求导数的方法
求导法则与求导公式

求导法则与求导公式求导法则是用来求导数的基本方法和公式,它是微积分的基础,被广泛应用于数学、物理等领域。
在求导过程中,有一些基本的法则和公式可以帮助我们简化计算。
一、基本求导法则1.常数法则:如果f(x)=C,其中C为常数,则f'(x)=0。
2. 变量法则:如果f(x) = x^n,其中n为常数,则f'(x) = nx^(n-1)。
3.常数倍法则:如果f(x)=Cg(x),其中g(x)可导且C为常数,则f'(x)=Cg'(x)。
4.加减法则:如果f(x)=g(x)±h(x),其中g(x)和h(x)可导,则f'(x)=g'(x)±h'(x)。
5.乘法法则:如果f(x)=g(x)h(x),其中g(x)和h(x)可导,则f'(x)=g'(x)h(x)+g(x)h'(x)。
6.除法法则:如果f(x)=g(x)/h(x),其中g(x)和h(x)可导且h(x)不等于0,则f'(x)=(g'(x)h(x)-g(x)h'(x))/h(x)^27.复合函数法则:如果f(x)=g(h(x)),其中g和h都是可导函数,则f'(x)=g'(h(x))*h'(x)。
8.反函数法则:如果f和g是互为反函数,则f'(x)=1/g'(f(x))。
二、常用的求导公式1. 幂函数求导:(x^n)' = nx^(n-1)。
2.指数函数求导:(e^x)'=e^x。
3. 对数函数求导:(lnx)' = 1/x。
4. 三角函数求导:(sinx)' = cosx,(cosx)' = -sinx,(tanx)' = sec^2x。
5. 反三角函数求导:(arcsinx)' = 1/√(1-x^2),(arccosx)' = -1/√(1-x^2),(arctanx)' = 1/(1+x^2)。
导数求解的常用方法

导数求解的常用方法导数是微积分中的重要概念之一,它描述了函数在其中一点上的变化率。
求解导数的方法有很多,下面将介绍一些常用的方法。
1.通过定义求导:导数的定义是函数f(x)在点x0处的导数等于该点处的极限值,即:f'(x0) = lim (x→x0) ( f(x) - f(x0) ) / ( x - x0 )通过求解这个极限,可以得到函数在该点处的导数。
2.基本导数法则:基本导数法则包括常数导数、幂函数导数、指数函数导数、对数函数导数、三角函数导数等。
- 常数导数:对于常数c,其导数为0,即 d/dx (c) = 0。
- 幂函数导数:对于函数 f(x) = x^n,其中n为常数,其导数为d/dx (x^n) = n*x^(n-1)。
- 指数函数导数:对于函数 f(x) = a^x,其中a为常数,其导数为d/dx (a^x) = (ln(a))*a^x。
- 对数函数导数:对于函数 f(x) = log_a(x),其中a为常数,其导数为 d/dx (log_a(x)) = 1 / (ln(a)*x)。
- 三角函数导数:对于函数 f(x) = sin(x),其导数为 d/dx(sin(x)) = cos(x)。
通过使用这些基本导数法则,可以求解更复杂的函数的导数。
3.导数的性质:导数具有一些特殊的性质,包括和、差、积、商、复合函数的导数。
- 和差法则:对于两个函数f(x)和g(x),其和的导数等于各自导数的和,即 d/dx (f(x) + g(x)) = d/dx (f(x)) + d/dx (g(x));差的导数等于各自导数的差,即 d/dx (f(x) - g(x)) = d/dx (f(x)) - d/dx (g(x))。
- 积法则:对于两个函数f(x)和g(x),其积的导数等于第一个函数的导数乘以第二个函数,再加上第一个函数与第二个函数的导数的乘积,即 d/dx (f(x)*g(x)) = f'(x)*g(x) + f(x)*g'(x)。
导数的求法

导数的求法【知识要点】一、求导的方法1、利用常见八种函数的导数公式① (C 为常数) ② ③0='C 1()()n n x nx n Q -'=∈x x cos )(sin ='④ ⑤ ⑥ x x sin )(cos -='1(log )log x a a e x '=x x 1)(ln ='⑦ ⑧a a a x x ln )(='x x e e =')(2、利用导数的运算法则① ② ③ '''()u v u v ±=±'''()uv u v uv =+'''2()(0)u u v uv v v v -=≠3、利用复合函数的求导法则设函数在点处有导数,函数在点处的对应点处有导数,()u x ϕ=x ()x u x ϕ''=)(u f y =x u ()u y f u ''=则复合函数在点处有导数,且,或写作(())y f x ϕ=x x u x y y u '''=⋅(())()()x f x f u x ϕϕ'''=二、导数的求法一般有四种:(1)利用导数的概念解答;(2)利用八种初等函数的导数公式解答;(3)利用导数的四则运算法则解答;(4)利用复合函数的求导法则求导.【方法讲评】方法一 利用导数的概念解答解题方法 求函数的导数的一般步骤是:①求函数的改变量)(x f y =)(/x f ;②求平均变化率;③取极限,得导)()(x f x x f y -∆+=∆xx f x x f x y ∆-∆+=∆∆)()(数=. /y xy x ∆∆→∆0lim【例1】 求函数在附近的平均变化率,并求出在该点处的导数. 2()f x x x =-+1x =-【点评】求函数的导数的一般步骤是:①求函数的改变量;②)(x f y =)(/x f )()(x f x x f y -∆+=∆求平均变化率;③取极限,得导数=. x x f x x f x y ∆-∆+=∆∆)()(/y xy x ∆∆→∆0lim 【反馈检测1】将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第xh 时,原油的温度(单位:)为,计算第时和第时,原油温度的瞬C 2()715(08)f x x x x =-+≤≤2h 6h 时变化率,并说明它们的意义.方法二利用八种初等函数的导数公式解答 解题方法直接利用八种初等函数的导数公式解答. 【例2】求函数的导数. ()f x=【解析】 113122211()()22f x x x x ----'''===-=-由题得【点评】在使用时,要注意函数的形式,如果是就不能利用该公式了,因为1()()n n x nx n Q -'=∈(3)n x 它的底数是,不是,是复合函数,不是初等函数. 学科#网3x x 【反馈检测2】求函数的导数. 44()cos sin 22x x f x =-方法三利用导数的四种运算法则解答 解题方法直接套导数的四种运算法则. 【例3】已知函数,则=________.))(ln 2()(2x x f x x f -'+=)4(f ' A . B .6 C .8 D .6-2【点评】本题中的处理是一个难点,有许多同学不知道把它怎么办.其实是一个常数,求导(2)f '(2)f '时,把它看作常数,利用就可以了.再给x 赋值得到的方程,即可求出的值.[()]()Cf x Cf x ''=(2)f '(2)f '【反馈检测3】设,求.x xe x f x ln )(=)(x f '方法四 利用复合函数的求导公式解答解题方法 函数在点处有导数,函数在点处的对应点处()u x ϕ=x ()x u x ϕ''=)(u f y =x u 有导数,则复合函数在点处有导数,且,或写作()u y f u ''=(())y f x ϕ=x x u x y y u '''=⋅(())()()x f x f u x ϕϕ'''=【例4】已知,求. 21x y -=y '【解析】1211211,22u x v u x v u -=-=∴=-===设1112y u v x ∴==-= 【点评】函数在点处有导数,函数在点处的对应点处有导数()u x ϕ=x ()x u x ϕ''=)(u f y =x u ,则复合函数在点处有导数,且,或写作()u y f u ''=(())y f x ϕ=x x u x y y u '''=⋅(())()()x f x f u x ϕϕ'''=【反馈检测4】已知,求. sin 2()x f x x=()f x '高中数学常见题型解法归纳及反馈检测第17讲:导数的求法参考答案【反馈检测1答案】在第时和第时,原油温度的瞬时变化率分别为和,说明在附近,原油温2h 6h 3-52h 度大约以的速率下降,在第附近,原油温度大约以的速率上升. 3/C h 6h 5/C h【反馈检测2答案】sin x -【反馈检测2详细解析】 442222()cos sin (cos sin )(cos sin )222222x x x x x x f x =-=+- 22(cos sin )cos 22x x x =-=()(cos )sin f x x x ''∴==-【反馈检测3答案】(1ln ln )x e x x x ++【反馈检测3详细解析】 )(ln ln )(ln )()ln ()('+'+'='='x xe x e x x e x x xe x f xx x x . xxe x xe x e x x x 1ln ln ⋅++=)ln ln 1(x x x e x ++=【反馈检测4】 2sin 22cos 2x x x x-【反馈检测4详细解析】 22(sin 2)(sin 2)(sin 2)(sin 2)()x x x x x x x f x x x '''--'==2sin 2cos cos 2u x v u u v u x ''==∴===设(sin 2)2cos 2x x '∴= 22(sin 2)2cos 2(sin 2)2cos 2()x x x x x x f x x x --'∴== 2sin 22cos 2x x x x-=。
函数导数四则运算法则

函数导数四则运算法则
函数导数的四则运算法则是指当对函数的四则运算时,其导数的运算规则。
函数导数四则运算法则是微积分中的一个重要概念,在进行函数的计算时,以及在实际应用中,都有着重要的作用。
函数导数四则运算法则一共有四条,分别是:
1、加法法则:如果f(x)和g(x)是两个函数,那么它们的
和的导数是:f'(x)+g'(x)。
2、减法法则:如果f(x)和g(x)是两个函数,那么它们的
差的导数是:f'(x)-g'(x)。
3、乘法法则:如果f(x)和g(x)是两个函数,那么它们的
积的导数是:f(x)g'(x)+g(x)f'(x)。
4、除法法则:如果f(x)和g(x)是两个函数,那么它们的
商的导数是:[f'(x)g(x)-f(x)g'(x)]/[g(x)]^
2。
这四条函数导数四则运算法则也就是所谓的求导法则,是在函数求导中常用到的,它们分别表示了当函数进行加减乘除运算时,其导数的计算方法。
这些法则可以帮助我们更加简便、快速地求出函数的导数,从而解决函数求导中的问题。
函数导数的四则运算法则在实际应用中也有着重要的作用,比如在机器研究中,梯度下降法就使用了这些法则,它可以用来求解机器研究的复杂优化问题;此外,它还可以应用于统计学中的概率论,例如统计推断中的梯度下降法也使用了函数导数四则运算法则。
总之,函数导数四则运算法则是微积分中的一个重要概念,在数学计算、实际应用等方面都有着重要的作用,因此,研究这些法则也是十分重要的。
求导数的简单方法

求导数的简单方法导数是微积分中的一个重要概念,它表示函数在其中一点处的变化率。
求导数的方法有很多,其中有一些比较简单且常用的方法,下面我将详细介绍。
1.用基本的求导法则求导数:(1)常数法则:如果f(x)是常数c,那么f'(x)=0。
(2)幂法则:对于f(x)=x^n,其中n是一个实数,那么f'(x)=n*x^(n-1)。
(3) 指数函数法则:对于f(x) = a^x,其中a是常数,那么f'(x) = ln(a) * a^x。
(4) 对数函数法则:对于f(x) = log_a(x),其中a是常数且不等于1,那么f'(x) = 1 / (x * ln(a))。
(5) 三角函数法则:对于f(x) = sin(x)、cos(x)、tan(x)等三角函数,那么f'(x) = cos(x)、-sin(x)、sec^2(x)等。
(6)反函数法则:如果f(x)是可逆的,并且f'(x)≠0,则其反函数f^(-1)(x)的导数为1/f'(f^(-1)(x))。
2.使用导数的性质简化求导过程:(1)加减法则:如果f(x)和g(x)都可导,则(f+g)'(x)=f'(x)+g'(x),(f-g)'(x)=f'(x)-g'(x)。
(2)乘法法则:如果f(x)和g(x)都可导,则(f*g)'(x)=f'(x)*g(x)+f(x)*g'(x)。
(3)除法法则:如果f(x)和g(x)都可导且g(x)≠0,则(f/g)'(x)=(f'(x)*g(x)-f(x)*g'(x))/(g(x))^2(4)复合函数法则:如果f(x)和g(x)都可导,则(f(g(x)))'=f'(g(x))*g'(x)。
3.使用隐式求导法求导数:当一个函数y以x为自变量,且无法显式地表示y为x的函数时,可以使用隐式求导法。
求函数导数的各种方法

求函数导数的各种方法
求函数导数的计算方法一般分为8种方法:
1.公式法
这个方法需要熟练掌握导数的基本公式。
2.导数四则运算公式
导数的乘法和除法公式要能熟练运用。
3.复合函数的链式法则—非常重要的求导方法
链式法则在应用时一般分成4步:分解—各自求导—相乘—回代
如果计算熟练,可以不设中间变量,直接求复合函数的导数.
4.反函数求导法
利用这种方法求导时,要注意:先取反函数,然后对反函数siny 求导,特别注意此时y是自变量,所以siny 的导数是cosy。
5.对数求导法
一般两种情况会使用对数求导法,这两种情况都是对等式两端同时取自然对数,利用对数的运算性质对函数进行变形。
(1)求幂指函数的导数
(2)求复杂根式的导数
6.隐函数求导法
隐函数是隐藏在一个方程中的函数,要用到链式法则。
7.参数方程求导法
注意参数方程求导公式
8.高阶导数
下面这个例子是一个求高阶导数的经典例题。
一般求二阶导数要多练习求隐函数和参数方程的二阶导数。
求导数的方法

求导数是数学分析中的一个重要概念,它的基本概念是函数的变化率,即函数在某一点处的斜率。
求导数是对函数进行微积分的一种操作,可以用来求出函数图形的切线斜率和函数的变化率。
求导数的基本方法有两种,一是极限法,二是微积分法。
极限法是一种比较常见的求导数方法,它的基本思想是把函数在某一点处的变化率抽象成函数在此点附近距离不断减小时的变化率,从而得到函数在此点处的导数。
而微积分法更复杂,是在研究函数的性质时,可以利用积分的概念以及初等函数的性质,来求出函数的导数。
求导数的方法可以分为几种:
(1) 求一元函数导数的常用方法:
a. 利用导数的定义求导数;
b. 利用导数的性质求导数;
c. 利用微积分求导数;
d. 利用极限法求导数;
e. 利用初等函数的性质求导数;
f. 利用泰勒公式求导数。
(2) 求多元函数导数的常用方法:
a. 利用偏导数的定义求偏导数;
b. 利用偏导数的性质求偏导数;
c. 利用多元函数的性质求偏导。
导数的几种解法

导数的几种解法摘要:导数是微积分中的重要概念,它描述了函数在某一点处的变化率。
通过熟练掌握这些方法,我们可以计算各种函数的导数,并应用导数来分析函数的性质和解决实际问题。
求导在数学和科学的各个领域都有广泛应用,为我们理解变化规律、优化问题和建模提供了强大的工具。
持续学习和探索微积分的知识,将帮助我们更好地理解和应用求导技术。
为了求解导数,我们可以采用多种不同的方法和技巧,本文将介绍导数的几种常见解法。
关键词:高中数学;导数;常见解法引言:高中数学中,导数是一个重要的概念和计算方法。
对于函数的导数,有多种解法可以应用。
每种解法都有其独特的适用场景和计算方式,能够帮助我们更好地理解和运用导数的概念。
通过熟练掌握和灵活运用这些解法,我们可以更精确地求解函数的导数,进而应用到各种实际问题中,提高数学问题的解决能力。
一、基本求导方法导数是微积分中的重要概念,用于描述函数在某一点处的变化率。
在数学上,导数可以通过极限的概念来定义,表示函数在某一点附近的斜率。
几何上,导数可以解释为函数图像在某一点处的切线斜率。
物理上,导数可以表示物体在某一时刻的速度或加速度。
导数的计算可以采用多种方法,以下是几种基本的求导方法。
一种常见的方法是使用定义法求导。
根据导数的定义,导数可以通过极限的方式来计算。
具体来说,对于一个函数f(x),它在某个点x=a处的导数可以通过计算极限lim(h→0) [f(a+h) - f(a)] / h 来求得。
这种方法需要对极限的概念和计算方法有一定的了解,并且在具体计算时需要进行一系列的代数运算。
例如,对于函数f(x) = x^2,在x=2处的导数可以通过计算lim(h→0) [(2+h)^2 -2^2] / h来得到。
另一种常用的方法是利用常见的导数规则来求导。
导数规则是一些已知的函数导数的性质和规律,可以帮助我们快速计算复杂函数的导数。
常见的导数规则包括幂函数的导数、指数函数的导数、对数函数的导数等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4-3 隐函数的求导
例13 由方程 解
x sin y = cos( x + y )
,求 y ′(0, )
2
π
(x sin y )′x = (cos( x + y ))′x
sin y + x cos y ⋅ y ′ = − sin( x + y )(1 + y ′)
代入
x = 0和y =
π
2
得 y ′ = −2
y = sin u
u = 1+ x2
2 ′( ′x y ′ = (sin u ) u 1 + x )
= cosu × ( 2 x )
= 2 x cos(1 + x 2 )
例6 求 y = (1 − x 2 ) 5 的导数 解
y = u5
u = 1− x2
y ′ = ( u 5 ) ′( − x 2 )′x = 5u 4 × ( − 2 x ) u 1
精品课程
序 言 第1章 第2章 第3章 第4章 第5章 第6章 第7章 第8章 函 数 导 数 定积分 求导方法 导数应用 求积分方法 定积分应用 微分方程
4-1 求导公式与求导法则
即
(tan x ) ′ = sec
2
x
可类似推导出其它求导基本公式
′ = − csc2 x (cot x)
(secx)′ = secx tanx
1 y ′ cos y = 1,即y ′ = cos y
而 所以
cos y = 1 − sin 2 y = 1 − x 2
y′ = 1 1− x2
精品课程
序 言 第1章 第2章 第3章 第4章 第5章 第6章 第7章 第8章 函 数 导 数 定积分 求导方法 导数应用 求积分方法 定积分应用 微分方程
《高等数学》 高等数学》
教学课件
四川工程职业技术学院 数学教研室
精品课程
序 言 第1章 第2章 第3章 第4章 第5章 第6章 第7章 第8章 函 数 导 数 定积分 求导方法 导数应用 求积分方法 定积分应用 微分方程
第四章 求导数的方法
内容导航
求导公式与求导法则 复合函数求导 隐函数求导 对数求导法
精品课程
序 言 第1章 第2章 第3章 第4章 第5章 第6章 第7章 第8章 函 数 导 数 定积分 求导方法 导数应用 求积分方法 定积分应用 微分方程
4-1 求导公式与求导法则
可类似推导出其它求导基本公式
(log a x)′ = 1 x ln a
(sin x ) ′ = cos x (cos x ) ′ = − sin x
4-3 隐函数求导
由含有变量x和y的二元方程 F ( x, y ) = 0 所确定的函数 称为隐函数 隐函数。如: e 隐函数
xy
= x + y,x 2 + y 2 = 1
形如 y = f ( x ) 的函数叫显函数 显函数。 显函数
精品课程
序 言 第1章 第2章 第3章 第4章 第5章 第6章 第7章 第8章 函 数 导 数 定积分 求导方法 导数应用 求积分方法 定积分应用 微分方程
y = (sin x ) 是由 y = u , u = sin x复合运算而成。
复合函数的求导法则
dy dy du ′ x = ⋅ 或 y ′ = y u .u ′ x dx du dx
语言表述:复合函数的导数等于外函数的 复合函数的导数等于外函数的 导数乘内函数的导数 ∆y ∆y ∆u = ,当 ∆x → 0, 有 ∆u → 0 因为
精品课程
序 言 第1章 第2章 第3章 第4章 第5章 第6章 第7章 第8章 函 数 导 数 定积分 求导方法 导数应用 求积分方法 定积分应用 微分方程
4-1 求导公式与求导法则
例2 求 y = x 2 ln x 的导数。 解
y ′ = ( x 2 ln x)′ = ( x 2 )′ ln x + (ln x)′ x 2
1 2 = 2 x ln x + x = 2 x ln x + x x
例3 求 解
y = tan x 的导数。
sin x y = tan x = cos x ′ (sin x)′ cos x − sin x(cos x)′ sin x y′ = = cos x cos 2 x cos 2 x + sin 2 x 1 = = = sec 2 x cos 2 x cos 2 x
π
+ sin
π
精品课程
序 言 第1章 第2章 第3章 第4章 第5章 第6章 第7章 第8章 函 数 导 数 定积分 求导方法 导数应用 求积分方法 定积分应用 微分方程
4-2 复合函数的导数
第1章我们学了复合函数y=f[u(x)],y=f(u)称为 外函数,u=u(x)称为内函数 内函数(中间变量)。 外函数 内函数 如: 2 2
= − 10 (1 − x 2 ) 4
精品课程
序 言 第1章 第2章 第3章 第4章 第5章 第6章 第7章 第8章 函 数 导 数 定积分 求导方法 导数应用 求积分方法 定积分应用 微分方程
4-2 复合函数的导数
例7 求
y= 1 2 4 的导数。 x +x
解 将y看作复合函数 有 则
y = (x + x )
2
的导数值。
(sin x + x cos x)(1 + cos x) + x sin 2 x = (1 + cos x) 2 (1 + cos x)( x + sin x) x + sin x = = 2 (1 + cos x) 1 + cos x
当 x=
π
2
时
2 = π +1 ′= 2 y π 2 1 + cos 2
精品课程
序 言 第1章 第2章 第3章 第4章 第5章 第6章 第7章 第8章 函 数 导 数 定积分 求导方法 导数应用 求积分方法 定积分应用 微分方程
4-3 隐函数求导
例14 求 解
变形 得
y = arcsin x 的导数。
π
2
利用隐函数求导法则:
sin y = x
(−
< y<
π
2
)
(sin y ) ′ = x ′
8 xy + y 3 y′ = − 3 xy 2 + 4 x
2
可见隐函数求导方法: 可见隐函数求导方法
方程F ( x, y ) = 0两边关于x求导。
精品课程
序 言 第1章 第2章 第3章 第4章 第5章 第6章 第7章 第8章 函 数 导 数 定积分 求导方法 导数应用 求积分方法 定积分应用 微分方程
4-2 复合函数的导数
例8 求 解
u
y=2
sin 2 x
的导数。
y = 2 , u = v , v = sin x,这是三层复合:
2
(法则
′ ′ x y ′ = yu u v v′ x
)
y ′ = ( 2 u ) ′ ( v 2 ) ′v (sin x ) ′x u = ( 2 u ln 2 )( 2 v )(cos x ) = (2 =2
精品课程
序 言 第1章 第2章 第3章 第4章 第5章 第6章 第7章 第8章 函 数 导 数 定积分 求导方法 导数应用 求积分方法 定积分应用 微分方程
4-1 求导公式与求导法则
例1 求函数 y = 1 − 2 sin x + 3e x 解 的导数
y ′ = (1 − 2 sin x + 3e x )′
sin 2 x
ln 2 )( 2 sin x ) cos x
sin 2 x
ln 2 ⋅ sin 2 x
精品课程
序 言 第1章 第2章 第3章 第4章 第5章 第6章 第7章 第8章 函 数 导 数 定积分 求导方法 导数应用 求积分方法 定积分应用 微分方程
4-2 复合函数的导数
例9 求 y = sin 解 y ′ = (sin
精品课程
序 言 第1章 第2章 第3章 第4章 第5章 第6章 第7章 第8章 函 数 导 数 定积分 求导方法 导数应用 求积分方法 定积分应用 微分方程
4-1 求导公式与求导法则
在第2章我们学习了导数的意义, 在第2章我们学习了导数的意义, 本章我们 将系统地学习求导数的公式、法则与方法。 将系统地学习求导数的公式、法则与方法。
= 1′ − 2 (sin x ) ′ + 3 ( e x ) ′ = − 2 cos x + 3 e x
再看积和商的求导法则 设u(x),v(x)都是x的可导函数,由导数定义易推出:
(uv)
′
= u ′v + uv′
′ u ′v − u v ′ u (v ≠ 0 ) = 2 v v
2 4
−1
y = u −1 , u = x 2 + x 4
y′ = (−u −2 )(2 x + 4 x 3 ) 2 x + 4 x3 =− 2 4 2 (x + x )
精品课程
序 言 第1章 第2章 第3章 第4章 第5章 第6章 第7章 第8章 函 数 导 数 定积分 求导方法 导数应用 求积分方法 定积分应用 微分方程
如何求导数?
在第2章我们由导数的定义推出了: 在第2章我们由导数的定义推出了:
C ′ = (常数的导数等于0) 0
( x α ) ′ = α x α −1 (幂函数的导数公式)
(u + v ) ′ = u ′ + v ′(和的导数等于导数和 ) ( ku ) ′ = k (u ) ′ (常数因子可以提出去 )