解成自由基。

分解反应式如下。

过氧化二苯甲酰:C6H5C O O CC6H5 O O C6H5C OOC6H5+CO2偶氮二异丁腈:(CH3)2CN=NC(CH3)2CN CN+ (CH3)2CCNN2过氧化二苯甲酰容易发生诱导分解,偶氮二异丁腈一般没有或仅有微量诱导分解。

偶氮二异丁腈的笼蔽效应有副反应。

过氧化二苯甲酰分解及其副反应更复杂一些,按两步分解,先后形成苯甲酸基和苯基自由基,有可能再反应成苯甲酸苯酯和联苯。

诱导分解和笼蔽效应两者都使引发剂引发效率降低。

思考题3.9 大致说明下列引发剂的使用温度范围,并写出分解方程式:(1)异丙苯过氧化氢;(2)过氧化十二酰;(3)过氧化碳酸二环己酯;(4)过硫酸钾-亚铁盐;(5)过氧化二苯甲酰-二甲基苯胺。

答(1)异丙苯过氧化氢,使用温度范围为高温(>100℃)(2)过氧化十二酰,使用温度范围为中温(40~100℃)(3)过氧化碳酸二环己酯,使用温度范围为低温(40~60℃):(4)过硫酸钾—亚铁盐,使用温度范围为低温(-10-40℃):(5)过氧化二苯甲酰—二甲基苯胺,使用温度范围为低温(-10-40℃):思考题3.10 评述下列烯类单体自由基聚合所选用的引发剂和温度条件是否合理。

如有错误,试作纠正。

答表中苯乙烯的聚合温度不合理。

因为过氧化二苯甲酰的适合温度为40-100℃,引发苯乙烯聚合时,120℃的聚合温度太高,短期内引发剂分解完。

表中氯乙烯的聚合条件合理。

偶氮二异丁腈的适合使用温度为40-100 00,引发氯乙烯聚合时,若聚合温度在50℃时是合理的。

丙烯酸酯类的溶液共聚中使用的引发剂和聚合温度不合理。

因为丙烯酸酯类的溶液共聚需要油溶性引发剂,聚合过程中选用水溶性氧化还原体系(硫酸钾-亚硫酸钠)作为引发体系,并且在较高的使用温度(70℃)下使用不合理。

可换成过氧化二苯甲酰作为引发剂,聚合温度70℃。

四氟乙烯聚合采用过硫酸钾作引发剂,40℃的聚合温度偏低,应适当提高温度。

或者聚合温度不变,采用过硫酸钾-亚硫酸钠作引发体系。

思考题3.13推导自由基聚合动力学方程时,作了哪些基本假定?一般聚合速率与引发速率(引发剂浓度)的平方根成正比(0.5级),是哪一机理(链引发或链终止)造成的?什么条件会产生0.5~1级、一级或零级?答(1)推导自由基聚合动力学方程时,作了以下三个基本假定。

①等活性假定:链自由基的活性与链的长短无关,各步链增长速率常数相等。

②聚合度很大(长链假定):链引发所消耗的单体远小于链增长所消耗的单体。

③稳态假定:自由基的总浓度保持不变,呈稳态。

即自由基的生成速率等于自由基的消耗速率。

’(2)聚合速率与引发剂浓度平方根成正比是双基终止的结果。

单基和双基终止并存时,则反应级数介于0.5~l之间,聚合速率与引发剂浓度呈0.5-1级反应。

若为单基终止,则聚合速率与引发剂浓度成正比,呈一级反应。

若不为引发剂引发,聚合速率与引发剂浓度无关,呈零级反应。

思考题3.14 氯乙烯、苯乙烯、甲基丙烯酸甲酯聚合时,都存在自动加速现象,三者有何异同?这三种单体聚合的链终止方式有何不同?氯乙烯聚合时,选用半衰期约2h的引发剂,可望接近匀速反应,解释其原因。

答聚合反应体系黏度随着转化率而升高是产生自动加速现象的根本原因,黏度升高导致大分子链端自由基被非活性的分子链包围甚至包裹,自由基之间的双基终止变得困难,体系中自由基的消耗速率减少而自由基的产生速率却变化不大,最终导致自由基浓度的迅速升高,此时单体的增长速率常数变化不大,其结果是聚合反应速率迅速增大,体系温度升高,其结果又反馈回来使引发剂分解速率加快,这就导致了自由基浓度的进一步升高。

氯乙烯、苯乙烯、甲基丙烯酸甲酯聚合时,都存在自动加速现象,但三者出现自动加速效应的程度不同。

氯乙烯的聚合为沉淀聚合,在聚合一开始就出现自动加速现象。

苯乙烯是聚苯乙烯的良溶剂,在转化率达到30%才开始出现自动加速现象。

而MMA是PMMA的不良溶剂,在转化率达到10%-15%时出现自动加速现象。

自动加速效应的程度为:氯乙烯>甲基丙烯酸甲酯>苯乙烯。

氯乙烯、苯乙烯、甲基丙烯酸甲酯聚合时具有不同的链终止方式。

氯乙烯主要以向单体转移终止为主;苯乙烯以偶合终止为主;MMA偶合终止及歧化终止均有,随温度升高,歧化终止所占比例增加。

自由基聚合速率由两部分组成:①正常速率,随单体浓度降低而逐渐减小;②因凝胶效应而自动加速,如引发剂的半衰期选用得当,可使正常聚合减速部分与自动加速部分互补,达到匀速。

氯乙烯悬浮聚合中选用半衰期为2h的引发剂可达到此效果,使反应匀速进行。

思考题3.15 建立数量和单位概念:引发剂分解、链引发、链增长、链终止诸基元反应的速率常数和活化能,单体、引发剂和自由基浓度,自由基寿命等。

剖析和比较微观和宏观体系的链增长速率、链终止速率和总速率。

解从教材中可查得,Ri=10-8~10-10mo1·L-1·s-1,增长速率Rp=10-4~10-6mo1·L-1·s-1,终止速率Rt=10-8~10-10 mo1·L-1·s-1。

比较结果可以看出,增长速率远大于引发速率,因此聚合速率由引发速率来控制。

增长速率要比终止速率大3~5个数量级。

这样,才能形成高聚合度的聚合物。

思考题3.16 在自由基溶液聚合中,单体浓度增加10倍,求:(1)对聚合速率的影响;(2)数均聚合度的变化。

如果保持单体浓度不变,欲使引发剂浓度减半,求:(3)聚合速率的变化;(4)数均聚合度的变化。

答 (1)从速率方程可见,速率与单体浓度成正比,即单体浓度增加土10倍,聚合速率也将增加10倍。

(2)从下式可见,其他条件不变时,单体浓度增加10倍,数均聚合度也增加10倍。

D C R R R Xn I M k fk k td tc pt d p+=+=⨯=2/2/][)(22/12/1νν(3)保持单体浓度不变,欲使引发剂浓度减半,则聚合速率变为原来的0.707倍。

(4)若单体浓度不变,而使引发剂浓度减半,分子量是原来的0.707倍。

思考题3.17 动力学链长的定义是什么?与平均聚合度有何关系?链转移反应对动力学链长和聚合度有何影响?试举2-3例说明利用链转移反应来控制聚合度的工业应用,试用链转移常数数值来帮助说明。

答 动力学链长:每个活性种从引发到终止所消耗的单体分子数定义为动力学链长。

平均聚合度为每个大分子链上所连接的单体分子数,是增长速率与形成大分子的所有终止速率(包括链转移终止)之比。

当体系无链转移反应时,有D C R R R Xn td tc p+=+=2/2/νC 、D 分别为偶合终止和歧化终止的比例。

链转移反应对动力学链长和平均聚合度具有不同的影响。

链转移反应对动力学链长没有影响,因为链转移后,动力学链尚未终止,因此动力学链长应该是每个初级自由基自链引发开始到活性中心真正死亡为止所消耗的单体分子数。

相关文档
最新文档