自然数的个位数字
数论篇

数论专题数论知识包括数的奇偶性、质数、合数、数的整除、余数的性质、数位的含义、平均数、分解因数、平方数、倍数与因数(1)数的奇偶性奇数+奇数=偶数奇数+偶数=奇数偶数+偶数=偶数奇数个奇数相加=奇数偶数个奇数相加=偶数奇数×奇数=奇数偶数×偶数=偶数奇数×偶数=偶数只要式子中含有偶数,那么相乘结果就是偶数(2)数的整除,常见的数的整除特征2:个位是偶数3:各个数位之和是3的倍数5:个位是0和54、25:后两位可以被4(25)整除8、125:后三位可以被8(125)整除9:各个数位之和是9的倍数7:一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,差是7的倍数。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数。
11:奇数位上的数字之和与偶数位上的数字之和的差(以大减小)是11的倍数。
13:一个多位数的末三位数与末三位以前的数字所组成的数之差,可以被13整除即可被13整除。
17:若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。
(3)余数的性质1.余数的可加性:和的余数等于余数的和。
2.余数的可减性:差的余数等于余数的差。
3.余数的可乘性:积得余数等于余数的积。
4.同余的性质:对于同一个余数,如果有两个整数余数相同,那么它们的差就一定能被这个除数整除。
对于同一个除数,如果有两个整数余数相同,那么它们的乘方就一定能被这个除数整数。
数的整除【例1】(★★★)将4个不同的数字排在一起,可以组成24个不同的四位数(4×3×2×1=24)。
将这24个四位数按从小到大的顺序排列的话,第二个是5的倍数;按从大到小排列的话,第二个是不能被4整除的偶数;按从小到大排列的第五个与第二十个的差在3000-4000之间。
中考数学 阅读理解题及答案

阅读理解题1.(2019·重庆中考A卷22题)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数——“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n 为“纯数”.例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.解(1)2019不是“纯数”,2020是“纯数”.理由:当n=2019时,n+1=2020,n+2=2021,∵个位是9+0+1=10,需要进位,∴2019不是“纯数”;当n=2020时,n+1=2021,n+2=2022,∵个位是0+1+2=3,不需要进位,十位是2+2+2=6,不需要进位,百位为0+0+0=0,不需要进位,千位为2+2+2=6,不需要进位,∴2020是“纯数”.(2)由题意可得,连续的三个自然数个位数字是0,1,2,其他位的数字为0,1,2,3时,不会产生进位,当这个数是一位自然数时,只能是0,1,2,共3个,当这个自然数是两位自然数时,十位数字是1,2,3,个位数字是0,1,2,共9个,当这个数是三位自然数时,只能是100,由上可得,不大于100的“纯数”的个数为3+9+1=13,即不大于100的“纯数”有13个.2.阅读材料:黑白双雄,纵横江湖;双剑合璧,天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”,如:(5+3)(5-3)=-4,(3+2)(3-2)=1,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法可以这样解:如13=1×33×3=33,2+32-3=(2+3)(2+3)(2-3)(2+3)=7+4 3.像这样,通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫分母有理化. 解决问题:(1)比较大小:16-2________15-3(用“>”“<”或“=”填空); (2)计算:23+3+253+35+275+57+…+29997+9799; (3)设实数x ,y 满足(x +x 2+2019)(y +y 2+2019)=2019,求x +y +2019的值.解 (1)16-2=6+2(6-2)(6+2)=6+22, 15-3=5+3(5-3)(5+3)=5+32, ∵6+2>5+3,∴16-2>15-3. (2)原式=2⎝ ⎛⎭⎪⎫3-36+53-3530+75-5770+…+9997-979999×97×2=2⎝ ⎛⎭⎪⎫12-36+36-510+510-714+…+97194-99198=2⎝ ⎛⎭⎪⎫12-99198=1-9999=1-1133. (3)∵(x + x 2+2019)(y + y 2+2019)=2019,∴x + x 2+2019=2019y + y 2+2019=2019(y - y 2+2019)-2019= y 2+2019-y ,①同理可得y + y 2+2019=2019x + x 2+2019 =2019(x - x 2+2019)-2019= x 2+2019-x ,②①+②得x +y =0,∴x +y +2019=2019.3.阅读材料:在处理分数和分式问题时,有时由于分子比分母大,或者分子的次数高于分母的次数,在实际运算中往往难度比较大,这时我们可以考虑逆用分数(分式)的加减法,将假分数(分式)拆分成一个整数(或整式)与一个真分数的和(或差)的形式,通过对简单式的分析来解决问题,我们称之为分离整数法,此法在处理分式或整除问题时颇为有效,现举例说明.解:x2-x+3x+1=x(x+1)-2(x+1)+5x+1=x(x+1)x+1-2(x+1)x+1+5x+1=x-2+5x+1.这样,分式x2-x+3x+1就拆分成一个整式x-2与一个分式5x+1的和的形式.解决问题:(1)将分式x2+6x-3x-1拆分成一个整式与一个分子为整数的分式的和的形式,则结果为________;(2)已知整数x使分式2x2+5x-20x-3的值为整数,则满足条件的整数x=________;(3)若关于x的方程2x2+(1-2a)x+(4-3a)=0有整数解,求正整数a的值.解(1)x+7+4x-1[解法提示]x2+6x-3x-1=(x-1)2+8(x-1)+4x-1=x-1+8+4x-1=x+7+4x-1.故结果为x+7+4x-1.(2)2,4,16,-10 [解法提示]2x2+5x-20x-3=2x2-6x+11x-33+13x-3=2x(x-3)+11(x-3)+13x-3=2x+11+13x-3.要使原式的值为整数,则13x-3为整数,故x=2,4,16,-10.(3)∵2x2+(1-2a)x+(4-3a)=0,∴2x 2+x -2ax +4-3a =0,即(2x +3)a =2x 2+x +4,∴a =2x 2+x +42x +3=7+(2x +3)(x -1)2x +3=x -1+72x +3. 又∵a ,x 均为整数,∴2x +3是7的约数,∴2x +3=±1,±7,∴⎩⎨⎧ x =-1,a =5或⎩⎨⎧ x =-2,a =-10或⎩⎨⎧ x =2,a =2或⎩⎨⎧ x =-5,a =-7.又∵a 为正整数,∴a =5或2.4.阅读下列材料:已知实数m ,n 满足(2m 2+n 2+1)(2m 2+n 2-1)=80,试求2m 2+n 2的值. 解:设2m 2+n 2=t ,则原方程变为(t +1)(t -1)=80,整理得t 2-1=80,t 2=81,∴t =±9,因为2m 2+n 2>0,所以2m 2+n 2=9.上面这种方法称为“换元法”,换元法是数学学习中最常用的一种思想方法,在结构较复杂的数和式的运算中,若把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.解决问题:(1)已知实数x ,y 满足(2x 2+2y 2+3)(2x 2+2y 2-3)=27,求x 2+y 2的值;(2)若四个连续正整数的积为11880,求这四个连续正整数.解 (1)令2x 2+2y 2=t ,则原方程变为(t +3)(t -3)=27,整理得,t 2-9=27,t 2=36.t =±6.∵2x 2+2y 2≥0,∴2x 2+2y 2=6,∴x 2+y 2=3.(2)设四个连续正整数为k -1,k ,k +1,k +2(k ≥2且k 为整数). 由题得(k -1)k (k +1)(k +2)=11880,∴(k -1)(k +2)k (k +1)=11880,∴(k 2+k -2)(k 2+k )=11880.令t =k 2+k ,则(t -2)·t =11880,t 2-2t -11880=0,∴t 1=110,t 2=-108(舍去),则k2+k=110,得k1=10,k2=-11(舍去).综上,四个连续正整数为9,10,11,12.5.阅读材料:材料一:对实数a,b,定义T(a,b)的含义为:当a<b时,T(a,b)=a+b;当a≥b时,T(a,b)=a-b.例如:T(1,3)=1+3=4;T(2,-1)=2-(-1)=3.材料二:关于数学家高斯的故事:200多年前,高斯的算术老师提出了下面的问题:1+2+3+4+…+100=?据说,当其他同学忙于把100个数逐项相加时,十岁的高斯却用下面的方法迅速算出了正确答案:(1+100)+(2+99)+…+(50+51)=101×50=5050.也可以这样理解:令S=1+2+3+…+100①,则S=100+99+…+3+2+1②,①+②得2S=(1+100)+(2+99)+(3+98)+…+(100+1)100个=100×(1+100)=10100,即S=100×(1+100)2=5050.解决问题:(1)已知x+y=10,且x>y,求T(5,x)-T(5,y)的值;(2)对于正数m,有T(m2+1,-1)=3,求T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)的值.解(1)∵x+y=10,且x>y,∴x>5,y<5.∴T(5,x)-T(5,y)=(5+x)-(5-y)=x+y=10.(2)∵m2+1>-1,∴m2+1-(-1)=3,∵m>0,∴m=1,∴T(1,m+99)+T(2,m+99)+T(3,m+99)+…+T(199,m+99)=T(1,100)+T(2,100)+T(3,100)+…+T(199,100)=(1+100)+(2+100)+…+(99+100)+(100-100)+(101-100)+…+(199-100)=(1+2+3+…+199)-100=199×(1+199)2-100=19900-100=19800.6.(热点信息)在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分,而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+x2-4x -4因式分解的结果为(x +1)(x +2)(x -2),当x =15时,x +1=16,x +2=17,x -2=13,此时可以得到数字密码161713.(1)根据上述方法,当x =20,y =17时,对于多项式x 2y +x 2+xy +x 分解因式后可以形成哪些数字密码?(写出三个)(2)若多项式x 3+(m -3n )x 2-nx -21因式分解后,利用本题的方法,当x =27时可以得到其中一个密码为242834,求m ,n 的值.解 (1)x 2y +x 2+xy +x =x (xy +x +y +1)=x (x +1)(y +1).∴当x =20,y =17时,x =20,x +1=21,y +1=18.∴形成的数字密码可以是202118,211820,182021(其他结果合理即可).(2)由题意得,x 3+(m -3n )x 2-nx -21=(x -3)(x +1)(x +7),∵(x -3)(x +1)(x +7)=x 3+5x 2-17x -21,∴x 3+(m -3n )x 2-nx -21=x 3+5x 2-17x -21.∴⎩⎨⎧ m -3n =5,n =17,解得⎩⎨⎧ m =56,n =17.∴m ,n 的值分别是56,17.7.已知一个三位自然数,若满足百位数字等于十位数字与个位数字的和,则称这个数为“和数”,若满足百位数字等于十位数字与个位数字的平方差,则称这个数为“谐数”.如果一个数既是“和数”,又是“谐数”,则称这个数为“和谐数”.例如321,∵3=2+1,∴321是“和数”,∵3=22-12,∴321是“谐数”,∴321是“和谐数”.(1)证明:任意“谐数”的各个数位上的数字之和一定是偶数;(2)已知a =10m +4n +716(0≤m ≤7,1≤n ≤3,且m ,n 均为正整数)是一个“和数”,请求出所有a 的值.解 (1)证明:设“谐数”的百位数字为x ,十位数字为y ,个位数字为z (1≤x ≤9,0≤y ≤9,0≤z ≤9且y >z ,x ,y ,z 均为整数),由题意知x =y 2-z 2=(y +z )(y -z ),∴x +y +z =(y +z )(y -z )+y +z =(y +z )(y -z +1).∵y +z ,y -z 的奇偶性相同,∴y +z ,y -z +1必然一奇一偶.∴(y +z )(y -z +1)必是偶数.∴任意“谐数”的各个数位上的数字之和一定是偶数.(2)∵0≤m ≤7,∴2≤m +2≤9.∵1≤n ≤3,∴4≤4n ≤12.∴10≤4n +6≤18,∴a =10m +4n +716=7×100+(m +1)×10+(4n +6)=7×100+(m +2)×10+(4n +6-10)=7×100+(m +2)×10+(4n -4),∵a 为“和数”,∴7=m +2+4n -4,即m +4n =9.∵0≤m ≤7,1≤n ≤3,且m ,n 均为正整数,∴⎩⎨⎧ m =1,n =2或⎩⎨⎧ m =5,n =1,∴a 的值为734或770.8.如果一个正整数m 能写成m =a 2-b 2(a ,b 均为正整数,且a ≠b ),我们称这个数为“平方差数”,则a ,b 为m 的一个平方差分解,规定:F (m )=b a. 例如:8=8×1=4×2,由8=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =8,a -b =1或⎩⎨⎧ a +b =4,a -b =2.因为a ,b 为正整数,解得⎩⎨⎧ a =3,b =1,所以F (8)=13. 又例如:48=132-112=82-42=72-12,所以F (48)=1113或12或17. (1)判断:6________平方差数(填“是”或“不是”),并求F (45)的值;(2)若s 是一个三位数,t 是一个两位数,s =100x +5,t =10y +x (1≤x ≤4,1≤y ≤9,x ,y 是整数),且满足s +t 是11的倍数,求F (t )的最大值.解 (1)不是[解法提示] 根据题意,6=2×3=1×6,由6=a 2-b 2=(a +b )(a -b )可得,⎩⎨⎧ a +b =3,a -b =2或⎩⎨⎧ a +b =6,a -b =1,因为a ,b 为正整数,则可判断出6不是平方差数.根据题意,45=3×15=5×9=1×45,由45=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =15,a -b =3或⎩⎨⎧ a +b =9,a -b =5或⎩⎨⎧ a +b =45,a -b =1.∵a 和b 都为正整数,解得⎩⎨⎧ a =9,b =6或⎩⎨⎧ a =7,b =2或⎩⎨⎧ a =23,b =22,∴F (45)=23或27或2223.(2)根据题意,s =100x +5,t =10y +x ,∴s +t =100x +10y +x +5.∵1≤x ≤4,1≤y ≤9,x ,y 是整数,∴100≤100x ≤400,10≤10y ≤90,6≤x +5≤9,∴116≤s +t ≤499.∵s +t 为11的倍数,∴s +t 最小为11的11倍,最大为11的45倍.∵100x 末位为0,10y 末位为0,x +5末位为6到9之间的任意一个整数, ∴s +t 的末位是6到9之间的任意一个整数.①当x =1时,x +5=6,∴11×16=176,此时x =1,y =7,∴t =71.根据题意,71=71×1,由71=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =71,a -b =1,解得⎩⎨⎧ a =36,b =35,∴F (t )=3536. ②当x =2时,x +5=7,∴11×27=297,此时x =2,y =9.∴t =92.根据题意,92=92×1=46×2=23×4,由92=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =92,a -b =1或⎩⎨⎧ a +b =46,a -b =2或⎩⎨⎧ a +b =23,a -b =4. 解得⎩⎨⎧ a =24,b =22.∴F (t )=1112. ③当x =3时,x +5=8,∴11×38=418,此时x =3,y 没有符合题意的值,∴11×28=308,此时x =3,y 没有符合题意的值.④当x =4时,x +5=9,∴11×39=429,此时x =4,y =2.∴t =24.根据题意,24=24×1=12×2=8×3=6×4,由24=a 2-b 2=(a +b )(a -b ),可得⎩⎨⎧ a +b =24,a -b =1或⎩⎨⎧ a +b =12,a -b =2或⎩⎨⎧ a +b =8,a -b =3或⎩⎨⎧ a +b =6,a -b =4.解得⎩⎨⎧ a =7,b =5或⎩⎨⎧ a =5,b =1,∴F (t )=57或15. 11×49=539不符合题意.综上,F (t )=3536或1112或57或15. ∴F (t )的最大值为3536. 9.(1)问题发现:如图1,在△ABC 中,AB =AC ,∠BAC =60°,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转60°得到线段AE ,连接EC ,则①∠ACE 的度数是________;②线段AC ,CD ,CE 之间的数量关系是________;(2)拓展探究:如图2,在△ABC 中,AB =AC ,∠BAC =90°,D 为BC 边上一点(不与点B ,C 重合),将线段AD 绕点A 逆时针旋转90°得到线段AE ,连接EC ,请写出∠ACE 的度数及线段AC ,CD ,CE 之间的数量关系,并说明理由;(3)解决问题:如图3,在四边形ADBC 中,∠ABC =∠ACB =45°,∠BDC =90°.若BD =3,CD =5,请直接写出AD 的长.解(1)①60°②AC=CD+CE[解法提示] 由题意,得△ABC和△ADE均为等边三角形,∴AB=AC=BC,AD=AE,∠BAC=∠DAE=∠B=60°.∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴∠ACE=∠B=60°,BD=CE.∴AC=BC=CD+BD=CD+CE.(2)∠ACE=45°,2AC=CD+CE.理由:由题意,得∠BAC=∠DAE=90°,AB=AC,AD=AE.∴∠BAC-∠DAC=∠DAE-∠DAC.即∠BAD=∠CAE.∴△BAD≌△CAE.∴BD=CE,∠ACE=∠B=45°.∴BC=CD+BD=CD+CE.∵BC=2AC,∴2AC=CD+CE.(3)AD的长为 2.[解法提示] 过点A作AE⊥AD交DC于点E,则∠DAB=∠EAC.∵∠BDC=90°,∴∠DBA+∠ABC+∠DCB=90°.∴∠DBA+45°+(45°-∠ECA)=90°.∴∠DBA=∠ECA.又AB=AC.∴△BAD≌△CAE(ASA).∴BD=CE,AD=AE,∴CD-BD=CD-CE=DE,而DE=2AD,∴CD-BD=2AD,∴AD= 2.。
第11讲 余数的性质和计算

第11讲余数的性质和计算本讲知识点汇总:一、替换求余利用余数的可加性、可减性以及可乘性,将算式中的每个数都用相应的余数替换。
二、特性求余:利用特殊数(例如2、3、4、5、8、9、11、13、99等)的整除特性来求余数。
三、利用周期规律求余数:对于乘方和一些复杂的具有规律性的算式,可以先找到周期规律,再计算。
为了更好地了解余数的性质规律,我们先来做几个计算:(1)21除以17的余数是(2)135除以17的余数是(3)211+135的和除以17的余数是(4)211-135的差除以17的余数是(5)211×135的积除以17的余数是(6)2112除以17的余数是比较上面的结果,我们发现余数有一些很好的性质:和的余数等于余数的和;差的余数等于余数的差;积的余数等于余数的积。
这三条性质分别称为余数的可加性、可减性和可乘性。
在计算一个算式的结果除以某个数的余数时,可以利用上述性质进行简算。
需要提醒大家的是,虽然上述三条计算余数的口诀朗朗上口,但并不严格,在使用时还需要注意:(1)如果替换之后余数的计算结果大于除数,还需要再次计算结果的余数。
例如:在计算423+317除以6的余数时。
利用“和的余数等于余数的和”,结果就变成了3+5=8,8>6,所以还需要再次计算8除以6的余数是2,オ是423+317除以6最后的余数。
再比如:在计算423×317除以6的余数时,也会遇到3×5=15>6的情况,同样的还需要计算15除以6的余数是3,才是最终的结果。
(2)在计算减法时,会出现余数不够减的情况,这时只要再加上除数即可。
例如:在计算428-317除以6的余数时,会发现结果变成了3-5不够减。
此时,只要再加上6,用6+3-5=4来计算即可。
范例解密例题1、一年有365天,轮船制造厂每天都可以生产零件1234个,年终将这些零件按19个一包的规格打包,最后一包不够19个。
请问:最后一包有多少个零件?练习1(1)123+456+789除以111的余数是多少?(2)123⨯456⨯789的结果除以23的余数是多少?我们学过特殊数(2、3、5、4、7、11、13、25、27、37、99、999)的整除特性。
六年级奥数-数字谜

数字谜小朋友们都玩过字谜吧,就是一种文字游戏,例如“空中码头”(打一城市名)。
谜底你还记得吗?记不得也没关系,想想“空中”指什么?“天”。
这个地名第1个字可能是天。
“码头”指什么呢?码头又称渡口,联系这个地名开头是“天”字,容易想到“天津”这个地名,而“津”正好又是“渡口”的意思。
这样谜底就出来了:天津。
算式谜又被称为“虫食算”,意思是说一道算式中的某些数字被虫子吃掉了无法辨认,需要运用四则运算各部分之间的关系,通过推理判定被吃掉的数字,把算式还原。
“虫食算”主要指横式算式谜和竖式算式谜,其中未知的数字常常用□、△、☆等图形符号或字母表示。
文字算式谜是前两种算式谜的延伸,用文字或字母来代替未知的数字,在同一道算式中不同的文字或字母表示不同的数字,相同的数字或字母表示同一个数字。
文字算式谜也是最难的一种算式谜。
在数学里面,文字也可以组成许许多多的数学游戏,就让我们一起来看看吧。
①横式字谜一、例题与方法指导例1 □,□8,□97在上面的3个方框内分别填入恰当的数字,可以使得这3个数的平均数是150。
那么所填的3个数字之和是多少?思路导航:150*3-8-97-5=340所以3个数之和为3+4+5=12。
例2 在下列算式的□中填上适当的数字,使得等式成立:(1)6□□4÷56=□0□,(2)7□□8÷37=□1□,(3)3□□3÷2□=□17,(4)8□□□÷58=□□6。
分析:(1) 6104/56=109(2)7548/37=204(3) 3393/29=117(4)8468/58=146例3 在算式40796÷□□□=□99……98的各个方框内填入适当的数字后,就可以使其成为正确的等式。
求其中的除数。
分析:40796/102=399...98。
例4 我学数学乐×我学数学乐=数数数学数数学学数学在上面的乘法算式中,“我、学、数、乐”分别代表的4个不同的数字。
六年级下册数学讲义-小学奥数精讲精练:第十三讲 关于个位数字与完全平方数

第十三讲 关于个位数字与完全平方数在整数的各种问题中,确定个位数字是十分重要的.下面我们专门讨论整数乘方的个位数字.一、整数乘方的个位数字整数的个位数字只有 0,1,2,3,4,5,6,7,8,9 十种.下面我们列出表格,看一看经过不同次数的乘方之后,个位数字如何变化.a 01 2 3 4 5 6 7 8 9a 2 a 3 a 4 a 5 …………从表中可以看出:(1)平方数的个位数字只可能是 0,1,4,5,6,9,而不可能是 2,3,7,8.(2)三次方的个位数字从 0,1 到 9 都有可能.(3)四次方的个位数字只可能是 0,1,6,5,不可能是 2,3,4,7,8,9.(4)五次方的个位数字与一次方的个位数字完全相同.于是,六次方的个位数字与0 1 4 9 6 5 6 9 4 10 1 8 7 4 5 6 3 2 90 1 6 1 6 5 6 1 6 10 1 2 3 4 5 6 7 8 9二次方的个位数字完全相同;七次方的个位数字与三次方的个位数字完全相同;八次方的个位数字与四次方的个位数字完全相同.不难看出:a1,a5,a9,……的个位数字相同;a2,a6,a10,……的个位数字相同;a3,a7,a11,……的个位数字相同;a4,a8,a12,……的个位数字相同.(5)个位为0,1,5,6 的数无论多少次乘方,其个位数字保持不变.例1 求31993+41995+51995 的末位数字分析:只要分别求出31993,41994,51995的个位数字,再相加即可求出31993+41994+51995的个位数学解:∵51995 的个位数字为5,从各个数字乘方后的个位数字表中可以看到,4 的奇次方的个位数字为4,偶次方的个位数字为 6,∴41994 的个位数字为6;又34k+1 的个位数字为3,34k+2 的个位数字为9,34k+3 的个位数字为7,34k 的个位数字为1,而1993=4×498+1,∴31993 的个位数字与31 的个位数字相同.故31993+41994 +51995 的个位数字与3+6+5=14 的个位数字相同,即31993+41994+51995 的个位数字为4.例2 从1,1,3,3,5,5,7,7,9,9 中取出5 个数,其中至少有三个数不重复,且它们的乘积的个位数字是1.问这5 个数的和应是多少?分析与解:要求取出的5 个数乘积的个位数字是1,显然所取的5 个数中不能有数字5,只能从1,3,7,9 中取,由于要求至少有三个数不重复,那么只能有一个数重复取两次.即只可能有1×1×3×7×9,1×3×3×7×9,1×3×7×7×9,1×3×7×9×9 四种情形.经检验上述四个乘积的个位数字分别为9,7,3,l.故所取的五个数为1,3,7,9,9.这五个数的和为29.例3 我们把从1 开始若干个自然数的连乘积用简单的符号表示,如1×2×3×4×5 记作5!,读作5 的阶乘;1×2×3×……×100 记作100!,读作100 的阶乘;1×2×3×……×n,1 记作n!,读作n 的阶乘.求N=1!+2!+3!+……+1992!+1993!的个位数字.分析:只要将1!,2!,3!,……,1992!,1993!的个位数字一一求出后相加,就可得出各个阶乘的和的个位数字.但要求出各个阶乘的个位数字,需计算1993 项,且每一项几乎都是一大串数字之积,工作量是否会太大?解:∵1!=1,2!=1×2=2,3!=1×2×3=6,4!=1×2×3×4=24,5!=1×2×3×4×5=120,可以看出6!直至1993!的个位数字都是0.因此,N=1!+2!+3!+4!+5!+……+1993!的个位数字就是1+2+6+24+0+……+0 的个位数字.即N 的个位数字为3.例4 求14+24+34+……+19924+19934 的个位数字.分析与解:1,2,3,……,1992,1993,这些数的个位数字不过是1,2,3,4,5,6,7,8,9,0.其四次方的个位数字依次为1,6,1,6,5,6,1,6,1,0,…….前十个数字和为 1+6+1+6+5+6+1+6+1+0=33,个位数字为3.这样就可将14+24+34+44+……+19924+19934 分为十项一组,每组的个位数字均为3.即(14+24+34+……+104)+(114+124+134+…+204)+…+(19814+19824+19834+…+19904)+19914+19924+19934.前 1990 项的和的个位数字与3×199 的个位数字相同,即为 7.而 19914 的个位数字为1,19924 的个位数字为6,19934 的个位数字为1.所以14+24+……+19924+19934 的个位数字与7+1+6+1=15 的个位数字相同,即为5.下面我们来研究两个相邻的自然数乘积的个位数字.二、相邻自然数乘积的个位数字由于仅考虑个位数字,相邻的自然数之积1×2=2,2×3=6,3×4=12,4×5=20,5×6=30,6×7=42,7×8=56,8×9=72,9×10=90,10×11=110的个位数字只可能是0,2,6 三种.因此,若一个自然数的个位数字不是0,2,6,那么,这个自然数不可能是两个相邻自然数的乘积.例5 是否存在自然数n,使得n2+n+7 是35 的倍数?分析与解:分别取n=1,2,3,4,5,依次得到n2+n+7 的值为9,13,19,27,37,显然它们都不是35 的倍数.但是这样一个个试下去,即使试到n=100,n2+n+7 都不是 35 的倍数,也不能说不存在自然数 n,使得 n2+n+7 为 35 的倍数.因为自然数有无穷多个,不可能每个都试到.注意到n2+n=n×(n+1)是两个相邻自然数的乘积,n2+n=n×(n+1)的个位数字只可能是0,2,6,所以n2+n+7 的个位数字只可能是7,9,3.由于个位数字是7,9,3 的自然数不可能是5 的倍数,当然更不可能是35 的倍数.例6不论n是怎么样的自然数,3×(5n+1)都不可能是两个连续自然数的乘积.解:由于5 的任何次方的个位数字总是5,5n+1 的个位数字为 6,3×(5n+1)的个位数字是8.而相邻的两个自然数的乘积的个位数字只能是0,2,6.故3×(5n+1)不可能是两个连续自然数的乘积.例7 若n!+4 是两个相邻自然数的乘积,你能找出所有这种自然数n 吗?分析:要想成为两个相邻自然数的乘积,至少其个位数字应为0,2,6 之一.我们已经知道5!=120,个位数字为0,当 n 大于 5 时,n!的个位数字都是0,此时 n!+4 的个位数字为 4,故这时n!+4 不可能是相邻自然数的乘积.于是只要对n≤4 的自然数分别讨论n!+4 即可.当n=1 时,11+4=5;当n=2 时,2!+4=6;当n=3 时,3!+4=10;当n=4 时,4!+4=28.由于10,28 都无法表为两个相邻自然数的乘积.而 6=2×3,所以,只有当n=2 时,n!+4 是两个相邻自然数的乘积.三、关于完全平方数我们已经知道,个位数字为2,3,7,8 的自然数不可能是完全平方数.其实,一个整数是否为完全平方数,还可以用其它方法来判断.例如,我们可以将完全平方数逐个列出:1,4,9,16,25,36,49,64,81, 100,121,……10000,……在两个连续正整数的平方数之间不存在完全平方数.即如果 n2<a<(n+1)2,那么a 不是完全平方数,下面将给出完全平方数应满足的条件,若这些条件之一不满足,则决不可能是完全平方数.1.任何偶数的平方必为4 的倍数,可表为4k 形式;任何奇数的平方必为4 的倍数加1,可表为4k+1 形式;任何整数被4 除,只有四种可能性,即余数为0,1,2,3.或者说整数只有4k,4k+1,4k+2,4k+3 四种形式.显然形如4k+2,4k+3 的整数不是完全平方数.2.(k 为整数)任何整数被3 除,只有三种可能性,即余数为0,1,2.或者说整数只有3k,3k+1,3k+2 三种形式.形如3k 的整数平方后仍是3 的倍数;形如3k+1 的整数平方后仍是3 的倍数加1;形如3k+2 的整数平方后必为3 的倍数加1.即任何整数平方后只可能是3n 或 3n+1 的形式.因此,形如 3n+2 的数不可能是完全平方数.3.(n,k 为整数)任何整数被5 除的余数有0,1,2,3,4 共五种情形.形如5k的整数平方后仍是5 的倍数;形如5k+1 和5k+4 的整数平方后必为5 的倍数加1;形如5k+2,5k+3 的整数,平方后必为5 的倍数加4.所以任何整数平方后只可能是5n,5n+1,5n+4 的形式.即形如5n+2,5n+3 的数,不可能是完全平方数.(这就是说完全平方数个位数字不可能是2,3, 7,8).同理可知,形如8n+2,8n+3,8n+5,8n+6,8n+7 的数不是完全平方数;形如9n+2,9n+3,9n+5,9n+6,9n+8 的数不是完全平方数.4.(n,足为整数)考察完全平方数的个位和十位上的数字.由42=16,62=36,82=64,102=100,122=144,52=25,72=49,92=81,112=121,132=169,可以发现:完全平方数个位数字是奇数时,其十位上的数字必为偶数.完全平方数的个位数字为6 时,其十位数字必为奇数(证明从略).例8 用300 个2 和若干个0 组成的整数有没有可能是完全平方数?分析:由 300 个 2 和若干个 0 组成的整数,其位数至少是301 位,除首位为 2 外, 各数位上都有可能是2 和0.但不可能逐个检查.由于各数位上的数字和为600(这是所有由300 个 2 和若干个 0 组成的数的共同特性),所以组成的整数一定能被3 整除.但600 并非32=9 的倍数.解:设由300 个2 和若干个0 组成的数为A,则其数字和为600.∵3|600, ∴3|A.即A 中只有3 这个约数,而无32=9 作为约数,所以A 不是完全平方数.150151 却是奇数 1.我们知道,奇数的平方必为 4 的倍数加 1,即 4k +1 的形式. 但 4k +3 形式的数不是完全平方数.从其个位为 1 可知,它必为 10k +1 或 10k +9 形式的数平方而得.(1)式两边同除以 10 得显然,此式左边为偶数,右边为奇数,两边不相等.152(2)式两边同除以 10 得:显然,此式左边为偶数,右边为奇数,两边不相等.习题十三1.求 71993+81994+91995 的个位数字.2.求 1111990 ×1121991×1131992×1141993 的个位数字.3.求 110+210+310+410+510+610+710+810+910+1010 的个位数字.4.一箱水果,如果将它们每五个(一份)分装在小圆盒内,最后还剩下两个. 问这箱水果的总个数是否可能是完全平方数?5.求 1!+2!+……+100!的个位数字.6.对于任何自然数 n,n (n +1)都不可能是完全平方数.7.证明不能被 3 整除的数的平方与 1 的差能被 3 整除.8.若a 不能被5 整除,则a4-1 能被5 整除.9.求一个四位数,使它的前两位数字相同,后两位数字相同,且这个四位数为完全平方数.10.证明 6,66,666,……这串数中,没有完全平方数.。
数与数位——精选推荐

四年级希望杯复习—数与数位一、知识提要数,用来表示量的多少和大小,只用数字0~9,就可以构造出无穷多的整数。
人们在对整数的应用和研究中,逐步熟练了整数的特性。
比如,整数可分为奇数和偶数两大类,自然数可分为0和1、质数与合数等等。
利用整数的一些基本性质,可以进一步探索许多有趣和复杂的数学规律。
正是这些特殊的魅力,吸引了古往今来许多数学家不断地研究和探索。
到现在,对整数及其扩充的性质的研究已经形成一个数学分支——数论。
1.奇数与偶数奇数与偶数相加减的规律:偶数±偶数= 偶数,奇数±奇数= 偶数,奇数±偶数= 奇数奇数与偶数相乘的规律:偶数×偶数= 偶数,奇数×奇数= 奇数,奇数×偶数= 偶数2.质数与合数质数:除了1和它本身,没有其他因数的自然数,如2,3,5,7.合数:除了1和它本身,还有其他因数的自然数,如4,6,8,9.0和1既不是质数,也不是合数;2是最小的质数,也是质数中唯一的偶数。
把一个数写成若干个质数相乘的形式,叫做分解质因数,这是研究整除的一个重要方法。
3.数字问题常见的数字问题有:(1)数字的个数;(2)数字的和;(3)变换数字位置;(4)尾数问题.一个多位数上的数字的含义可用以下和的形式表示出来:a=a×1;ab=a×10+babc=a×100+b×10+c=ab×10+c=a×100+bcabcd=a×1000+b×100+c×10+d=abc×10+d=ab×100+cd=a×1000+bcd…………二、例题例1某次竞赛有20道题,初始分为60分。
规定:答对一题给5分,不答扣1分,答错一题扣3分。
则最后得分必定是 = (填“奇数”或“偶数”).第3届(2005年)四年级培训题分析本题考查奇、偶数相加减的规律。
高思奥数导引小学四年级含详解答案第05讲 竖式问题.

第5讲竖式问题兴趣篇1、 如图所示,每个英文字母代表一个数字,不同的字母代表不同的数字。
其中“G ”代表“5”,“A ”代表“9”,“D ”代表“0”,“H ”代表“6”。
问:“I ”代表的数字是多少?+IHD G FE D C BA A2、(1)在图的加法竖式中,不同的汉字代表不同的数字,相同的汉字代表相同的数字,那么每个汉字个代表什么数字?(2)在图的减法竖式中,不同的汉字代表不同数字,相同的汉字代表相同的数字,那么每个汉字各代表什么数字?马兵马炮兵-炮兵兵马兵卒车兵马卒炮兵车卒卒马兵炮+3、在如图的竖式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字。
如果巧+解+数+字+谜=30,那么“数字谜”所代表的三位数是多少?+谜字谜谜字数解数字谜谜赛字数解解数字巧谜4、图所示的竖式中,每个汉字代表一个数字,不同的汉字代表不同的数字,那么“北京奥运”代表的四位数是多少?8002运奥京北北京奥京北 北+5、已知图所示的乘法竖式成立,那么“ABCDE ”是多少?131A B C D E A B C D E ⨯6、(1)在图的竖式中,相同的符号代表相同的数字,不同的符号代表不同的数字,那么☆、△、○分别代表什么数字?⨯☆☆△△○○☆△ (2)在图的竖式中,相同的符号代表相同的数字,不同的符号代表不同的数字,那么☆、△、○分别代表什么数字?⨯☆☆△△○○○△7、如图,相同的字母表示相同的数字,不同的字母表示不同的数字,那么十个方框中数字之和是多少?A BA BC B B ⨯□□□□□□□□□□8、在下面两图的方格内填入适当的数字,使下列除法竖式成立。
328O5279O6389、在图所示的除法竖式中填入合适的数字,使得竖式成立,那么其中的商是多少?720□□□□□□□□□□□□□720cab □□□□□□□□□□10、有一个四位数,它乘以9后所得乘积恰好是将原来的四位数各位数字顺序颠倒而得的新四位数。
求原来的四位数。
2018年北京市中学生数学竞赛初二试题(含答案)

2018年北京市中学生数学竞赛初二试题(含答案)2,3,4,5,6,7,8,9中的一个,且这些自然数的和为2018.请问这个学生写出的这17个自然数中,最小的数是多少?(请给出详细解题过程)解:设这17个自然数分别为a1,a2,…,a17,则有:a1+a2+…+a17=2018由于每个自然数的个位数码只能是1,2,3,4,5,6,7,8,9中的一个,所以每个自然数的个位数字之和一定是45,即这17个自然数的个位数字之和为765.设b1,b2,…,b17分别为这17个自然数的十位数字,则有:b1+b2+…+b17=765由于每个自然数的十位数字也只能是1,2,3,4,5,6,7,8,9中的一个,所以每个自然数的十位数字之和一定是45,即这17个自然数的十位数字之和为765.设c1,c2,…,c17分别为这17个自然数的百位数字,则有:c1+c2+…+c17=765由于每个自然数的百位数字也只能是1,2,3,4,5,6,7,8,9中的一个,所以每个自然数的百位数字之和一定是45,即这17个自然数的百位数字之和为765.由此可得,这17个自然数中最小的数为100+10+1=111.一、1.A在1到100这100个自然数中,有25个质数,分别是2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97.因此,质数在这100个自然数中所占的百分比是25%。
2.C将10分拆成三个正整数之和,共有8种情况:1+1+8、1+2+7、1+3+6、1+4+5、2+2+6、2+3+5、2+4+4、3+3+4.根据“三角形两边之和大于第三边”的原则,只有(2,4,4)和(3,3,4)两组可以构成三角形。
由于等腰三角形的两个底角都是锐角,因此以2、4、4为边的等边三角形中,最小边2对的顶角也是锐角。
以3、3、4为边的等腰三角形中,由3的平方加3的平方大于4的平方可知顶角也是锐角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自然数的个位数字
知识要点:
(1)几个数的和的个位数字等于这几个数的个位数字的和的个位数字;
(2)几个数的积的个位数字等于这几个数的个位数字的积的个位数字。
(3)一个自然数乘方的个位数字与这个数个位数字的乘方的个位数字相同,且每4个一组循环重复出现,即a4m+n与a n的个位数字相同;
个位是1的数的乘方的个位律是1、1、1、1循环;
个位是2的数的乘方的个位律是2、4、8、6循环;
个位是3的数的乘方的个位律是3、9、7、1循环;
个位是4的数的乘方的个位律是4、6、4、6循环;
个位是5的数的乘方的个位律是5、5、5、5循环;
个位是6的数的乘方的个位律是6、6、6、6循环;
个位是7的数的乘方的个位律是7、9、3、1循环;
个位是8的数的乘方的个位律是8、4、2、6循环;
个位是9的数的乘方的个位律是9、1、9、1循环。
(4)当n≥5时,n!(1×2×3×…×n)的个位数字是0。
(5)相邻两个自然数的乘积的个位数字只能是0、2、6。
例题讲解:
1.1994100×1995101+1997102的个位数字是.
2.1!+2!+3!+…+100!的个位数字是.
3.1×1+2×2+3×3+4×4+…1991×1991的末位数字是多少?
5.若1×2×3×…×n+18是两个连续自然数的乘积,n= .
6.设A﹦2×2×…2+6×6×…6+9×9×…9,求A的个位数字是几?
25个2 35个6 45个9
7.如果把任意n个连续自然数相乘,其积的个位数字只有两种可能,那么n是多少?
9.一个六位的自然数,它的个位数字是6,如果把这个个位数字移到其余各位数字的最前面,所得的数正好是原数的4倍,那么,原数是.
10.甲、乙、丙、丁均买了奖券,他们中只有1个人中奖,而中奖号码的最后四位数字组成的四位数(不变顺序)恰是一个完全平方数。
已知甲的奖券最后四位数是1□□8,乙的奖券最后四位数是□□45,丙的奖券最后四位数是34□1,丁的奖券的最后四位数是□□40,则中奖号码的后四位数字组成的四位数是.
11. 有一列数,1、4、2、8、5、7、1、4、2、8、5、7、、、、、、、
(1)第2009个数是多少?
(2)这列数字中,“2”会出现多少次
(3)这2009个数相加的和是多少?
【思考题】
12.一个五位数,它的每个数字都不小于5,将它的数字交换后得一个新的五位数,小明将这两个五位数作加法,所得和数恰好是146245,问小明的计算正确吗?为什么?。