轻型井点降水计算
轻型井点降水的施工方案

轻型井点降水的施工方案一、轻型井点降水介绍沿基坑四周每隔肯定间距布设井点管,井点管底部设置滤水管插入透水层,上部接软管与集水总管进行连接,集水总管为Φ150钢管,周身设置与井点管间距相同的Φ40吸水管口,然后通过真空吸水泵将集水管内水抽出,从而达到降低基坑四周地下水位的效果,保证了基底的干燥无水。
水井大致分为四大类,无压完整井、无压非完整井、承压完整井、承压非完整井。
二、适用范围适用于渗透系数为0.1~50m/d的土层中。
降水深度为:单级井点3~6m,多级井点6~12m三、基坑涌水量计算计算公式:式中:Q基:基坑基本排水量K:粘土层渗透系数,K=0.10m/d。
四、井点计算式中:q——单井出水本领(m3/d)r0——过滤管半径=0.025ml——滤管进水部分长度=2m井点数及井距采纳公式:井数:n=1.1Q/q根平均井间距b=L*m/n式中:L——基坑周长n——井点根数五、井点降水工艺及技术措施降水井成孔采纳冲孔机械成孔,但由于冲击成孔效率较低,先由人工先清理块石层障碍,再布置冲击钻机进场。
1、管井成孔工艺场地平整→井位放线→人工清理块石障碍→复核桩位→开挖浆池、浆沟→护筒埋设→桩机就位、孔位校正→冲击造孔、泥浆循环、清除废浆、泥渣→终孔验收→下滤水井管和填充砂砾。
2、降水运行(1)可采纳分次降水,即边抽水边进行土方开挖,以使水位缓缓平稳下降,因猛烈水位下降会加添沉降量,避开导致相邻建筑物及道路损坏。
(2)严禁挖土机、吊车等设备撞击降水管、排水管线、电缆等。
(3)降水要保证昼夜连续运转,防止因停泵使水位上升,造成“涌槽”事故,现场要配备备用电源(现场配备2台300KW发电机组)。
(4)设多个闸箱,单闸单箱单机。
(5)专人巡查,发觉停泵,立刻处理。
(6)降水结束需缓慢稳定抬升水位必具备两个条件:一是建筑物基础工程必需施工完毕,二是建筑物荷载大于地下水上顶托力,充足抗浮设计要求。
3、降水动态观测(l)降水开始后即对地下水位进行全面的观测记录,以便随时获得水位降落信息。
轻型井点降水水量计算公式

轻型井点降水水量计算公式轻型井点降水水量计算公式是用来计算轻型井点降水水量的数学公式。
轻型井点降水是指在短时间内,降水量较大但降水时间较短的降水现象,通常会导致城市内涝和山洪灾害。
因此,对于轻型井点降水的水量进行准确的计算和预测非常重要。
轻型井点降水水量计算公式通常包括降水强度、降水时间和降水面积等参数。
一般来说,轻型井点降水水量计算公式可以分为两种情况,一种是在没有降水记录的情况下,根据气象数据和地理信息来估算轻型井点降水水量;另一种是在已经有降水记录的情况下,根据实测数据来计算轻型井点降水水量。
在没有降水记录的情况下,可以使用以下的轻型井点降水水量计算公式:Q = P × A。
其中,Q代表降水水量,单位为立方米;P代表降水强度,单位为毫米/小时;A代表降水面积,单位为平方千米。
在已经有降水记录的情况下,可以使用以下的轻型井点降水水量计算公式:Q = P × T × A。
其中,Q代表降水水量,单位为立方米;P代表降水强度,单位为毫米/小时;T代表降水时间,单位为小时;A代表降水面积,单位为平方千米。
通过以上的轻型井点降水水量计算公式,我们可以比较准确地计算出轻型井点降水的水量。
在实际应用中,我们可以根据气象数据和地理信息来估算轻型井点降水水量,也可以根据实测数据来计算轻型井点降水水量。
这些计算结果对于城市防汛和山洪灾害的防治具有重要的意义。
除了轻型井点降水水量计算公式外,还有一些其他的因素也需要考虑。
例如,地表的渗透能力、排水系统的状况、地形地势等因素都会影响轻型井点降水的水量。
因此,在实际应用中,我们还需要综合考虑这些因素,才能更加准确地预测和计算轻型井点降水的水量。
总之,轻型井点降水水量计算公式是一个非常重要的工具,可以帮助我们准确地计算和预测轻型井点降水的水量。
通过合理地应用这些计算公式,我们可以更好地预防和应对城市内涝和山洪灾害,保障人民生命财产的安全。
希望未来能够进一步完善和改进轻型井点降水水量计算公式,为城市防汛和山洪灾害的防治提供更加可靠的技术支持。
1.轻型井点降水

【例1】某工程基坑坑底面积为40 × 20m ,深 6.0m ,地下水位在地面下2.0m ,不透水层在地面下 12.3m ,渗透系数K = 15m/d ,基坑四边放坡,边坡拟为 1:0.5 ,现拟采用轻型井点降水降低地下水位,井点系统最大抽水深度为 7.0m ,要求:( 1 )绘制井点系统的平面和高程布置(滤管采用直径0.051m,长度1.5m)( 2 )计算涌水量高程信息题目解答思路:一、首先进行高程布置(目的:1根据所给管的条件确定埋管的位置2根据排水能力找到△h,使之为正数,保证不会出现坑底渗水情况)核心公式:h ≥ h 1 + △h + iL二、计算涌水量(目的:这是为了,为进行平面布置做准备)核心公式三、最后进行平面布置(目的:根据每个管的排水量计算管数,再确定间距,最后总长不能大于周长。
)核心公式:四、解:( 1 )高程布置基坑面积较大,所以采用环形布置,因最大抽水深度为 7.0m ,故采用 7m 井点管。
i =0.1 (i ―― 水力坡度。
对单排布置的井点,i 取 1/4-1/5 ;对双排布置的井点,i 取 1/7 ;对 U 形或环形布置的井点,i 取 1/10 。
)h ≥ h1+ △ h + iL (h ―― 井点管埋深, m;h 1―― 总管埋设面至基底的距离, m ;Δh ―― 基底至降低后的地下水位线的距离,m ; i ―― 水力坡度。
对单排布置的井点,i 取 1/4~1/5 ;对双排布置的井点,i 取 1/7 ;对 U 形或环形布置的井点,i 取 1/10;L ―― 井点管至水井中心的水平距离,当井点管为单排布置时, L 为井点管至对边坡角的水平距离, m)h =7m, h1=6m, iL =0.1×(10+6×0.5+0.7)=1.37mh1+ △ h + iL =6+0.5+1.37=7.87m( 大于井点抽水深度 7m)由于基坑较深,故基坑边开挖 1m 以降低总管埋设面(就是图中挖去的缺口处)h =7m, h1=5m, iL =0.1×(10+5×0.5+0.7)=1.32m△ h =7-5-1.32 = 0.68m, 满足要求(保证△ h是正数,使基坑内不会渗出水)( 2 )涌水量计算F = (40+2 × 5 × 0.5+2 × 0.7 )×(20+2 × 5 × 0.5+2 × 0.7 )=46.4 × 26.4 = 1224.96m2(F ―― 环形井点所包围的面积)m (假想半径)m(R--抽水影响半径近似计算值,m;S ——井点管处水位降落值, m;H—水面到不透水层距离;K—渗透系数)R ′ = x+ R =19.75+145.4=165.15m (R' ―― 群井降水影响半径)采用的滤管长度为 1.5mS /( S + l )=6/ (6+1.5)=0.8 (I ―― 滤管长度,按照实际情况和经验取)H=1.84( S + l )=1.84 × (6+1.5)=13.8m> H = 10.3m (H0--有效含水深度;有效含水深度H 0的意义是,抽水是在H 0范围内受到抽水影响,而假定在H 0以下的水不受抽水影响,因而也可将H 0视为抽水影响深度。
轻型井点降水计算

一பைடு நூலகம்计算参数
基坑平面尺寸
长
m
宽
m
深
m
长/宽=
地下水深
m
渗透系数
含水层厚度
m
降水深度
m
二、计算
1、井点管的长度
H≥H1+h+iL+l=
m
其中: H:井点管的埋置深度
H1:井点管埋设面至基坑底面的距离
h:基坑中央最深挖掘面至降水曲线最高点的安全距离
1.0
L:井点管中心至基坑中心短边距离
i:降水曲线坡度,与土的渗透系数、地下水流量等因素有关
l:滤水管长度
井点管的长度=H+0.5l+0.3=
其中: 0.2-0.3:井点管露出地面高度
2、井点型式的确定
3、基坑总涌水量计算 无压完整井
Q=1.366K(2H-S)S/(lgR-lgr)= 其中: Q:单井涌水量(m3/d)
K:渗透系数(m/d) H:含水层厚度(m) R:抽水影响半径(m)
R=1.95S(HK)1/2= S:水位降低值(m) r:井点的半径(m) 群井井点(环形井点系统)涌水量 Q=1.366K(2H-S)S/(lgR-lgx0)= 其中: x0:基坑的假想半径 x0=(A/π )1/2=
无压非完整井 Q=1.366K(2H0-S)S/(lgR-lgx0)=
井点降水之轻型井点降水

井点降水之轻型井点降水发表时间:2014-06-19井点降水:基坑开挖前,在基坑四周预先埋设一定数量的滤水管(井),在基坑开挖前和开挖过程中,利用抽水设备不断抽出地下水,使地下水位降到坑底以下,直至土方和基础工程施工结束为止。
井点降水有两类:一类为轻型井点(包括电渗井点与喷射井点);另一类为管井点(深井泵)。
对不同的土质应采用不同的降水形式,表1.16为常用的降水形式。
表1.16 降水类型及适用条件轻型井点(图1.17)就是沿基坑周围或一侧以一定间距将井点管(下端为滤管)埋入蓄水层内,井点管上部与总管连接,利用抽水设备将地下水经滤管进入井管,经总管不断抽出,从而将地下水位降至坑底以下。
轻型井点法适用于土壤的渗透系数为0.1~50m/d的土层中;降低水位深度:一级轻型井点3~6m,二级井点可达6~9m。
轻型井点设备由管路系统和抽水设备组成。
管路系统包括滤管、井点管、弯联管及总管等。
滤管(图1.18)为进水设备,其构造是否合理对抽水设备影响很大。
1、轻型井点的布置当基坑或沟槽宽度小于6m,水位降低深度不超过5m时,可用单排线状井点布置在地下水流的上游一侧,两端延伸长度一般不小于沟槽宽度(图1.19)。
在考虑到抽水设备的水头损失以后,井点降水深度一般不超过6m。
井点管的埋设深度H(不包括滤管)按下式计算(图1.19(b)):H≥H1+h+iL (1.14)式中H1——井点管埋设面至基坑底的距离,m;h——基坑中心处坑底面(单排井点时,为远离井点一侧坑底边缘)至降低后地下水位的距离,一般为0.5~1.0m;i——地下水降落坡度;环状井点为1/10,单排线状井点为1/4;L——井点管至基坑中心的水平距离(单排井点中为井点管至基坑另一侧的水平距离),m。
如宽度大于6m或土质不定,渗透系数较大时,宜用双排井点,面积较大的基坑宜用环状井点(图1.20);为便于挖土机械和运输车辆出入基坑,可不封闭,布置为U形环状井点。
轻型井点降水方案(完整版)

轻型井点降水施工方案XX工程公司年月日目录一、工程概况···································································2二、编制依据····································································2三、降水方案选择·······························································2四、井点降水相关计算·························································3五、主要降水设备·······························································6六、施工工期·····································································7七、井点施工方法·······························································7八、质量标准及质量保证措施················································8九、危险点分析································································10十、安全生产及文明施工措施···············································10 十一、环保措施································································11一、工程概况本期设计为2×600MW亚临界汽轮发电机组。
轻型井点降水

摘要:轻型井点降水速度快,施工简便,安全可靠,水位方便控制,已越来越被人们广泛的应用.本文结合某厂房工程成功的工程实例作简要介绍.关键字:轻型井点,降水在基础工程施工中经常会遇到地下水的问题,特别是在市区繁华地段施工,基坑面积大,深度大时更为棘手,如果施工措施不当,就会造成不同程度的经济损失和人员伤亡,这种情况屡见不鲜。
轻型井点是沿基坑四周每隔一定距离埋入井点管(直径38--51MM,长5--7M的钢管)至蓄水层内,利用抽水设备将地下水从井点管内不停抽出,使原有地下水降至坑底以下。
在施工过程中要不断的抽水,直至施工完毕。
工程概况:某厂房设备基础施工,基坑底宽8m,长12m,基坑深4.5m,挖土边坡1:0.5,基坑平、剖面如下图所示。
经地质勘探,天然地面以下1m为亚粘土,其下有8m厚细砂层,渗透系数K=8m/d,细砂层以下为不透水的粘土层。
地下水位标高为-1.5m。
采用轻型井点法降低地下水位。
一、轻型井点的设计轻型井点降水法施工的计算步骤为:1)确定井点系统的布置方式(平面布置和高程布置)。
2)计算涌水量。
3)计算井点数量和井距。
4)抽水设备选用。
1)井点系统的布置根据本工程地质情况和平面形状,轻型井点选用环形布置。
为使总管接近地下水位,表层土挖去0.5m,则基坑上口平面尺寸为12m×16m,布置环形井点。
总管距基坑边缘1m,总管长度L=[(12+2)+(16+2)]×2=64(m)水位降低值S=4.5-1.5+0.5=3.5(m)采用一级轻型井点,井点管的埋设深度(总管平台面至井点管下口,不包括滤管)HA³H1+h+IL=4.0+0.5+×()=5.2(m)采用6m长的井点管,直径50mm,滤管长1.0m。
井点管外露地面0.2m,埋入土中5.8m (不包括滤管)大于5.2m,符合埋深要求。
井点管及滤管长6+1=7m,滤管底部距不透水层1.70m((1+8)-(1.5+4.8+1)=1.7),基坑长宽比小于5,可按无压非完整井环形井点系统计算。
轻型井点降水施工方案(含计算书)

轻型井点降水施工方案一、工程概况主要结构类型:16#~18#、24#~26#楼为剪力墙结构,21#楼(运动中心)为框架结构。
建筑面积:约11万平方米抗震等级:24#楼为抗震等级为三级,抗震构造措施的抗震等级为二级;16#、17#、18#、21#楼抗震等级为二级,抗震构造措施的抗震等级为一级。
土质、水位:本工程土质为粉质粘土。
抗浮设计水位绝对标高为0.7米,该地下水对混凝土结构及钢筋混凝土结构中的钢筋具有微腐蚀性,工程施工时严禁采用地下水。
二、场区水文地质条件勘察期间,在勘探深度范围内各孔均见地下水,地下水类型主要为①耕植土、②粉质粘土层中的上层滞水和③粉砂层及以下砂层中的孔隙潜水。
补给来源主要为大气降水及海水补给。
勘察期间为枯水期,稳定水位埋深0.2~1.2m,稳定水位标高0.49~0.97m,地下水位受季节降水量控制,年变化幅度在1~1.5m左右,每年的7~9月份为丰水期,地下水最高水位出现在8~9月份。
三、降水方案确定本工程场区地面绝对标高为2.45~3.74米,建筑室内地面标高(±0.000)相当于绝对标高:24#楼为 4.20;25#楼、26#楼为4.95;16#楼为4.65;17#楼、18#楼为4.95;21#楼(运动中心)为4.35。
基坑底标高(相对标高)为-6.2~-7.5米,基坑开挖深度为 4.23~6.45米,降水深度为 4.73~6.95米,水位下降高度2.35~3.64米。
根据该场区水文地质条件,结合本工程各单体结构特点拟采用以下降水方案:16#、17#、18#、24#、25#、26#楼采用一级轻型井点降水及临轻型井点降水的方法将地下水位降低至满足工程要求。
21#楼(运动中心)由于基坑开挖面积大,开挖深度较深,近6.5米,降水深度较大约6.95米,采用一级轻型井点降水满足不了实际降水需要,因此运动中心将采用二级轻型井点降水,沿开挖基坑周边分两次布置两级降水井进行降水以满足施工需要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无压非完整井 其中: Q=1.366K(2H0-S)S/(lgR-lgx0)= 915.49 m3/天 K:渗透系数(m/d) H0:抽水影响深度(m) H0=1.85(S'+l)= X0:环状轻型井点假象半径 X0=(F/π )0.5 R=1.95S(H0K)^0.5= R:抽水影响半径(m)
6.94 m 3.95 m 67.52 m
2.5 1.0 3.5 0.1 1
பைடு நூலகம்
m m m m
3、基坑总涌水量计算 无压完整井 Q=1.366K(2H-S)S/(lgR-lgr)= 其中: Q:单井涌水量(m3/d) K:渗透系数(m/d)
H:含水层厚度(m) R:抽水影响半径(m) R=1.95S(HK)1/2= S:水位降低值(m) r:井点的半径(m) 群井井点(环形井点系统)涌水量 Q=1.366K(2H-S)S/(lgR-lgx0)= 其中: x0:基坑的假想半径 x0=(A/π )1/2=
轻型井点降水计算
一、基础降水计算
1581/冷媒储罐基坑平面尺寸
KF002 宽 7m
地下水位 基坑底部高程 地下水深 渗透系数K 含水层厚度
长 深 长/宽= -0.7 -2.1 15 30 35
7m 2.1 m 1 m m m m/d m
水位降低值S 降水深度S’
2.4 m 2.75 m
二、计算 1、井点管的长度 管的埋置深度H≥H1+h+iL+l= 4.85 m H:井点管的埋置深度 其中: H1:井点管埋设面至基坑底面的距离 h:基坑中央最深挖掘面至降水曲线最高点的安全距离 L:井点管中心至基坑中心短边距离 i:降水曲线坡度,与土的渗透系数、地下水流量等因素有关 l:滤水管长度 井点管的长度=H+0.3= 5.15 m 0.2-0.3:井点管露出地面高度 其中: 2、井点型式的确定
33.1728142 m3/天 mm 根 m
水泵所需流量Q1=1.1Q/n= 503.52 m3/天= 3.75 m
##### m3/h
其中:S':降水深度(m) l:滤管长度(m) F:井点包圈面积(m2) S:水位降低值
4、井点数量和井距确定 单根井管出水量计算公式:q=68π dlK1/3= 其中: d:滤管直径 50 l:滤管长度 井点管根数N计算:N=1.1Q/q= 31.0 井点间距D:D=2*(长+宽)/N= 0.90 5、水泵所需流量及吸水扬程 水泵个数n: 2个 吸水扬程:Hs=S’+1=