八年级数学上册--平面内点的坐标第1课时 平面直角坐标系及点的坐标 学案(沪科版)
沪科版数学8年级上册教案11.1 平面上的点的坐标

11.1 平面上的点的坐标(第1课时)
方格纸上建立重点:。
用
)在电影院中,每一个座位都编了号码,每一号”的同学能坐
2.
下面是根据教室平面图写的通知的内容
)假设我们约定“列数在前,排数在2,4
2.
11.1 平面上的点的坐标(第2课时)
位置。
的位置写出它的坐标。
经历画坐标系、描点及由点找坐标的过程,发展点:在给定的直角坐标系中会根据坐标描出点的
路
的引入
左侧的第二盏路灯处,你能说出小兵在数轴上对应
)如果小兵站在一个长方形的
操场上,你用什么方法可以确定小兵
D
我们可以画一些纵横交错的直线,便于标记每一条
绍笛卡尔的有关故事。
,一边介绍平面直角坐标系、
式的课堂小结,把本节课的知识要点“
11.1 平面上的点的坐标(第3课时)
平面直角坐标系,
习引入
E
注意:坐标轴上的点不属于任何象限。
它的坐标的符号之间的关系。
面,然后分组讨论,回答下列问题:
(
轴的正半轴上的点的横坐标为正数,纵
条坐标轴上?
3
-3
11.1 平面上的点的坐标(第4课时)
内容
11.1
位置写出它的坐标。
教学准备。
的?
轴,以正北方向为
)建立坐标系,选择一个适当的参照点为原
例尺,在坐标位长度;
说明:让学生感受定位方法,明确定位方法的多象概括奠定基础;
关系。
3。
沪科版八年级上册 数学 教案 11.1 平面内点的坐标

11.1 平面内点的坐标(1)教学目标:1、通过实际问题及对小学内容“确定位置”的回顾抽象出平面直角坐标系及其相关概念,让学生认识平面直角坐标系、原点、坐标轴、象限及各象限点的坐标符号特点;会由坐标描点,由点求坐标;让学生体会到平面内的点与有序实数对是一一对应的。
2、经历动手画平面直角坐标系、由点求坐标和由坐标描点的过程,发展学生观察、分析、抽象、概括的能力,进一步渗透数形结合的思想。
3、让学生在探究过程中,体会到能够为一些简单的实际问题建立平面直角坐标系,感受数学来源于生活并服务于生活。
教学重点:平面直角坐标系的建立及相关概念。
教学难点:平面内的点与有序实数对的一一对应关系,以及在平面直角坐标系中会由点求坐标和由坐标描点。
教学过程:一、创设情境,引入新知复习七上学习的数轴的概念及数轴的三要素:原点、正方向和单位长度,通过数轴,将直线上的点和实数建立了一一对应的关系,数轴上的每一个点都可以用唯一一个实数来表示,请问,平面上的任意点P能用一个实数表示吗?又该如何描述平面上的点P的位置呢?其实生活中也经常遇到确定位置的问题,到电影院看电影,只告诉你3排,你能找到座位吗?再加上6号呢?3排6号这两个数据可以描述一个座位。
展示学生熟悉的小学五年级下册课本中“确定位置”的内容,4列3排可以用数对(4,3)表示。
问题:展示一实校中山校区部分建筑的平面图,你能用数据描述各个位置吗?引出课题——11.1 平面内点的坐标。
二、合作交流,探索新知(一)数学中,为了确定平面内一个点的位置,我们先在平面内画两条互相垂直并且原点重合的数轴,水平的数轴叫x轴或横轴,取向右为正方向;垂直的数轴叫做y轴或者纵轴,取向上为正方向;两轴交点O为原点。
这样就建立了平面直角坐标系。
这个平面叫做坐标平面。
练习:1.辨识坐标系2.在一实校初中校区平面图中选择适当的原点建立平面直角坐标系(二)有了平面直角坐标系,平面内的点就可以用一对实数来表示了。
八年级数学上册第11章平面直角坐标系课题平面内点的坐标学案新版沪科版

课题:平面内点的坐标【学习目标】理解平面直角坐标系及其相关概念,体会平面内的点与有序实数对之间的对应关系.【学习重点】能够在给定的直角坐标系中由坐标描点,由点写出坐标;正确认识平面直角坐标系,能由点写出坐标,由坐标描点.【学习难点】理解各象限内坐标的符号及各坐标轴上点坐标的特点.行为提示:创景设疑,帮助学生知道本节课学什么.行为提示:教会学生看书,自学时对于书中的问题一定要认真探究,书写答案.教会学生落实重点.方法指导:范例中求点A的坐标:由点A向x轴作垂线,垂足在x轴上的坐标2就是点A的横坐标;由点A向y轴作垂线,垂足在y轴上的坐标1就是点A的纵坐标.按横坐标2在前,纵坐标1在后的顺序,用逗号隔开写在小括号内,即可得点A的坐标是(2,1).情景导入生成问题旧知回顾:1.什么叫数轴?实数与数轴建立了怎样的关系?答:(1)规定了原点、正方向、单位长度的直线叫做数轴.(2)数轴上的点同实数建立了一一对应的关系.2.以教室座位横行为排、竖行为列,记2排3列座位为(2,3),则以下座位的同学分别是谁?(1,4)、(2,6)、(5,4)、(3,2)、(5,7)3.想一想,如何表示平面内一个点的位置?答:可模仿教室座位的描述方法表示平面内一个点的位置.自学互研生成能力知识模块一平面直角坐标系中点的坐标阅读教材P1~P3的内容,完成填空.1.平面直角坐标系概念:平面内画两条互相垂直、原点重合的数轴叫做平面直角坐标系; 水平的数轴称为横轴或x 轴,习惯上取向右为正方向; 垂直的数轴称为纵轴或y 轴,取向上为正方向;两个坐标轴的交点为平面直角坐标系的原点.2.平面内一个点可以用一个有序实数对来表示.范例:如图,写出A 、B 、C 、D 、E 、F 、O 各点的坐标.解:点A 、B 、C 、D 、E 、F 、O 的坐标分别是(2,1),(1,2),⎝ ⎛⎭⎪⎫-32,1,(0,-2),⎝ ⎛⎭⎪⎫52,0,(-2,-1)和(0,0).仿例:在如图所示的直角坐标系中,A 点的坐标是(0,4),B 点的坐标是(4,0),C 点的坐标是(-1,0),D 点的坐标是(2,2).变例1:在坐标平面内,有一点P(a ,b),若ab =0,则P 点的位置在( D )A .原点B .x 轴上C .y 轴上D .坐标轴上解析:∵ab=0,∴a =0或b =0.(1)当a =0时,横坐标是0,P 点在y 轴上;(2)当b =0时,纵坐标是0,P 点在x 轴上.故点P 在坐标轴上,故选D .提示:仿例中,画出点P 到x 轴距离,看它与P 的哪个坐标有关.行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(或按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.。
八年级数学上册 11.1 平面上的点坐标(1)教案 沪科版(2021年整理)

安徽省固镇县八年级数学上册11.1 平面上的点坐标(1)教案(新版)沪科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(安徽省固镇县八年级数学上册11.1 平面上的点坐标(1)教案(新版)沪科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为安徽省固镇县八年级数学上册11.1 平面上的点坐标(1)教案(新版)沪科版的全部内容。
平面上的点的坐标教学目标知识与能力:理解和掌握平面直角坐标系的有关知识,领会其特征.过程与方法:经历现实生活中有关有序实数对的例子,让学生充分体会平面直角坐标系是构建有序实数对的平台.情感态度价值观:认识直角坐标的作用,体现现实生活中的坐标的应用价值,激发学习的兴趣。
重难点重点:认识直角坐标系,感受有序实数对的应用.各象限内的点的坐标特征。
难点:对有序实数对的理解。
教学过一、引入人类在许多活动中,常常需要确定物体的位置。
例如,动物学家为了掌握大熊猫在野外的活动情况,便在它们的身上安装发射器,通过GPS来确定其位置。
本章我们将学习平面上确定点的位置的方法和坐标系中图形的平移。
二、学习目标1。
掌握平面直角坐标系的相关概念。
2。
会利用点的坐标描出点的位置.3.会根据点的位置写出点的坐标。
4,掌握平面直角坐标系中各象限内的点的坐标的特征.5,理解平面直角坐标系中点与有序实数对一一对应关系。
三、自学提纲讨论补充记录程教学过1,阅读第2页的问题,解决以下问题:若吴小明的位置可表示为第5行第2列,用(5,2)来表示,怎样描述王健的位置?在你的班级里有类似的描述吗?若××同学的位置是第二行第五列,用(2,5)表示,谁的位置是(5,2)呢?它们是同一个人吗?2,阅读第2页下面的内容,解决以下问题:(1)什么叫做平面直角坐标系?什么是横轴(x轴)?什么是纵轴(y轴)?什么是坐标原点?(2)平面坐标系中的点P,从P点向x,y轴分别作垂线,垂足分别M,N对应的数分别是-2和3,则P点的坐标怎样表示?由此你能得到怎样确定平面内一个点的坐标吗?(3)在表示点的坐标时,要注意哪些问题?例如用什么括号?大括号?中括号?小括号?两个数之间用什么标点符号隔开?3,阅读第3~4页观察,解决以下问题:(1)。
沪科版数学八年级上册11-1 平面内点的坐标 教案2

课题:11 .1.1 第1课时平面内点的坐标学习目标:1、理解平面直角坐标系以及横轴、纵轴、原点坐标等的概念2、认识并能画出平面直角坐标系3、能在给定的直角坐标系中由点的位置写出它的坐标重点:理解平面直角坐标系的有关知识,在规定的直角坐标系中根据点的位置与它的坐标。
难点:坐标轴上的坐标有什么特点的总结学习内容及学习流程教学行为提示及方法指导一目标导学(2分钟)(1)请同学们回顾一下数轴的概念?答:规定了原点正方向和单位长度的直线叫做数轴(2)数与数轴有怎样的位置关系答:是数与数轴上的点是一一对应的关系二自学自研(14分钟)知识点1:用有序实数对表示平面上物体的位置阅读教材P2的问题完成下面的内容物体在平面内的位置需要从横向和纵向两个方向来确定,因此可以利用有序实数对(a,b)来准确的表示物体的位置。
归纳:用有序实数对(a,b)表示一个物体的位置时,一般用a表示物体的横向位置,用b表示物体的纵向位置,注意a b两者位置不能互换。
范例:如果将一张电影票“2排1号”简记为(2,1)那么电影票(7,9)表示的是什么位置?解:(7,9)表示7排9号变例:小丽在教室里的座位记作(2,5)表示她坐在第二排第五列,那么小强坐在第四列第三排记作(3,4)知识点2:平面直角坐标系的相关概念阅读P3~4页回答1.定义:在平面内画两条互相垂直并且原点重合的数轴,水平的数轴叫做x轴或横轴,取向右为正方向;垂直的数轴叫做y轴或纵轴,取向上为正方向,两轴的交点O为原点,这样就建立了平面直角坐标系,这个平面叫做坐标平面。
建立平面直角坐标系后x轴与y轴把坐标平面分成四部分,每一个部分叫做第一象限、第二象限、第三象限、第四象限;坐标轴上的点也就是x轴y轴上的点,不属于任何一个象限。
2.点的坐标平面内的任意一点都可以用一对实数来表示,这个实数对就叫做这个点的坐标。
已知点P是平面直角坐标系中的一点,若由点P向x轴作垂线,垂足M在x轴上的坐标是a,由点P向y轴作垂线,垂足N在y轴上的坐标提示:让学生自由举手抢答:答对小组加2分教学行为提示:学生阅读教材P2~4页后,独立完成知识点1、2,要求做完的组长督促迅速完成。
沪科版数学八年级上册精品教案11.1 平面内点的坐标

11.1 平面内点的坐标(第1课时)项目内容课题11.1 平面内点的坐标(第1课时)修改与创新教学目标1.认识并利用有序实数对来表示点的位置。
2.认识并能画出平面直角坐标系,能在方格纸上建立适当的直角坐标系描述物体的位置。
3.在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。
4.让学生感受到可以用数字表示图形的位置,将几何问题可以转化为代数问题,形成数形结合的意识。
5.通过用有序实数对来表示实际问题的情境,经历建立数学模型解决实际问题的过程;体验有序数对在现实生活中应用的广泛性。
教学重、难点重点:在给定的直角坐标系中会根据坐标描出点的位置,由点的位置写出它的坐标。
难点:平面直角坐标系的实际应用。
教学准备多媒体课件教学过程一、创设问题情境,引入课题动物学家为了掌握大熊猫在野外活动情况,便在它的身上安装发射器。
通过GPS(全球卫星定位系统)来确定其位置。
用GPS观测大熊猫的结果如下图所示,你能说出此时大熊猫所在的位置吗?说明:用学生比较熟悉的事例引入,容易引起学生的注意。
二、师生共同参与教学活动1.设计问题一:(1)你去过电影院吗?还记得在电影院里是怎么找座位的吗?(2)在电影院中,每一个座位都编了号码,每一张电影票都对应一个位置,我们应该对号入座。
电影票上的数字一般是怎样排列的?(3)如果电影票上只有一个数字,结果将会怎样?如果将两个数字的顺序调换,结果又会怎样?手上拿着“7排9号”的同学能坐到“9排7号”的位置上吗?说明:概念是建立在现实生活情境中,并不是枯燥无味的。
这样的教学设计体现了新的教学理念。
让学生自己联系实际来理解“有序”的含义。
2.设计问题二:下图是某教室中学生的平面图,你能描述王小明和王健同学的位置吗?说明:解决此问题之后,还可以在课堂上请学生说出自己座位在教室中的位置该如何描述,加深学生对本节知识的理解。
3.设计问题三-----议一议:下面是根据教室平面图写的通知的内容,你明白它的意思吗?“今天以下座位的同学放学后参加数学问题讨论:(1,5),(2,4),(4,2),(3,3),(5,6)。
沪科版八年级上册 数学 教案 11.1 平面内点的坐标7

第11章平面直角坐标系11.1 平面内点的坐标(第1课)一、教学内容本节主要学习平面上点坐标的有关概念,能从平面直角坐标系中写出点的坐标,及能根据坐标确定平面直角坐标系中点的位置。
二、教学目标(1)知识与技能目标:1、通过实际问题抽象出平面直角坐标系及其相关概念,使学生认识平面直角坐标系原点、横轴和纵轴等,会由点写出坐标,由坐标描点;让学生体会到平面上的点与有序实数对之间的对应关系;观察、归纳象限内点的坐标特点。
(2)过程与方法目标:经历由实物到数对的过程,进一步渗透抽象的数学思想;经历画平面直角坐标系,由点写出坐标和由坐标描点的过程,进一步渗透数形结合的数学思想;经历观察象限内三五个点的特征到联想所有点坐标特征的过程,进一步渗透观察、类比、特殊到一般的数学思想;(3)情感与态度目标:通过对问题的解决,使学生有成就感,树立学好数学的信心,培养学生的自主探究与合作交流的学习习惯.三、教学重点正确认识平面直角坐标系,会准确地由点写出坐标,由坐标描点。
四、教学难点各象限内坐标的符号及各坐标轴上点坐标的特点,平面上的点与有序实数对之间的对应关系。
五、教学准备:多媒体教学课件、直尺、铅笔、气球等六、教学方法:自学、探讨、合作七、教学过程:(一)创设情境,导入新课1、请您欣赏:(多媒体播放一张电影票图片)处理方式:教师让学生观察这张电影票,如何体现观影者在电影院里的位置?是8排17座,同时教师追问:如果只知道8排还能确定座位么?2、问题1:如上图是某教室学生座位的平面图,你能描述吴小明和王健同学座位的位置吗?(在学生回答后,教师给予肯定)3、问题2:(1)数轴的三要素是什么?(2)在数轴上,如何确定一个点的位置呢? (在学生回答后,教师给予肯定)设计意图:首先通过通俗易懂、形式多样的确定位置的现实背景,使学生认识确定物体位置的重要性;让学生感受到数学与我们的生活是紧密联系的,充分调动学生的好奇心与探究欲。
(二)自学勤思,探求新知教师提问:既然确定平面上一点的位置需要两个数,那么能否用两条数轴建立模型来表示平面上任一点的位置呢?教师在学生回答的基础上,多媒体动画演示:为了确定平面上一个点的位置,我们先在平面内画两条互相垂直并且原点重合的数轴。
沪科版数学八年级上册 平面直角坐标系及点的坐标

G(0,0)
原点处
拓展练习 1. 已知 a < b < 0,那么点 P(a,-b)在第 二 象限.
2. 已知 P 点坐标为(a + 1,a-3) ①点 P 在 x 轴上,则 a = 3 ; ②点 P 在 y 轴上,则 a = -1 ;
3. 若点 P(x,y)在第四象限,| x | = 5,| y | = 4,则 P 点的坐标为 (5,-4) .
y
3F
E
2
A1
D
-2 -1-O1 1 2 3 4
x
-2
-3 B
C
【答案】 A(-2,0) B(0,-3) C(3,-3) D(4,0) E(3,3) F(0,3)
练一练
y
在直角坐标系中描出 5
下列各点:
4
· B
3
·A
A(4,3),
2
B(-2,3),
1
C(-4,-1),-4
· · D(2,-2). C
4; 3.
2. 在平面直角坐标系中
y
找点 A (3,-2)
2
由坐标找点的方法: (1)先找到表示横坐标 与纵坐标的点;
1 -3 -2 -1 O
-1
(2)然后过这两点分别作
-2
x 轴与 y 轴的垂线;
-3
12
3x A
(3)这两条垂线相交于点 A, 则点 A 就是坐标为A (3,-2)
典例精析
例1 写出下图中的多边形 ABCDEF 各个顶点的坐标.
【解析】点 A(m+3,m+1) 在 x 轴上,根据 x 轴上点的 坐标特征知 m+1=0,求出 m 的值代入 m+3 中即可.
【方法总结】坐标轴上的点的坐标特点:x 轴上的点 的纵坐标为 0,y 轴上的点的横坐标为 0.根据点所在 坐标轴确定字母取值,进而求出点的坐标.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册--平面内点的坐标第1课时平面直角坐标系及点的坐标学案(沪科版)
一、教学内容
本节主要学习平面上点坐标的有关概念,能从平面直角坐标系中写出点的坐标,及能根据坐标确定坐标中点的位置。
二、教学目标
1、通过实际问题抽象出平面直角坐标系及其相关概念,使学生认识平面直角坐标系原点、横轴和纵轴等,会由坐标描点,由点写出坐标;让学生体会到平面上的点与有序实数对之间的对应关系;
2、经历画平面直角坐标系,由点写出坐标和由坐标描点的过程,进一步渗透数形结合的数学思想;
3、培养学生自主探究与合作交流的学习习惯。
三、教学重点
正确认识平面直角坐标系,会准确地由点写出坐标,由坐标描点。
四、教学难点
各象限内坐标的符号及各坐标轴上点坐标的特点,平面上的点与有序实数对之间的对应关系。
五、教学关键:充分体会有序实数对在实际中的应用
六、教学准备:多媒体教学课件、三角尺
七、教学方法:探讨、合作
八、教学过程:
(一)设置问题情境:
1、回顾一下数轴的概念,及实数与数轴有怎样的关系?(学生回答)
2、情境:(多媒体显示)
(1)如图所示请指出数轴上A、B两点所表示的数;直线表一条笔直公路,向东为正方向,原点为学校位置,A、B是位于公路旁两学生家的位置,你能说出它们的位置吗?这说明了
什么?
引申:确定一个点在直线上的位置,只需要一个数据,这个实数可称为点在数轴上的坐标。
怎样确定平面上一个点的位置呢?
(2)上电影院看电影,电影票上至少要有几个数据才能确定你的位置?
(3)在教室里,怎样确定一个同学的位置?
(二)观察交流,构建新知
观察、交流、思考,回答教科书第2页的两个问题。
思考:1、确定平面上一点的位置需要什么条件?
2、既然确定平面上一点的位置需要两个数,那么能否用两条数轴建立模型来表
示平面上任一点的位置呢?
教师在学生回答的基础上,边操作边讲出:为了确定平面上一个点的位置,我们先在平面内画两条互相垂直并且原点重合的数轴,水平的数轴叫x轴或横轴,取向右为正方向,垂直的数轴叫y轴或纵轴,取向上为正方向,两轴交点O为原点,这样就建立了平面直角坐标系。
这个平面叫做坐标平面。
有了坐标平面,平面内的点就可以用一个有序实
数对来表示。
引导观察:如左图中点P可以这样表示:由P 向x
轴作垂线,垂足M在x轴上的坐标是-2,点P向y轴作
垂线,垂足N在y轴的坐标是3,于是就说点P的横坐
标是-2,纵坐标3,把横坐标写在纵坐标前面记作
(-2,3),即P点坐标(-2,3)。
引导练习:写出点A、B、C的坐标。
学生相互交流,得出正确答案。
(强调点的坐标的有序性和正确规范书写)
教师提问:已知平面内任意一点,可以写出它的坐标;反之,给出一点的坐标,你能在上图中描出吗?
试一试:D(1,3) E(-3,2) F(-4,-1)
(注意引导学生进行逆向思维)
教师提问:请同学们想一想:原点O的坐标、x轴和y轴上的点坐标有什么特点?
学生发现:O点坐标(0,0),x轴上点的纵坐标为0,y轴上点横坐标为0。
试一试:描点:G(0,1),H(1,0)(注意区别)
(三)观察思考,探究规律
教师讲解:两条坐标轴把坐标平面分成四个部分:右上部分叫第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限、和第四象限。
坐标轴不属于任何象限。
学生活动:观察、认知上图中各象限内已描出各点的坐标特点:第一、二、三、四象限内的点的坐标符号分别是:(+,+)、(—,+)、(—,—)、(+,—)
(四)随堂练习
1、完成教材第3和第4页的1、2两个问题
2、多媒体展示的练习题。
(五)课堂小结:(投影显示,学生归纳)
本节课我们学习了平面直角坐标系。
学习本节我们要掌握以下三方面的知识内容:
1、能够正确画出直角坐标系。
2、能在直角坐标系中,根据坐标找出点,由点求出坐标。
坐标平面内的点和有序实数对是
一一对应的。
3、掌握象限点、x轴及y轴上点的坐标的特征:
第一象限:(+,+)第二象限:(-,+)
第三象限:(-,-)第四象限:(+,-)
x轴上的点的纵坐标为0,表示为(x,0)
y轴上的点的横坐标为0,表示为(0,y)
(六)布置作业
1、习题11.1第1、2题
2补充:点P(m ,4-m)是第二象限的点,求m的取值范围。
3、已知三点A(0,4)、B(-3,0)、C(3,0)现以A、B、C为顶点画平行四边形,写出符合条件的D点坐标。