第七章部分习题解答

合集下载

普通化学第七章课后习题解答

普通化学第七章课后习题解答

第七章沉淀反应参考答案P 142【综合性思考题】:给定体系0.02mol/LMnCl 2溶液(含杂质Fe 3+),经下列实验操作解答问题。

(已知K θSPMn(OH)2=2.0×10-13,K θSPMnS =2.5×10-13,K θbNH3=1.8×10-5,K θaHAc =1.8×10-5①与0.20mol/L 的NH 3.H 2O 等体积混合,是否产生Mn(OH)2沉淀?解:等体积混合后浓度减半,[Mn 2+]=0.01mol/L ,c b =[NH 3.H 2O]=0.10mol/L∵是一元弱碱体系,且c b /K b θ>500∴10.0108.1][5⨯⨯=⋅=--b b c K OH θ又∵ 622108.101.0][][--+⨯⨯=⋅=OH Mn Q c=1.8×10-8> K θSPMn(OH)2=2.0×10-13∴ 产生Mn(OH)2沉淀。

②与含0.20mol/L 的NH 3.H 2O 和0.2mol/LNH 4Cl 的溶液等体积混合,是否产生Mn(OH)2沉淀? 解:混合后属于NH 3.H 2O~NH 4Cl 的碱型缓冲液体系此时浓度减半:c b =[NH 3.H 2O]=0.2V/2V=0.1(mol.L -1)c S= [NH 4+]=0.2V/2V=0.1(mol.L -1)[Mn 2+]=0.02V/2V=0.01(mol.L -1)A 、求[OH -] 用碱型缓冲液计算式求算:s b b c c K OH ⋅=-θ][ 55108.11.01.0108.1--⨯=⨯⨯= B 、求Qc 22][][-+⋅=OH Mn Q c=0.01×[1.8×10-5]2=3.24×10-12C 、比较θ2)(,OH Mn SP K ∵13)(,100.22-⨯=>θOH Mn SP C K Q故有Mn(OH)2沉淀产生。

第七章习题解答

第七章习题解答

习 题 七1. 判断下面所定义的变换,哪些是线性的,哪些不是:(1) 在向量空间V 中,σ (ξ)=ξ+α,α是V 中一固定的向量;(2) 在向量空间R 3中,σ (x 1, x 2, x 3)=),,(233221x x x x +;(3) 在向量空间R 3中,σ (x 1, x 2, x 3)=),,2(13221x x x x x +-;(4) 把复数域看作复数域上的向量空间,σ (ξ)=ξ.解 (1)当0=α时,σ是线性变换;当0≠α时,σ不是线性变换;(2)σ不是线性变换;(3)σ是线性变换;(4)σ不是线性变换;2. 设V 是数域F 上一维向量空间. 证明,σ是V 的一个线性变换的充要条件是:存在F 中的一个数a ,使得对任意ξ∈V ,都有σ (ξ)=a ξ .证明:充分性显然.必要性:令σ是ν的一个线性变换,设1ξ是ν的一个基.则νξσ∈)(1.那么)(1ξσ可由1ξ线性表示,不妨设11)(ξξσa =.对任意的νξ∈,有1ξξk =,则ξξξξσξσξσa k a a k k k =====)()()()()(1111.3. 设σ是向量空间V 的线性变换,如果σ k -1ξ≠0, 但σ k ξ=0,求证ξ, σξ, …, σ k -1ξ (k >0)线性无关.证明: 令 ++σξξ10l l ┄ +011=--ξσk k l ┈┈┈┈(1)(1)式两端用1-k σ作用得:++-ξσξσk k l l 110+0221=--ξσk k l由已知得: ==+ξσξσ1k k =,022=-ξσk 01≠-ξσk ,所以有 00=l .则(1)式变为: +σξ1l +011=--ξσk k l ┈┈┈┈(2)(2)式两端用2-k σ 作用得:ξσξσk k l l 211+-+0321=--ξσk k l同理01=l .重复上述过程有: ==10l l 01=-k l .4. 在向量空间R [x ]中,σ (f (x ))=f '(x ), τ (f (x ))=xf (x ), 证明,στ -τσ=ι.证明:对任意][)(x R x f ∈,有))(())()((x f x f σττσστ=-=-+=-=-)()()()())((())(('''x xf x xf x f x f x f x x f τστσ)(x f .所以στ -τσ=ι.5. 在向量空间R 3中,线性变换σ, τ如下:σ (x 1, x 2, x 3)=(x 1, x 2, x 1+x 2)τ (x 1, x 2, x 3)=(x 1+x 2-x 3, 0, x 3-x 1-x 2)(1) 求στ, τσ, σ2;(2) 求σ+τ, σ -τ, 2σ.解: (1) =---+=),0,(),,(213321321x x x x x x x x x σστ,(321x x x -+0,),,()321321x x x x x x τ=-+,∴τστ=.)0,0,0(),,(),,(2121321=+=x x x x x x x ττσ,∴0=τσ),,(),,(21213212x x x x x x x +=σσ=),,(2121x x x x +.∴σσ=2.(2) ),,)((321x x x τσ+=),,(321x x x σ+),,(321x x x τ),,(2121x x x x +=+),0,(213321x x x x x x ---+),,2(32321x x x x x -+=.),,)((321x x x τσ-=),,(321x x x σ),,(321x x x τ-),,(2121x x x x +=),0,(213321x x x x x x ---+-=)22,,(321232x x x x x x -++-.2),,(2321=x x x σ),,(2121x x x x +=)22,2,2(2121x x x x +.6. 已知向量空间R 3的线性变换σ为σ (x 1, x 2, x 3)=(x 1+x 2+x 3, x 2+x 3,-x 3)证明,σ是可逆变换,并求σ-1.证明:),0,0,1(),0,0,1(=σ, ),0,1,1(),0,1,0(=σ,),1,1,1(),1,0,0(-=σ. ∴ σ关于3R 的一个基),0,0,1(, ),0,1,0(,),1,0,0(的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛-=100110111A .显然,A 可逆,所以σ是可逆变换,而且⎪⎪⎪⎭⎫ ⎝⎛--=-1001100111A 所以-=⎪⎪⎪⎭⎫ ⎝⎛=--132113211(),,(x x x x A x x x σ,2x ,32x x +)3x -.7. 设σ, τ, ρ都是向量空间V 的线性变换,试证,(1)如果σ, τ都与ρ可交换,则στ, σ2也都与ρ可交换(若对任意α∈V ,都有στ (α)=τσ (α),就说σ与τ可交换);(2)如果σ+τ, σ-τ都与ρ可交换,则σ, τ也都与ρ可交换.证:(1)由已知ρττρρσσρ==,.那么==)()(τρσρστ)(ρτσ=)()(στρτσρ=.22)()()(ρσσσρρσσσρσρσ====.(2)同理可证.8. 证明,数域F 上的有限维向量空间V 的线性变换σ是可逆变换的充分必要条件是σ把非零向量变为非零向量.证明:不妨设ν是n 维的. ,,21ξξ,n ξ是它的一个基.σ关于这个基的矩阵为A .显然,σ可逆当且仅当A 可逆. σ把非零向量变为非零向量当且仅当{}0=σKer ,而秩σ=秩A ,σ的零度=σker dim .且秩σ+σ的零度=n.所以秩σ=n 当且仅当σ的零度是0,即A 可逆当且仅当0=σKer .故σ可逆当且仅当σ把非零向量变为非零向量.9. 证明,可逆线性变换把线性无关的向量组变为线性无关的向量组. 证明:令σ是向量空间ν的可逆线性变换, ,,21αα,m α是ν的一组线性无关的向量,令++)()(2211ασασk k +0)(=m m k ασ.两端用1-σ 作用得: +11αk +0=m m k α.由已知 ,,21αα,m α 线性无关,所以: ==21k k =0=m k .故 ),(),(21ασασ,)(m ασ 线性无关.10. 设{ε1, ε2, ε3}是F 上向量空间V 的一个基. 已知V 的线性变换σ在{ε1, ε2, ε3}下的矩阵为A =⎪⎪⎪⎭⎫ ⎝⎛333231232221131211a a a a a a a a a (1) 求σ在{ε1, ε3, ε2}下的矩阵;(2) 求σ在{ε1, k ε2, ε3}下的矩阵(k ≠0,k ∈F );(3) 求σ在{ε1, ε1+ε2, ε3}下的矩阵.解:(1)⎪⎪⎪⎭⎫ ⎝⎛=222321323331121311231231),,(),,(a a a a a a a a a εεεεεεσ. (2)⎪⎪⎪⎪⎭⎫ ⎝⎛=33323123222113121132132111),,(),,(a ka a a k a a k a ka a k k εεεεεεσ. (3) =+),,(3211εεεεσ),,(3211εεεε+⎪⎪⎪⎭⎫ ⎝⎛++---+-⋅33323131232221212313222112112111a a a a a a a a a a a a a a a a 11. 在R 3中定义线性变换σ如下σ (x 1, x 2, x 3)=(2x 2+x 3, x 1-4x 2, 3x 1),∀(x 1, x 2, x 3)∈R 3.(1) 求σ在基ε1=(1, 0, 0), ε2=(0, 1, 0), ε3=(0, 0, 1)下的矩阵;(2) 利用(1)中结论,求σ在基α1=(1, 1, 1),α2=(1, 1, 0),α3=(1, 0, 0)下的矩阵.解:(1) ⎪⎪⎪⎭⎫ ⎝⎛-=003041120),,(),,(321321εεεεεεσ(2)从基{}321,,εεε到基{}321,,ααα的过渡矩阵为⎪⎪⎪⎭⎫ ⎝⎛=001011111P .σ在{}321,,ααα下的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--=⋅⎪⎪⎪⎭⎫ ⎝⎛-⋅-0010111110030411200111101000030411201P P=⎪⎪⎪⎭⎫ ⎝⎛---156266333.12. 已知M 2(F )的两个线性变换σ,τ如下σ (X )=X ⎪⎪⎭⎫ ⎝⎛-1111, τ (X )=⎪⎪⎭⎫ ⎝⎛-0201X , ∀X ∈M 2(F ). 试求σ+τ, στ在基E 11, E 12, E 21, E 22下的矩阵. 又问σ和τ是否可逆?若可逆,求其逆变换在同一基下的矩阵.证明:⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+021*********)(111111E E E τσ =12112E E +222102E E +-.⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+200102011111)(121212E E E τσ =12110E E +222120E E -+.⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+110002011111)(212121E E E τσ=121100E E +2221E E ++.⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+10002011111)(222222E E E τσ =121100E E +2221E E -+.所以τσ+在基22211211,,,E E E E 下的矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=1120110200010012A . 同理可证στ在基22211211,,,E E E E 下的矩阵.121111)(E E E +=σ,121112)(E E E -=σ,222112112100)(E E E E E +++=σ,=)(22E σ2221121100E E E E -++.所以σ在此基下的矩阵为:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=1100110000110011B . 显然,B 可逆.所以σ可逆. σ在同一基下的矩阵为: ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=-2121002121000021210021211B . 同理可讨论τ的可逆性及求τ的矩阵.13. 设σ是数域F 上n 维向量空间V 的一个线性变换. W 1, W 2是V 的子空间,并且V =W 1⊕W 2证明,σ是可逆变换的充要条件是V =σ ( W 1)⊕σ ( W 2)证明:令 ,1α,r α是1W 的一个基. 令 ,1+r α,n α是2W 的一个基. 由已知得: ,1α, n α是ν的一个基.必要性:设σ可逆,则 ),(1ασ,)(r ασ, )(1+r ασ,)(n ασ 也是ν的一个基.但=)(1W σ£( ),(1ασ,)(r ασ).=)(2W σ£( )(1+r ασ,)(n ασ)所以=ν+)(1W σ)(2W σ,⋂)(1W σ}0{)(2=W σ,故V =σ ( W 1)⊕ σ ( W 2).充分性:将必要性的过程倒过去即可.14. 设R 3的线性变换σ定义如下:σ (x 1, x 2, x 3)=(2x 1-x 2, x 2-x 3, x 2+x 3)求σ在基ε1=(1, 0, 0), ε2=(0, 1, 0), ε3=(0, 0, 1)及基η1=(1, 1, 0), η2=(0, 1, 1),η3=(0, 0, 1)下的矩阵.解: σ在基{ε1, ε3, ε2}下的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛--=110110012A .σ在基{321,,ηηη}下的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛=-1100110011101100121100110011B =⎪⎪⎪⎭⎫ ⎝⎛--211110011.15. 在M 2(F )中定义线性变换σ为 σ (X )=⎪⎪⎭⎫ ⎝⎛-3210X , ∀X ∈M 2(F ). 求σ在基{ E 11, E 12, E 21, E 22}下的矩阵,其中E 11=⎪⎪⎭⎫ ⎝⎛0001, E 12=⎪⎪⎭⎫ ⎝⎛0010, E 21=⎪⎪⎭⎫ ⎝⎛0100, E 22=⎪⎪⎭⎫ ⎝⎛1000. 解: σ在基{22211211,,,E E E E }下的矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=3020030210000100A . 16. 证明,与n 维向量空间V 的全体线性变换可交换的线性变换是数量变换.证明:由105P 习题二及第10题的结论易得.17. 给定R 3的两个基α1=(1, 0, 1), α2=(2, 1, 0), α3=(1, 1, 1);和 β1=(1, 2,-1), β2=(2, 2, -1), β3=(2, -1, -1). σ是R 3的线性变换,且σ(αi )=βi ,i =1, 2,3. 求(1) 由基{α1, α2 , α3}到基{β1, β2 , β3}的过渡矩阵;(2) σ关于基{α1, α2 , α3}的矩阵;(3) σ关于基{β1, β2 , β3}的矩阵.解: (1)令)0,0,1(1=ε,)0,1,0(2=ε,)1,0,0(3=ε.则由{α1, α2 , α3}到{ε1,ε3, ε2}的过渡矩阵为:1101110121-⎪⎪⎪⎭⎫ ⎝⎛. 由基{ε1, ε3, ε2}到基{β1, β2 , β3}的过渡矩阵为:⎪⎪⎪⎭⎫ ⎝⎛101110221.所以由基{α1, α2 , α3}到基{β1, β2 , β3}的过渡矩阵为: ⎪⎪⎪⎭⎫ ⎝⎛----⋅⎪⎪⎪⎭⎫ ⎝⎛---=-1111222211111101211P =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---252112323123232 (2) σ ==),,(),,(321321βββαααP ),,(321ααα.所以σ在),,(321ααα下的矩阵为:⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---252112323123232. σ关于基{β1, β2 , β3}的矩阵为: ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---252112323123232 18. 设α1=(-1, 0, -2), α2=(0, 1, 2), α3=(1, 2, 5),β1=(-1, 1, 0), β2=(1, 0, 1), β3=(0, 1, 2),ξ=(0, 3, 5)是R 3中的向量,σ是R 3的线性变换,并且σ(α1)=(2, 0, -1), σ(α2)=(0, 0, 1),σ(α3)=(0, 1, 2).(1) 求σ关于基{β1, β2 , β3}的矩阵;(2) 求σ(ξ)关于基{α1, α2 , α3}的坐标;(3) 求σ(ξ)关于基{β1, β2 , β3}的坐标.解:令⎪⎪⎪⎭⎫ ⎝⎛--=5222101011T ,⎪⎪⎪⎭⎫ ⎝⎛-=2101011112T .则从基{α1, α2 , α3}到基{β1, β2 , β3}的过渡矩阵为:⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛----=⋅=-0101210011222341212211T T T T .又321135310311)1,0,2()(αααασ-+-=-= 321203231)1,0,0()(αααασ+-== 321300)2,1,0()(αααασ++==所以σ关于),,(321ααα的矩阵为:⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---03135132310031311.从而σ关于基{β1, β2 , β3}的矩阵为:⋅⎪⎪⎪⎭⎫ ⎝⎛-==-2111000011AT T B ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---03135132310031311⎪⎪⎪⎭⎫ ⎝⎛-⋅010121001= ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----31353103132343132310. (2)==)5,3,0(ξ321353135ααα+-.所以关于)(ξσ),,(321ααα的坐标为:⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⋅926967956353135A 由(2)可知=)(ξσ⋅),,(321ααα⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--926967956=(β1, β2 , β3)⋅⋅-1T ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--926967956 所以关于)(ξσ{β1, β2 , β3}的坐标为:⋅-1T ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--926967956=⋅⎪⎪⎪⎭⎫ ⎝⎛-211100001⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--926967956=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--971926956. 19. 设R 3有一个线性变换σ定义如下:σ (x 1, x 2, x 3)=(x 1+x 2,x 2+x 3,x 3),∀(x 1, x 2, x 3)∈R 3. 下列R 3的子空间哪些在σ之下不变?(1) {(0, 0, c )| c ∈R }; (2) {(0, b , c )| b , c ∈R };(3) {(a , 0, 0)| a ∈R }; (4) {(a , b , 0)| a , b ∈R };(5) {(a , 0, c )| a , c ∈R }; (6) {(a , -a , 0)| a ∈R }.解:(3)与(4)在σ之下不变.20. 设σ是n 维向量空间V 的一个线性变换,证明下列条件等价:(1) σ (V )=V ; (2) ker σ={0}.证明:因为秩σ+σ的零度=n. 所以秩σ=n 当且仅当σ的零度是0,即n =)(dim νσ当且仅当0k e r d i m=σ,因此V V =)(σ当且仅当}0{=σK e r .21. 已知R 3的线性变换σ定义如下:σ (x 1, x 2, x 3)=(x 1+2x 2-x 3, x 2+x 3, x 1+x 2-2x 3),∀(x 1, x 2, x 3)∈R 3.求σ的值域σ (V )与核Ker σ的维数和基.解: σ关于基)0,0,1(1=ε,)0,1,0(2=ε,)1,0,0(3=ε的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛--=211110121A .)1,0,1()(1=εσ,)1,1,2()(2=εσ,)(νσ))(),((21εσεσL =.),(ker ξσL =其中)1,1,3(-=ξ,1ker dim =σ.22. 设σ是向量空间V 的一个线性变换,W 是σ的一个不变子空间,证明,W 是σ 2的不变子空间.证明:由不变子空间的定义易证.23. 设σ是数域F 上n (>0)维向量空间V 的一个线性变换,{α1, α2 ,…, αr , αr +1,…, αn }是V 的基. 证明,如果{α1, α2 ,…, αr }是Ker σ的基,那么{σ (αr +1),…, σ (αn )}是Im σ的基.证明:已知{α1, α2 ,…, αr }是Ker σ的基, 则σ (αi )=0, i =1,2, …, r .令 l r +1σ (αr +1)+ l r +2σ (αr +2)+ …+ l n σ (αn )=0, 则σ ( l r +1αr +1+…+ l n αn )=0, l r +1αr +1+…+ l n αn ∈ Ker σ .所以 l r +1αr +1+…+ l n αn =l 1α 1+…+ l r αr但 α1, α2 ,…, αr , αr +1,…, αn 是V 的一个基, 故 l r +1=…= l n =0.所以 σ (αr +1),…, σ (αn ) 线性无关.又 Im σ = £(σ (α1), σ (α2)…, σ (αn )) = (σ (αr +1),…, σ (αn )).从而结论成立.24. 对任意α∈R 4,令σ (α)=A α,其中A =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---2122552131211201 求线性变换σ的核与象. 解: α1 = ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--02232, α2 = ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--1021, Ker σ =£(α1,α2). σ (ε1) = ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-2111, σ (ε2) = ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-2220.Im σ =£(σ (ε1), σ (ε2)).25. 设 σ,τ 是向量空间V 的线性变换,且σ+τ=ι,στ=τσ=θ. 这里ι是V 的恒等变换,θ 是V 的零变换. 证明:(1) V =σ(V )⊕τ (V );(2) σ(V )=Ker τ.证明: (1) ∀ξ∈ V , ξ=ι (ξ)=(σ+τ)(ξ)=σ (ξ)+τ (ξ).所以V =σ (V )+τ (V ).对任意ξ∈σ (V )∩τ (V ). 则ξ=σ (ξ1)+ τ (ξ2).由已知条件可得ξ= ι (σ (ξ1)) = (σ+τ)(σ (ξ1)) = σ·(σ (ξ1) = σ·(τ (ξ2)= στ (ξ2) = 0 .故结论成立.(2 ) 对任意σ (ξ)∈σ (V ), 则 τ(σ (ξ))= 0, 所以 σ (ξ)∈Ker τ .反之, 对任意ξ∈Ker τ , 则τ(ξ)= 0.由已知条件可得,ξ= (σ+τ)(ξ)=σ (ξ)+τ (ξ)=σ (ξ),所以ξ∈σ (V ).26. 在向量空间F n [x ]中,定义线性变换τ为:对任意f (x )∈F n [x ],τ(f (x )) =x f'(x )-f (x ). 这里f '(x )表示f (x )的导数.(1)求Ker τ及Im τ;(2)证明,V =Ker τ⊕Im τ.解: (1) 令τ ( f (x )) = x f '(x )-f (x ) = 0其中 f (x ) = a 0 + a 1x + … + a n x n . 则(a 1x +2a 2x 2+ … +n a n x n )- f (x ) = 0(0- a 0) + ( a 1- a 1)x + (2a 2- a 2) x 2 + … + (n a n -a n )x n = 0有 ⎪⎪⎩⎪⎪⎨⎧===00020n a a a, 所以 f (x ) = a 1x ,Ker τ =£(x ), Im τ=£(1,x 2, … ,x n ).(2) 显然 .27. 已知向量空间V 的线性变换σ在基{ε1, ε2, ε3}下的矩阵为A =⎪⎪⎪⎭⎫ ⎝⎛--121101365求σ的本征值及相应的本征向量. 问是否存在V 的一个基使得σ 关于这个基的矩阵是对角阵?解: 本征值λ=2 (三重), 属于λ=2的线性无关的本征向量为:ξ1=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0131 , ξ2=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-1031, 故σ 不能对角化.28. 设σ是向量空间V 的可逆线性变换,证明(1) σ的本征值一定不为0;(2) 如果λ是σ 的本征值,那么λ1是σ-1的本征值. 证明: (1) 反设σ 有一本征值为0,则存在ξ≠0,ξ∈ V , 使得σ (ξ)=0·ξ= 0 . 因为σ 可逆, 所以 σ -1(σ (ξ))=0, 即ξ= 0.矛盾.(2) 设λ是σ 的本征值,由(1)得λ≠0,且有σ (ξ)=λξ,ξ≠0.σ -1(σ (ξ))=λσ -1 (ξ). 即 σ -1 (ξ)=λ1ξ, 所以结论成立. 补 充 题1. 设σ是数域F 上n 维向量空间V 的一个线性变换. 证明(1) Ker σ ⊆Ker σ2 ⊆ Ker σ3 ⊆…(2) Im σ ⊇Im σ2 ⊇Im σ3 ⊇…证明: (1)对任意正整数n ,下证Ker σ n ⊆ Ker σ n +1对任意ξ∈ Ker σ n ., σ n (ξ)=0, σ (σ n (ξ))=0即σ n +1(ξ)=0, 所以ξ∈ Ker σ n +1.(2) 对任意正整数n ,下证Im σ n ⊇Im σ n +1.对任意ξ∈Im σ n +1, 则存在 η∈ V , 使得ξ=σ n +1(η)=σ n (σ (η))∈Im σ n .2. 设A 是数域F 上的n 阶矩阵. 证明,存在F 上的一个非零多项式f (x ), 使得f (A )=0.[不用Cayley-Hamilton 定理证. ]证明: 由于dimM n (F) = n 2, 所以I, A, A 2, …, A 2n 线性相关,故存在 F 上的不全为零的一组数k 0,, k 1, … ,k 2n ,使得+++2210A k A k I k ┄+022=n n A k .取=)(x f +++2210x k x k k ┄+ 022=n n x k ,结论得证. 3. 设V 是n 维向量空间, σ是V 的一个可逆线性变换, W 是σ的一个不变子空间. 证明, W 也是σ-1的不变子空间.证明:令{α1, α2 ,…, αr }是W 的一个基,因为W 是σ的不变子空间,所以 ,1,)(=∈i i ωασ,r .又σ是可逆的,所以 ),(1ασ,)(r ασ线性无关,故 ),(1ασ,)(r ασ也是W 的一个基.因为r i i i ,,1,))((1 =∈=-ωαασσ.所以W 关于1-σ不变.4. 设σ是数域F 上向量空间V 的一个线性变换, σ2=σ. 证明:(1) Ker σ ={ξ-σ (ξ)|ξ∈V };(2) V =Ker σ ⊕Im σ ;(3) 若τ是V 的一个线性变换, 那么Ker σ 和Im σ 都在τ之下不变的充要条件是στ=τσ.[提示:证(3)的必要性,利用(2). ]证明:(1)对于任意的,ker σξ∈则.0)(=ξσ那么{}V ∈-∈-=-=ξξσξξσξξξ)()(0.反之,任意的{}V ∈-∈-ξξσξξσξ)()(,有-=-)())((ξσξσξσ 0)()()(2=-=ξσξσξσ,故σξσξker )(∈-.(2)由(1)的解果可知:σσIm ker +=V ,对任意的σσξIm ker ⋂∈,则有:)()(211ησησηξ=-=,因此0)()()(121=-=ησησξσ.同时还有:ξησησξσ===)()()(222所以0=ξ,结论成立.(3)充分性易证.必要性:设Ker σ 和Im σ 都在τ之下不变,由(2)的结论得:1,ξξξ=∈∀V ),(2ξσ+其中σξker 1∈.又因为+-=+-=-))(())(())()(())((1121ξστξτσξσξτσστξτσστ )()))(((222ξτσξστσ-.由已知,,Im ))((,ker )(21σξστσξτ∈∈不妨设)())((32ξσξστ=,所以 0)()())(())(())((2323=-=-=-ξτσξσξστξσσξτσστ.5. 设σ是数域F 上n 维向量空间V 的一个线性变换, σ2=ι. 证明, V =W 1⊕W 2, 这里W 1={ξ∈V |σ(ξ)=ξ},W 2={η∈V |σ(η)=-η}.[提示:∀α∈V ,α=21(α+σ(α))+21(α-σ(α)). ]证明:首先对2)(2)(,ασαασααα-++=∈∀V ,由于 =+)2)((ασασ2)(2)()(2ασαασασ+=+,=-)2)((ασασ=-2)()(2ασασ 2)(ασα-- 所以12)(W ∈+ασα,22)(W ∈-ασα,故21W W V +=.其次对任意的21W W ⋂∈α,则αασ=)(,αασ-=)(.所以0,02==αα.那么V =W 1⊕W 2,结论成立.6. 设V 是复数域C 上一个n 维向量空间, σ, τ是V 的线性变换, 且στ=τσ . 证明(1) 对σ的每一本征值λ来说,V λ={ξ∈V |σ(ξ)=λξ}是τ的不变子空间;(2) σ与τ有一公共本征向量.[提示:证(2)时,考虑τ在V λ上的限制. ]证明: (1)易证.(2).由(1)可知λV 是τ的不变子空间.则λτV 是λV 的一个线性变换.因此λτV 在复数域C 上一定有一个本征值,不妨设为μ.即存在λαV ∈≠0,使得 μαατλ=))((V .而)())((ατατλ=V ,所以α是τ的属于μ的一个本征向量.由α的取法,结论得证.7. 设A 是秩为r 的n 阶半正定矩阵. 证明,W ={ξ∈R n |ξ T A ξ=0}是R n 的n -r 维子空间.[提示:利用习题三第33题的结论,可得W 是齐次线性方程组BX =0的解空间. ]证明:由习题三第33题的结论得:B B A T =,其中B 是秩为r 的n r ⨯矩阵.则)()(ξξξξξξB B B B A T T T T ==,那么0=ξξA T 当且仅当0=ξB .=W {}0=∈ξξB R n .因为秩r B =,所以齐次线性方程组0=Bx 的解空间是r n -维的.即r n W -=dim .8. 设σ,τ是F 上向量空间V 的线性变换,且σ2=σ,τ2=τ. 证明,(1) Im σ=Im τ 当且仅当 στ=τ, τσ=σ;(2) Ker σ=Ker τ 当且仅当 στ=σ, τσ=τ.证明:(1)必要性:设τσm m I I =,,V ∈∀ξ则σξτIm )(∈.令)()(1ξσξτ=,则 )()())(()(11ξτξσξσσξστ===.所以τστ=.同理可证στσ=. 充分性:设τστ=,στσ=.对任意的σξσIm )(∈,则τξστξτσξσIm ))(())(()(∈==所以τσIm Im ⊆,同理可证στIm Im ⊆.(2)必要性:设Ker σ=Ker τ.对任意的V ∈ξ,因为0)()())((2=-=-ξτξτξξττ所以τξξτker)(∈-,则0))((=-ξξτσ,即)())((ξσξτσ=,故σστ=.勤劳的蜜蜂有糖吃同理可证ττσ=.充分性:设ττσ=,σστ=.对任意的σξker ∈,则0)(=ξσ.且0)0())(())(()(====τξστξτσξτ所以τξker ∈,故τσker ker ⊆.同理可证στker ker ⊆.。

微观经济学第七章 习题答案

微观经济学第七章  习题答案

MR,试求:图7—1(1)A点所对应的MR值;(2)B点所对应的MR值。

解答:(1)根据需求的价格点弹性的几何意义,可得A点的需求的价格弹性为e d =eq \f(15-5,5)=2或者e d =eq \f(2,3-2)=2再根据公式MR=P eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,e d ))),则A点的MR值为MR=2×eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,2)))=1(2)与(1)类似,根据需求的价格点弹性的几何意义,可得B点的需求的价格弹性为e d =eq \f(15-10,10)=eq \f(1,2)或者e d =eq \f(1,3-1)=eq \f(1,2)再根据公式MR=P eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,e d ))),则B点的MR值为MR=1×eq \b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,1/2)))=-12. 图7—2(即教材第205页的图7—19)是某垄断厂商的长期成本曲线、需求曲线和收益曲线。

试在图中标出:(1)长期均衡点及相应的均衡价格和均衡产量;(2)长期均衡时代表最优生产规模的SAC曲线和SMC曲线;(3)长期均衡时的利润量。

图7—2图7—3(1)长期均衡点为E点,因为在E点有MR=LMC。

由E点出发,均衡价格为P0,均衡数量为Q0。

(2)长期均衡时代表最优生产规模的SAC曲线和SMC曲线如图7—3所示。

在Q0的产量上,SAC曲线和LAC曲线相切;SMC曲线和LMC曲线相交,且同时与MR曲线相交。

(3)长期均衡时的利润量由图7—3中阴影部分的面积表示,即π=[AR(Q0)-SAC(Q0)]·Q 0。

3. 已知某垄断厂商的短期总成本函数为STC=0.1Q3-6Q2+140Q+3 000,反需求函数为P=150-3.25Q。

最新(完美版)第七章习题答案_数值分析

最新(完美版)第七章习题答案_数值分析

第七章习题解答2、试确定系数a ,b 的值使220[()cos ]ax b x dx p+-ò达到最小解:设220(,)[()cos ]I a b ax b x dx p=+-ò确定a ,b 使(,)I a b 达到最小,必须满足0,0I Ia b ¶¶==¶¶即3222222000022222000012[cos ]0cos 248212[cos ]0cos 82a b ax b x xdx a x dx b xdx xxdx a b ax b x dx a xdx b dx xdx p p p p p p p pp p p p p ììì+=-+-=+=ïïïïïïÞÞíííïïï+=+-=+=ïïïîîîòòòòòòòò解得:0.6644389, 1.1584689a b »-»5、试用Legendre 多项式构造()f x x =在[-1, 3]上的二次最佳平方逼近多项式 解:作变量代换,将区间[-1, 3]变为[-1, 1],令21x t =+,即12x t -=则()()(21)21(11)F t f x f t t t ==+=+-££对()F t 利用Legendre 多项式求其在}{21,,span t t上的最佳平方逼近多项式20()()j j j S t C P t ==å,其中11(,)21()()(0,1,2)(,)2j j j j j P f j C F t P t dt j P P -+===ò20121()=1,()=t,()=(31)2P t P t P t t - 则有:1121012112111212212121215[(21)(21)]24311[(21)(21)]285(31)(31)45[(21)(21)]22264C t dt t dt C t tdt t tdt t t C t dt t dt ---------=--++==--++=--=--++=òòòòòò 01251145()()()()4864S t P t P t P t \=++则()f x 在[-1, 3]上的最佳二次逼近多项式*01222151111451()()()()()()2428264251114511=()((3()1))4826422135+82243512x x x x S t S t S P P P x x x x ----===++--++-+=7、确定一条经过原点的二次曲线,使之拟合下列数据ix123iy0.2 0.5 1.0 1.2并求平方误差2d解:设2012()1,(),()x x x x x j j j ===由题,拟合函数须过原点 则令001122()()()()f x C x C x C x j j j =++,其中00C =,即212()f x C x C x =+ 12000.2110.5,,24 1.039 1.2Y f f æöæöæöç÷ç÷ç÷ç÷ç÷ç÷===ç÷ç÷ç÷ç÷ç÷ç÷èøèøèø 11122122(,)(,)1436(,)(,)3698G f f f f f f f f æöæö==ç÷ç÷èøèø 12(,) 6.1(,)15.3Y F Y f f æöæö==ç÷ç÷èøèø得法方程GC F = 121436 6.1369815.3C C æöæöæö=ç÷ç÷ç÷èøèøèø解方程得:120.61840.0711C C »»-2()0.61840.0711f x x x \=-误差222121(,) 2.730.6184(,)0.0711(,)0.04559j j j YC Y Y Y df f f ==-=-´+´=å8、已知一组数据ix1 2 3iy3 2 1.5试用拟合函数21()S x a bx =+拟合所给数据解:令2()f x a bx =+ 201()1,()x x x j j ==01()()()f x a x b x j j =+则123113111114,219213y A F y y æöæö÷ç÷çæöç÷ç÷ç÷ç÷===ç÷ç÷ç÷ç÷èøç÷ç÷ç÷ç÷èøèøT T a A A A F b æö\=ç÷èø,即331422514983a b æöç÷æöæö=ç÷ç÷ç÷ç÷èøèøç÷èø解方程组得0.3095,0.0408a b == 即210.30950.0408()x f x y=+=从而有21()0.30950.0408S x x =+补充题:用插值极小化法求()sin f x x =在[0, 1]上的二次插值多项式2()P x ,并估计误差 解:作变量替换1(1)2x t =+,将[0, 1]变换[-1, 1]取插值点11(21)cos 0,1,2222(1)K K x K n p+=+=+ 0120.933001270.50.0669873x x x ===利用这些点做插值商表i xi y一阶插商 二阶插商0.9330127 0.80341740.5 0.479425 0.74863250.0669873 0.0659372 0.9549092 -0.23818779则:20.9330127()0.80)0.2341740.743818779(0.9330127)(0.5)86325(x P x x x ---=+-同时误差213322()()()22(1)!3!24n n M M M R x f x P x n --+=-£==+其中(3)3max ()M f x = 由于1(1)2x t =+,即21t x =- 则(3)(3)3max (21)max sin (21)8max cos(21)8[0,1]M f x x x x =-=-=-=Î281()243R x \£=。

微机原理及接口第七章习题解答

微机原理及接口第七章习题解答

“微机系统原理与接口技术”第七章习题解答(部分)1. 8086系统采用向量式中断,试简述8086系统中中断类型码、中断向量、中断向量表的含义及其之间的关系。

答:中断类型码:用于区分不同的中断源,即系统中每个中断源都应该对应一个唯一的类型 码。

8086系统中的中断类型码以 8位无符号数(00H 〜0FFH )表示,一共可以区分 256个不同的中断源。

中断向量:中断服务程序(ISR )的入口地址,也就是 ISR 的第一条指令在存储器中的 位置。

8086系统中的中断向量由两个字(4个字节)组成,低位字表示入口的偏移地址,高 位字表示入口的段基址。

显然,每个中断类型码对应一个中断向量,则8086系统中共应有256个中断向量。

中断向量表:中断向量的存放地。

8086系统将最低的 1KB (00000H 〜003FFH ) RAM 空间用于存放这256个中断向量。

三者之间的关系是:利用中断类型码 n 可以很容易地从中断向量表中找到该中断源所对应的中断向量,即:中断向量存放的起始地址 m = nX 4,从中断向量表的 m 地址单元开始连续取出的四个字节就是 n 号中断的ISR 入口地址。

8086CPU 正是用这种方法完成中断索引的。

系统将广义中断分为异常和狭义中断两大类。

(5)对。

4. 8086系统的RAM 存储单元中,从 0000H:002CH 开始依次存放 23H 、0FFH 、00H 和 0F0H 4个字节的中断向量,该向量对应的中断类型码是多少?而中断类型码为 14H 的中断向量应存放在哪些存储单元中?答:中断向量0F000:0FF23存放在0002CH 双字单元中,说明其对应的中断类型码N =2CH - 4= 0BH 。

14H 号中断向量的起始存放地址为4X 14H = 00050H ,即该中断向量的偏移量部分存放2.判断下列说法是否正确,如有错,指出错误原因并改正:(1) (2) (3) (4) (5) 答:(1)优先级别高的中断总是先响应、先处理。

模电课后(康华光版)习题答案7

模电课后(康华光版)习题答案7

第七章部分习题解答7.1.1在图题7.1.1所示的各电路中,哪些元件组成了级间反馈通路?它们所引入的反馈是正反馈还是负反馈?是直流反馈还是交流反馈?(设各电路中电容的容抗对交流信号均可忽略)解:图题7.1.1a中,由电阻R2、R1组成反馈通路,引入负反馈,交、直流反馈均有;b图中,由R e1引入负反馈,交、直流反馈均有,由R f1、R f2引入直流负反馈;c图中,由R f、R e2引入负反馈,交、直流反馈均有;d图中,由R2、R1引入负反馈,交、直流反馈均有;e 图中,由A2、R3引入负反馈,交、直流反馈均有;f图中,由R6引入负反馈,交、直流反馈均有。

图题7.1.17.2.2 试指出图题7.1.5a、b所示电路能否实现规定的功能,若不能,应如何改正?解:图题7.1.5a电路不能实现规定的功能,因引入了正反馈。

应将运放的同相端和反相端位置互换。

图b电路也不能实现规定的功能。

应将R与R L位置互换。

图题7.1.57.2.4 由集成运放A 及BJT T 1、T 2组成的放大电路如图题7.1.7所示,试分别按下列要求将信号源v s 、电阻R f 正确接入该电路。

(1) 引入电压串联负反馈; (2) 引入电压并联负反馈; (3) 引入电流串联负反馈; (4) 引入电流并联负反馈。

图题7.1.7解: (1)a-c 、b-d 、h-i 、j-f(2)a-d 、b-c 、h-I 、j-f (3)a-d 、b-c 、g-i 、j-e (4)a-c 、b-d 、g-i 、j-e7.4.1 一放大电路的开环电压增益为A VO =104,当它接成负反馈放大电路时,其闭环电压增益为A VF =50,若A VO 变化10%,问A VF 变化多少?解: 因为200501014===+VF VO V VO A A F A所以,当A VO 变化10%时,A VF 变化%05.0%102001=⨯=VF VF A dA7.4.5 电路如图题7.3.10所示。

第七章 傅里叶变换习题解答

第七章 傅里叶变换习题解答

习题 七1.证明:如果f (t )满足傅里叶变换的条件,当f (t )为奇函数时,则有⎰+∞⋅=0d sin )()(ωωωt b t f其中()⎰+∞⋅=0tdt sin π2)(ωωt f b当f (t )为偶函数时,则有⎰+∞⋅=0cos )()(ωωtd w a t f其中⎰+∞⋅=2tdt c f(t))(ωωπos a证明:因为ωωωd G t f t i ⎰+∞∞-=e )(π21)(其中)(ωG 为f (t )的傅里叶变换 ⎰⎰+∞∞-+∞∞--⋅==dt t i t t f dt e t f G ti )sin (cos )()()(ωωωω⎰⎰+∞∞-+∞∞-⋅-⋅=tdt t f i t t f ωωsin )(cos )(当f (t )为奇函数时,t cos f(t)ω⋅为奇函数,从而⎰+∞∞-=⋅0tdt cos f(t)ωt sin f(t)ω⋅为偶函数,从而⎰⎰+∞∞-+∞⋅=⋅0.sin f(t)2tdt sin f(t)tdt ωω故.sin f(t)2)(0tdt i G ωω⋅-=⎰+∞有)()(ωωG G -=-为奇数。

ωωωωπωωπωd t i t G d e G t f t i )sin (cos )(21)(21)(+⋅=⋅=⎰⎰+∞∞-+∞∞-=1()sin d ()sin d 2ππi G i t G t ωωωωωω+∞+∞-∞⋅=⋅⎰⎰ 所以,当f(t)为奇函数时,有02()b()sin d .b()=()sin dt.πf t t f t t ωωωωω+∞+∞=⋅⋅⎰⎰其中 同理,当f(t)为偶函数时,有()()cos d f t a t ωωω+∞=⋅⎰.其中 02()()cos πa f t tdt ωω+∞=⋅⎰2.在上一题中,设()f t=21,0,1ttt⎧<⎪⎨≥⎪⎩.计算()aω的值.解:120011120012222()()cos d cos d0cos d πππ221cos d d sinππ122sin sin2dππ2sinπ2sinπa f t t t t t t t tt t t tt t t tωωωωωωωωωωωωωωω+∞+∞=⋅=⋅+⋅=⋅=⋅=⋅⋅-⋅=⋅=⎰⎰⎰⎰⎰⎰3.计算函数sin,6π()0,6πt tf tt⎧≤⎪=⎨≥⎪⎩的傅里叶变换.解:6π6π6π6π6π2()()()d sin d sin(cos sin)d2sin sin dsin6ππ(1)i t i tf f u f t e t t e tt t i t ti t t tiωωωωωωω+∞---∞--=⋅=⋅=⋅-=-⋅=-⎰⎰⎰⎰4.求下列函数的傅里叶变换||(1)()tf t e-=解:||(||)0(1)(1)2F()()()d d d2d d1i t t i t t i tt i t if f t e t e e t e te t e tωωωωωωω+∞+∞+∞----+-∞-∞-∞+∞--+-∞-∞==⋅==+=+⎰⎰⎰⎰⎰(2)2()t f t t e -=⋅解:因为2222214F[].()(2)2.t t t t e ee et t e ω-----==⋅-=-⋅而所以根据傅里叶变换的微分性质可得224()F()tG t e e ωω--=⋅=(3)2sin π()1tf t t =- 解:222202200sin π()F()()d 1sin π(cos sin )d 11[cos(π)cos(π)]sin πsin 2d 2d 11cos(π+)cos(π-)d d ()11sin ,||π20,|i tt G f e t t tt i t t tt t t t i t i t t tt t i t i t t t iωωωωωωωωωωωωω+∞--∞+∞-∞+∞+∞-∞+∞+∞==⋅-=⋅---+--⋅=-=---=----≤=⎰⎰⎰⎰⎰⎰利用留数定理当当|π.⎧⎪⎨⎪≥⎩ (4)41()1f t t =+ 解:4444401cos sin ()d d d 111cos cos 2d d 11i tt t G e t t i tt t t t t t tt t ωωωωωω+∞+∞+∞--∞-∞-∞+∞+∞-∞==-+++==++⎰⎰⎰⎰⎰41R(z)=1z +,则R(z)1)i i +-+.R()d 2π[R())]2π[R()1)]i t i z i z t e t i res z e i i res z e i ωωω+∞-∞⋅=⋅⋅++⋅⋅-+⎰故.|44cos ||||d Re[d ]sin )1122i tt e t t t t ωωωωω+∞+∞--∞-∞==+++⎰⎰(5) 4()1t f t t =+ 解:4444()d 1sin cos d d 11sin d 1i tt G e tt tt t t t i t t t t t i tt ωωωωω+∞--∞+∞+∞-∞-∞+∞-∞=⋅+⋅=⋅-++⋅=-+⎰⎰⎰⎰ 同(4).利用留数在积分中的应用,令4R()=1zz z+则44|sin d ()Im(d )11sin22i tt tt e i t i t t t ie ωωωω+∞+∞-∞-∞-⋅⋅-=-++=-⋅⋅⎰⎰.5.设函数F(t )是解析函数,而且在带形区域.|Im()|8t <内有界.定义 函数2()G ω为22222()F()d .i t G t e t ωω--=⋅⎰ 证明当10时.有21P V ()d F()2πi t G e t t ωω+∞-∞⋅⋅→⎰ 对所有实数t 成立. (书上有推理过程)6.求符号函数 1,0sgn 1,0||t t t t t -<⎧==⎨>⎩的傅里叶变换. 解:因为1F(())π().u t i δωω=+⋅把函数sgn()t 与u(t)作比较. 不难看出 sgn()()().t u t u t =--故.[]11F[sgn()]F(())F(())π()[π()]π()22π()()t u t u t i i i i δωδωωδωδωωω=--=+⋅-+⋅--=+--=7.已知函数()f t 的傅里叶变换()00F()=π()(),ωδωωδωω++-求()f t解:[]00000000001()F(F())=π()()d 2πF(cos )=cos d d 2π[()()]()cos i ti t i t i t i tf t e t t e te e e tf t tωωωωωωδωωδωωωωωδωωδωωω+∞-∞+∞--∞-+∞--∞=⋅++-⋅+=⋅=++-=⎰⎰⎰而所有8.设函数()f t 的傅里叶变换F()ω,a 为一常数.证明:1F[()]()=F ||1F[()]()()d ()d i ti t f at a a f at f at et f at e at a ωωωωω+∞+∞---∞-∞⎛⎫⋅ ⎪⎝⎭=⋅=⋅⎰⎰解:当a >0时,令u=at .则1F[()]()()d u i t a f at f u e u aω-+∞-∞=⋅⎰当a <0时,令u=at ,则1F[()]()F()f at aaωω=-.故原命题成立.9.设()[]();F F f ωω=证明()()[]()F f t ωω=--F .证明:()[]()()()()()[]()()[]()()[]()e d e d ed e d e d .i t i u i i u u i t F f t f uf t u t f u f uu u f t F t ωωωωωωω+∞+∞--∞-∞+∞+∞--⋅⋅---∞-∞+∞-⋅--∞=⋅=-⋅--=⋅=⋅=⋅=-⎰⎰⎰⎰⎰10.设()[]()F F f ωω=,证明:()[]()()()0001cos 2F f t F F t ωωωωωω⋅=-++⎡⎤⎣⎦以及()[]()()()0001sin .2F f t F F t ωωωωωω⋅=--+⎡⎤⎣⎦证明:()[]()()()()()0000000e +e cos 21e e 22212i t i ti t i t F f t F t f t F F f f t t F F ωωωωωωωωω--⎡⎤⋅=⋅⎢⎥⎣⎦⎧⎫⎡⎤⎡⎤=+⋅⋅⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭=-++⎡⎤⎣⎦同理:()[]()()(){}()()0000000e e sin 21e e 212i t i t i t i t Ff t F f t t i F F f f t t i F F iωωωωωωωωω--⎡⎤-⋅=⋅⎢⎥⎣⎦=-⎡⎤⎡⎤⋅⋅⎣⎦⎣⎦=--+⎡⎤⎣⎦11.设()()π0,0sin ,0t 200e ,t t t f g t t t -⎧<⎧≤≤⎪==⎨⎨≥⎩⎪⎩,其他计算()*f g t .解:()())*(d f y g y t f g t y +∞-∞-=⎰当t y o -≥时,若0,t <则()0,f y =故()*f g t =0.若0,0,2t y t π<≤<≤则()()()00()d sin d *t ty f y g y e y t f g t y t y -=⋅--=⎰⎰若,0..222t t y t y t πππ>≤-≤⇒-≤≤则()()2sin d *ty t e y t f g y t π--⋅-=⎰故()()()20,01,0sin cos e *221e .1e 22t t t t t t f g t t πππ--<⎧⎪⎪<≤-+=⎨⎪⎪>+⎩12.设()u t 为单位阶跃函数,求下列函数的傅里叶变换.()()()0e sin 1at f t u t t ω-=⋅()()()()()()()00000000002002e sin e e sin e e e e e 211e d d d d e 2d 2at i t at i t i t i t ati ta i t a i t ttG F t u f t t t i i it ta i ωωωωωωωωωωωωωωωω+∞-∞+∞+∞+∞+--------+--++⎡⎤⎡⎤⎣∞⎣⎦⎦=====-=⋅⋅⋅⋅⋅-⋅⋅++⎰⎰⎰⎰⎰解:。

第七章习题答案解析

第七章习题答案解析

第七章 不完全竞争的市场1、根据图中线性需求曲线d 和相应的边际收益曲线MR ,试求:(1)A 点所对应的MR 值;(2)B 点所对应的MR 值。

解答:(1)根据需求的价格点弹性的几何意义,可得A 点的需求的价格弹性为:25)515(=-=d e 或者 2)23(2=-=d e 再根据公式)11(d e P MR -=,则A 点的MR 值为:MR=2×(2×1/2)=1 (2)与(1)类似,根据需求的价格点弹性的几何意义,可得B 点的需求的价格弹性为:21101015=-=d e 或者 21131=-=d e 再根据公式d e MR 11-=,则B 点的MR 值为:1)2111(1-=-⨯=MR 2、图7-19是某垄断厂商的长期成本曲线、需求曲线和收益曲线。

试在图中标出:(1)长期均衡点及相应的均衡价格和均衡产量;(2)长期均衡时代表最优生产规模的SAC 曲线和SMC 曲线;(3)长期均衡时的利润量。

解答:本题的作图结果下图所示:(1)长期均衡点为E 点,因为,在E 点有MR=LMC 。

由E 点出发,均衡价格为P 0,均衡数量为Q 0。

(2)长期均衡时代表最优生产规模的SAC 曲线和SMC 曲线如图所示。

在Q 0 的产量上,SAC 曲线和LAC 曲线相切;SMC 曲线和LMC 曲线相交,且同时与MR 曲线相交。

(3)长期均衡时的利润量有图中阴影部分的面积表示,即л=(AR(Q 0)-SAC(Q 0)Q 03、已知某垄断厂商的短期成本函数为30001461.023++-=Q Q Q STC ,反需求函数为P=150-3.25Q求:该垄断厂商的短期均衡产量与均衡价格。

解答:因为140123.02+-==Q Q dQ dSTC SMC且由225.3150)25.3150()(Q Q Q Q Q Q P TR -=-==得出MR=150-6.5Q根据利润最大化的原则MR=SMCQ Q Q 5.6150140123.02-=+-解得Q=20(负值舍去)以Q=20代人反需求函数,得P=150-3.25Q=85所以均衡产量为20 均衡价格为854、已知某垄断厂商的成本函数为236.02++=Q Q TC ,反需求函数为P=8-0.4Q 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⎧ ⎪ J 1 = Q2 ⎨ ⎪ ⎩ K 1 = Q0
⎧ J 2 = Q1 ⎨ ⎩ K 2 = Q1
状态方程:
n +1 n n n ⎧Q0 = Q0 + Q2 Q0 ⎪ ⎪ n +1 n n n n ⎨Q1 = Q 2 Q1 + Q0 Q1 ⎪ n +1 n n n n n ⎪Q2 = Q 2 Q1 + Q2 Q1 = Q1 ⎩
解: 方 法 一 : 反 馈 清 零 法 。 利 用 74LS290 在 R9( 1) ·R9( 2) =0、 R0( 1) =R0( 2) =1 的条件下能够实现异步清零的功能,构成六进制计数器,其电路如图题解 7.1.14a所 示 。 计 数 状 态 为 自 然 二 进 制 数 0000~ 0110。 设 电 路 初 态 为 0000, 在 第 6 个 计 数 脉 冲 作 用 后 , 电 路 状 态 变 为 0110, 这 时 有 R0( 1) =R0( 2) =1, 于 是 立 即 使 QDQCQBQA变 为 0000, 因 此 0110 这 个 状 态 出 现 的 时 间 极 短 。 方 法 二 :反 馈 置 数 法( 置 1 0 0 1 ) 。利 用 7 4 L S 2 9 0 在 R 9 ( 1 ) = R 9 ( 2 ) = 1 时 能 够 直 接 置 1 0 0 1 的 功 能 , 构 成 六 进 制 计 数 器 , 其 电 路 如 图 题 解 7 . 1 . 1 4b 所 示 。 设 电 路 初 态 为 1001, 第 1 个 计 数 脉 冲 作 用 后 , 电 路 状 态 变 为 0000。 图 题 解 7.1.14c是 该 计连 后 , 输 出 端 共 有 16×16=256 个 不 同 的 状 态 , 而 在 用“ 反 馈 置 数 法 ”构 成 的 图 题 7 . 1 . 7 所 示 电 路 中 ,预 置 数 输 入 端 所 加 的 数 据 为 0 1 0 1 0 0 10 ,它 所 对 应 的 十 进 制 数 是 8 2 ,说 明 该 电 路 从 0 1 0 1 0 0 1 0 状 态 开 始 计 数 , 跳 过 了 82 个 状 态 , 因 此 该 计 数 器 的 模 M=256-82=174。
进制讲数器。 ( 74163 是 具 有 同 步 清 零 功 能 的 4 位 二 进 制 同 步 加 计 数 器 , 其 他 功 能 与 74161 相 同 )
解 :图 题 7.1.10 是 用“ 反 馈 清 零 法 ”构 成 的 计 数 器 ,该 计 数 的 模 M=11, 图 题 解 7.1.10 是 它 的 状 态 图 。 设 电 路 初 态 为 0000, 在 第 10 个 计 数 脉 冲 作 用 后 ,QDQCQBQA变 成 1010,同 时 RD由 1 变 成 0,但 由 于 74163 是 同 步 清 零 ,因 此 在 第 11 个 计 数 脉 冲 作 用 后 , QDQCQBQA才 能 变 成 0000。 7.1.11 进制计数器。 试 分 析 图 题 7.1.11 所 示 电 路 , 画 出 它 的 状 态 图 , 说 明 它 是 几
7.2.2
试 用 两 片 74194 构 成 8 位 双 向 移 位 寄 存 器 。
解 : 用 两 片 74194 组 成 8 位 双 向 移 位 寄 存 器 时 , 只 需 将 其 中 一 片 的 QD接 至 另 一 片 的 右 移 串 行 输 入 端 D S R ,而 将 另 一 片 的 Q A 接 到 这 一 片 的 左 移 串 行 输 入 端 DSL, 同 时 把 两 片 的 S1、 S0、 CP、 RD分 别 并 联 即 可 。 其 电 路 如 图 题 解 7.2.2 所示。
解 :图 题 7 . 1 . 9 所 示 电 路 是 由 7 4 1 6 1 用“ 反 馈 清 零 法 ”构 成 的 十 进 制 计 数 器 。 状 态 图 如 图 题 解 7.1.9 所 示 。 其 中 1010 仅 在 极 短 的 时 间 内 出 现 。
7.1.10
试 分 析 图 题 7.1.10 所 示 电 路 , 画 出 它 的 状 态 图 , 说 明 它 是 几
由状态表可知,该电路是一个五进制计数器,其输出波形图如图题解 7.1.5 所 示 。 7.1.8 试 用 主 从 JK 触 发 器 设 计 一 个 同 步 六 进 制 加 计 数 器 。
解:六进制计数器需要用 3 个触发器。 ( 1) 列 出 该 计 数 器 的 状 态 表 和 驱 动 表 如 表 题 解 7.1.8 所 示 。 表 题 解 7.1.8 计数脉 冲 CP 的 顺序 0 1 2 3 4 5
⎧ J 1 = Q 2 Q0 ⎨ ⎩ K 1 = Q0
⎧J 0 = 1 ⎨ ⎩K 0 = 1
( 3) 画 出 该 计 数 器 的 逻 辑 电 路 图 , 如 图 题 解 7.1.8b 所 示 。 ( 4) 检 查 自 启 动 能 力 。 当 该 计 数 器 进 入 无 效 状 态 110 时 , 在 CP 脉 冲 作 用 下 , 电 路 的 状 态 将 按 以下顺序变化: 110→ 111→ 000 因而所设计的计数器能够自启动。 7.1.9 制讲数器。 试 分 析 图 题 7.1.9 所 示 电 路 , 画 出 它 的 状 态 图 , 说 明 它 是 几 进
7.1.5 的波形图。
试 分 析 图 题 7.1.5 电 路 是 几 进 制 计 数 器 , 画 出 各 触 发 器 输 出 端
解 :由 图 题 7 . 1 . 5 可 写 出 各 触 发 器 的 驱 动 方 程 和 该 电 路 的 状 态 方 程 ,即
⎧J 0 = 1 ⎨ K = Q2 驱动方程: ⎩ 0
7常用时序逻辑功能器件
7.1.3 图。 解 :首 先 将 4 个 触 发 器 接 成 计 数 工 作 状 态 ,即 将 各 触 发 器 的 D 端 与 其 Q 端 相 连 接 。然 后 决 定 级 间 连 接 方 式 ,即 按 照 二 进 制 加 法 计 数 规 则 ,当 低 位 触 发 器 的 Q 端 已 经 为 1 时 , 则 再 输 入 一 个 计 数 脉 冲 后 Q 端 应 翻 转 为 0, 同 时 向 高 一 位 触 发 器 发 出 进 位 信 号 ,使 高 一 位 翻 转 。因 为 是 用 负 边 沿 触 发 器 ,所 以 只 要 将 低 位 触 发 器 的 Q 端 接 至 高 1 位 触 发 器 的 时 钟 输 入 端 ,当 低 位 的 Q 端 由 1 变为 0 时,正好作为高一位的时钟信号。按照上述步骤,用负边沿 D 触发 器 组 成 的 4 位 二 进 制 异 步 加 法 计 数 器 电 路 如 图 题 解 7.1.3 所 示 。 试用负边沿 D 触发器组成 4 位二进制异步加计数器,画出逻辑
K0
× 1 × 1 × 1 × ×
0 0 0 0 1 1 1 1
0 1 0 1 0 1 0 1
0 0 0 1 1 0 × ×
1 0 1 0 1 0 × ×
( 2)画 出 卡 诺 图 ,如 图 题 解 7.1.8a 所 示 ,化 简 后 ,求 得 各 触 发 器 的 驱 动方程。
⎧ J 2 = Q1Q0 ⎨ ⎩ K 2 = Q0
n Q2
现态 Q1n 0 0 1 1 0 0 1 1
n Q0 n +1 Q2
次态 Q1n +1 0 1 1 0 0 0 × ×
n +1 Q0
驱动信号
J2
0 0 0 1 × × × ×
K2
× × × × 0 1 × ×
J1
0 1 × × 0 0 × ×
K1
× × 0 1 × × × ×
J0
1 × 1 × 1 × × ×
7.1.16
试 分 析 图 题 7.1.16 所 示 电 路 , 说 明 它 是 多 少 进 制 的 计 数 器 。
解 : 由 图 题 7.1.16 所 示 电 路 可 知 , 该 计 数 器 是 用 “ 反 馈 清 零 法 ” 构 成 的。 当 输 出 端 状 态 为 10101110 时 , 由与非门输出一个清零信号, 使 两 片 74161 同 时 被 清 零 ,计 数 器 又 从 0 0 0 0 0 0 0 0 状 态 开 始 重 新 计 数 。由 于( 1 0 1 0 1 1 1 0 )B = ( 174) D, 因 此 该 计 数 器 的 模 M=174。 7.1.17 试 分 析 图 题 7.1.17 所 示 电 路 , 说 明 它 是 多 少 进 制 的 计 数 器 。
根 据 驱 动 方 程 或 状 态 方 程 可 列 出 其 状 态 表 , 如 表 题 解 7.1.5 所 示 。
表 题 解 7.1.5
计数脉冲
电路状态
等效十进制
CP 的 顺 序
0 1 2 3 4 5
Q2
0 0 1 1 1 0
Q1
0 1 1 1 0 0
Q0
0 1 1 0 1 0
数 0 3 7 6 5 0
解 :图 题 7 . 1 . 1 1 所 示 电 路 是 由 7 4 H C T 1 6 1 用“ 反 馈 置 数 法 ”构 成 的 十 一 进 制 计 数 器 ,其 状 态 图 与 图 解 题 7 . 1 . 1 0 相 同 。设 电 路 初 态 为 0 0 0 0 ,在 第 1 0 个 计 数 脉 冲 作 用 后 , QDQCQBQA变 成 1010, 同 时 LD由 1 变 成 0, 由 于 74HCT161 是 同 步 置 数 , 因 此 在 第 1 1 个 计 数 脉 冲 作 用 后 , 置 数 输 入 端 D C B A = 0 00 0 的 状 态 被 置 入 计 数 器 , 使 QDQCQBQA变 成 0000。 7.1.13 1001~ 1111。 解 : 由 已 知 条 件 知 , 7 4 H C T 1 61 在 计 数 过 程 中 要 跳 过 0 0 0 0 ~ 1 0 0 0 九 个 状 态 , 因 此 可 用 “ 反 馈 置 数 法 ” 实 现 1001~ 1111 的 计 数 过 程 , 即 在 74HCT161 ,并将进位信号经反相器反相后加至预置 的 预 置 数 输 入 端 加 上 1 0 0 1( D C B A ) 数 控 制 端 LD 上 , 其 电 路 如 图 题 解 7.1.13 所 示 。 7.1.14 法。 试 用 74LS290 设 计 一 个 六 进 制 计 数 器 , 要求采取两种不同的方 试 用 74HCT161 设 计 一 个 计 数 器 , 其 计 数 状 态 为 自 然 二 进 制 数
相关文档
最新文档