三位半数字万用表设计
M-830B数字万用表的安装与调试

M-830B数字万⽤表的安装与调试学校代码学号分类号密级本科实训报告院系名称专业名称年级学⽣姓名指导⽼师年⽉⽇M-803B数字万⽤表⾯板布置,它采⽤⼀⽚44脚AME7106⼤规模集成电路芯⽚,以双积分A/D转换器为核⼼,并配以过载保护电路,使之成为⼀台性能优越⼩巧的⼿持式三位半数字多⽤表,可⽤来测量直流和交流电压、直流电流、电阻等参数。
1 M-830B数字万⽤表电路原理图M-830B数字万⽤表电路原理图如图1所⽰,双积分A/D转换器AME7106为44脚集成电路,其引脚功能如表1所⽰,⼆极管VD1型号为1N4007⼀只。
表1 引脚功能图1 M-830B数字万⽤表电路原理图2 M-830B数字万⽤表⼯作原理虽然数字万⽤表种类很多,但基本⼯作原理则是⼤同⼩异。
都是把被测的模拟量转化成数字量显⽰。
所以最关键的是模数转换电路。
它主要由直流数字电压表DVM(Digital Vo1tMeter),它由阻容滤波器、前置放⼤器、模数转换器A/D(Anal0g⼀to—Digital)、发光⼆极管显⽰器LED(LiGht EnittingDiode)或液晶显⽰器LCD(Light Crystal Disdiay)及保护电路等组成。
在数字电压表的基础上再增加交流⼀直流转换器AC/DC、电流⼀电压转换器I/v和电阻⼀电压转换器Ω/V,就构成了数字万⽤表的基本部分。
当然,由于具体结构的不同,功能的强弱不同,每种表还有其各⾃复杂程度不同的特殊附加电路。
3直流电流档、直流电压档、电阻档及交流各档位的⼯作原理数字万⽤表的表头为200mV的双积分式电压表,其输⼊阻抗很⾼。
在电压表头的基础上,⽤电压表头测量电流取样电阻上的电压,可以构成了不同量程的直流电流表。
在电压表头的基础上,⽤电压表头测量串联分压取样电阻上的电压,可以构成了不同量程的直流电压表。
数字万⽤表是有源的,内部具有有源放⼤器。
利⽤运算放⼤器的R/V转换电路,可以构成线性欧姆表。
(整理)DT-830数字万用表.

DT-830数字万用表DT-830数字万用表(以下简称DT-830)是一种321位袖珍仪表。
与一般针式万用表相比,该表具有测量精度高,显示直观,可靠性好,功能全,体积小等优点。
另外,它还具有自动调零和显示极性,超量程显示,低压指示等功能,装有快速熔丝管过流保护电路和过压保护元件。
一、工作原理图3-8是DT-830万用表原理方框图,模/数(A/D)转换是本仪表的主要部件,这里采用7106型单片CMOS A/D转换器,被测电压一律经分压折算成直流200mV以内送入7106进行A/D变换和测量,交流电压还需经交/直转换后,变成直流电压方可送入7106;由于7106A/D转换器始终接受0-200mV直流电压信号,因此,交、直流电流测量时,需经过分流器,实现I/V转换。
DT-830万用表的各种测试功能原理如下:直流电压的测量。
直流电压的测量电路如图3-9所示,图中“IN+、IN-”是7106模拟量输入的正端和负端,斜线区域代表导电橡胶,用来连接7106和LCD。
R7 +W2,R8 ,R9 ,R10,R11 +R12等电阻(含可调电阻W2)构成电阻分压器,它将基本量程200mV扩展成五个量程,使其最大量程为1000V。
7106不仅含有双积分型A/D转换器,而且还有数据锁存器、译码器和驱动器等,可直接驱动液晶式七段显示器(LCD)。
它内部稳定性很高的基准电压源(典型值为2.8伏)。
被测电压经电阻分压器送入7106后,使LCD显示出测量值。
直流电压测量电路见图3.37。
利用电阻分压器可将200mv 的基本量程扩展成5量程直流数值电压表,5个电压量程依次为200mv ,2v ,20v ,200v ,1000v 。
1R~ 7R为分压电阻,均采用误差为0.5%的精密金属膜电阻。
分压器总阻值为10M Ω,各档的分压比由量程开关2S来控制。
2V 档: 2V ×K K100001000 = 200mV20V 档: 20V ×KK10000100 = 200mV200V 档: 200V × K K1000010 = 200mV1000V 档: 1000V × KK100001 = 200mV直流电流测量电路见图3.38。
三位半数字万用表设计

河北建筑工程学院课程设计报告课程名称:电子技术综合课程设计题目名称: 3位半数字万用表设计学院:电气工程学院专业:电子信息工程班级:电子 132 学号: 2013315202 学生姓名:李天明指导教师:魏建新职称:高级实验师成绩: 2015年7 月 12日一、摘要万用表结构简单、便于携带、使用方便、用途多样、量程范围广。
它是维修电子设备和调试电路的重要工具,是电子工程技术人员最常用的一种测量仪表。
设计目的是培养独立思考和创新意识,以及动手调试组装能力和分析解决问题的能力。
通过对mc14433的设计,检验对基础知识的掌握程度。
二、关键字1、三位半A/D转换器MC14433在数字仪表中,MC14433电路是一个低功耗三位半双积分式A、D转换器。
和其它典型的双积分A/D转换器类似,MC14433A/D转换器由积分器、比较器、计数器和控制电路组成。
如果必要设计应用者可参考相关参考书。
使用MC14433时只要外接两个电阻(分别是片内RC 振荡器外接电阻和积分电阻RI)和两个电容(分别是积分电容CI和自动调零补偿电容C0)就能执行三位半的A/D转换。
MC14433内部模拟电路实现了如下功能:(1)提高A/D 转换器的输入阻抗,使输入阻抗可达l00M僖陨希唬?2)和外接的RI、CI构成一个积分放大器,完成V /T 转换即电压-时间的转换;(3)构造了电压比较器,完成“0”电平检出,将输入电压与零电压进行比较,根据两者的差值决定极性输出是“1”还是“0”。
比较器的输出用作内部数字控制电路的一个判别信号;(4)与外接电容器C0构成自动调零电路。
图 1 MC14433原理框图除“模拟电路”以外,MC14433 内部含有四位十进制计数器,对反积分时间进行3位半BCD码计数(0~1999),并锁存于三位半十进制代码数据寄存器,在控制逻辑和实时取数信号(DU)作用下,实现A/D转换结果的锁定和存储。
借助于多路选择开关,从高位到低位逐位输出BCD码Q0~Q3,并输出相应位的多路选通脉冲标志信号DS1~DS4实现三位半数码的扫描方式(多路调制方式)输出。
数字万用表设计实验

数字万用表设计实验By 金秀儒物理三班Pb05206218实验题目:数字万用表设计实验 学号:pb05206218姓名:金秀儒实验目的:1.掌握数字万用表的工作原理、组成和特性2.掌握数字万用表的校准方法和使用方法3.掌握分压及分流电路的连接和计算4.了解整流滤波电路和过压过流保护电路的功用实验仪器:1. DM-Ⅰ数字万用表设计性实验仪2. 三位半或四位半数字万用表实验原理:数字万用表的基本组成图1 数字万用表的基本组成模数(A/D )转换与数字显示电路数字信号与模拟信号不同,其幅值(大小)是不连续的。
将被测量与最小量化单位比较,并把结果四舍五入取整后变为十进制起段显码显示出来。
一般N ≥1000即可满测量精度要求。
常见数字表头最大示数为1999,称为三位半(213)数字表。
数字测量仪表的核心是模/数(A/D )转换、译码显示电路。
A/D 转换一般又可分为量化、编码两个步骤。
本实验用实验仪,核心为一个三位半数字表头,由数字表专用A/D 转换译码驱动集成电路和外围元件、LED 数码管构成。
该表头有7个输入端,包括2个测量电压输入端(IN +、IN-)、2个基准电压输入端(V REF+、V REF -)和3个小数点驱动输入端。
数字显示屏(LED 或液晶)模数转换,译码驱动基准电压 小数点驱动(配合被测量与量程)过压过流保护过压过流保护分档电阻(量程转换)分压器(量程转换)分流器(量程转换)交流直流变换器 (放大、整流、滤波)直流 被测量 输 入交流V REF电流电压电阻 V IN直流电压测量电路在数字电压表头前加分压器,可扩展直流电压测量的量程。
如图:分压比为 2120rr r U U i += 扩展后的量程为 02210U r r r U i +=考虑到电压表的输入阻抗,设计实用分压电路如图:R 总=R1 +R2 +R3 +R4 +R5各档的分压比为:200mV:( R1 +R2 +R3 +R4 +R5)/ R 总=12 V:( R2 +R3 +R4 +R5)/ R 总=0.1 20V:( R3 +R4 +R5)/ R 总=0.01 200V:( R4 +R5)/ R 总=0.0012000V: R5/ R 总=0.0001出于耐压和安全考虑,最高电压限为 1000V 。
数字万用表 DT830 型 使用说明

数字万用表的使用说明一.概述DT830型数字万用表是三位半液晶显示小型数字万用表。
它可以测量交、直流电压和交、直流电流,电阻、电容、三极管β值、二极管导通电压和电路短接等,由一个旋转波段开关改变测量的功能和量程,共有30档。
本万用表最大显示值为±1999,可自动显示“0”和极性,过载时显示“1”或“-1”,电池电压过低时,显示“←”标志,短路检查用蜂鸣器。
二.技术特性1.测量范围⑴交、直流电压(交流频率为45Hz~500Hz);量程分别为200mV、2V、20V和1000五档,直流精度为±(读数的0.8%+2个字)以下,交流精度为±(读数的1%+5个字);输入阻抗,直流档为10MΩ,交流档为10MΩ、100PF。
⑵交、直流电流量程分别为200μA、2mA、200mA和10A五档,直流精度为±(读数的1.2%+2个字),交流精度为±(读数的2.0%+5个字),最大电压负荷为250mV(交流有效值)。
⑶电阻:量程分别为:200Ω、2kΩ、200kΩ、20MΩ和20MΩ六档。
精度为±(读数的2.0%+3个字)。
⑷二极管导通电压:量程为0~1.5V,测试电流为1mA±0.5 mA。
⑸三极管β值检测:测试条件为:VCE=2.8V,IB=10μA。
⑹短路检测:测试电路电阻<20Ω±10Ω2.采样时间:T S=0.4S。
三.面板及操作说明1.显示器三位半数字液晶显示屏2.电源开关按下,则接通电源,不用时应随手关断。
3.电容测量插座测量电容时,将电容引脚插入插座中。
4.功能量程开关选择不同的测量功能和量程。
5. 10A电流插孔(不能测量大于10A电流)当测量大于200mA、小于10A的交、直流电流时,红表笔应插入此10A电流插孔。
6.电流插孔当测量小于200mA的交、直流电流时,红表笔应插入此电流插孔。
7. V/Ω插孔当测量交、直流电压、电阻、二极管导通电压和短路检测时,红表笔应插入此V/Ω插孔。
数字万用表的四位半,三位半都是什么意思?

数字万⽤表的四位半,三位半都是什么意思?
数字万⽤表或⼀些数字仪表的位数规定:
1、能显⽰0⾄9所有数字的位是整数值。
2、分数位的数值以最⼤显⽰值中最⾼位的数字为分⼦,以满量程时最⾼位的数字为分母。
如某数字万⽤表最⼤显⽰值为19999,满量程计数值为20000,这表明该表有4个整数位,⽽分数值的分⼦为1,分母为2,故称4⼜1/2位,其最⾼位只能显⽰0或1。
3⼜1/2位的最⾼位只能显⽰0或1,最⼤显⽰值为1999;3⼜2/3位的最⾼位可显⽰0⾄2,最⼤显⽰值为2999;3⼜3/4位的最⾼位可显⽰0⾄3,最⼤显⽰值为3999。
同理,5⼜1/2位、6⼜1/2位等均是如此道理。
使⽤时最好既不要⽋量程,也不要过量程。
尽可能减⼩测量误差。
参见图⽚“安捷伦6 1/2位万⽤表”
图中从左到右:“-”为符号位,“0”为“1/2”位,只能显⽰0或1;
“9及56789”为6位。
实验二十八数字万用表设计性实验

实验⼆⼗⼋数字万⽤表设计性实验实验⼆⼗⼋数字万⽤表设计性实验⼀、实验内容:1、制作量程200mA的微安表(表头);2、设计制作多量程直流电压表;3、设计制作多量程直流电流表;⼆、实验仪器:三位半数字万⽤表三、实验原理1、数字万⽤表的组成数字万⽤表的组成见图28.1。
图28.1 数字万⽤表的组成数字万⽤表其核⼼是⼀个三位半数字表头,它由数字表专⽤A/D转换译码驱动集成电路和外围元件、LED数码管构成。
该表头有7个输⼊端,包括2个测量电压输⼊端(IN+、IN-)、2个基准电压输⼊端(V REF+、V REF -)和3个⼩数点驱动输⼊端。
2、直流数字电压表头“三位半数字表头”电路单元的功能:将输⼊的两个模拟电压转换成数字,并将两数字进⾏⽐较,将结果在显⽰屏上显⽰出来。
利⽤这个功能,将其中的⼀个电压输⼊作为公认的基准,另⼀个作为待测量电压,这样就和所有量具或仪器的测量原理⼀样,能够对电压进⾏测量了。
见图28.2。
图28.2 200mV(199.9mV)直流数字电压表头及校准电路3、多量程直流数字电压表在数字电压表头前⾯加⼀级分压电路(分压器),可以扩展直流电压测量的量程。
如图28.3所⽰,U 0为电压表头的量程(如200mV),r 为其内阻(如10M Ω),r 1、r 2为分压电阻,U i0为扩展后的量程。
图28.3 分压电路原理图28.4多量程分压器原理电路多量程分压器原理电路见图28.4。
图28.5 实⽤分压器电路采⽤图28.4的分压电路虽然可以扩展电压表的量程,但在⼩量程档明显降低了电压表的输⼊阻抗,这在实际使⽤中是所不希望的。
所以,实际数字万⽤表的直流电压档电路为图5所⽰,它能在不降低输⼊阻抗的情况下,达到同样的分压效果。
数字电压表 0~U 00~U i0 r 1r 2 r IN+IN-U 动U4、多量程直流数字电流表测量电流的原理是:根据欧姆定律,⽤合适的取样电阻把待测电流转换为相应的电压,再进⾏测量。
数字万用表DT830的使用说明

数字万用表DT830的使用说明一.概述DT830型数字万用表是三位半液晶显示小型数字万用表。
它可以测量交、直流电压和交、直流电流,电阻、电容、三极管β值、二极管导通电压和电路短接等,由一个旋转波段开关改变测量的功能和量程,共有30档。
本万用表最大显示值为±1999,可自动显示“0”和极性,过载时显示“1”或“-1”,电池电压过低时,显示“←”标志,短路检查用蜂鸣器。
二.技术特性1.测量范围⑴交、直流电压(交流频率为45Hz~500Hz);量程分别为200mV、2V、20V和1000五档,直流精度为±(读数的0.8%+2个字)以下,交流精度为±(读数的1%+5个字);输入阻抗,直流档为10MΩ,交流档为10MΩ、100PF。
⑵交、直流电流量程分别为200μA、2mA、200mA和10A五档,直流精度为±(读数的1.2%+2个字),交流精度为±(读数的2.0%+5个字),最大电压负荷为250mV(交流有效值)。
⑶电阻:量程分别为:200Ω、2kΩ、200kΩ、20MΩ和20MΩ六档。
精度为±(读数的2.0%+3个字)。
⑷二极管导通电压:量程为0~1.5V,测试电流为1mA±0.5 mA。
⑸三极管β值检测:测试条件为:VCE=2.8V,IB=10μA。
⑹短路检测:测试电路电阻<20Ω±10Ω2.采样时间:T S=0.4S。
三.面板及操作说明1.显示器三位半数字液晶显示屏2.电源开关按下,则接通电源,不用时应随手关断。
3.电容测量插座测量电容时,将电容引脚插入插座中。
4.功能量程开关选择不同的测量功能和量程。
5.10A电流插孔(不能测量大于10A电流)当测量大于200mA、小于10A的交、直流电流时,红表笔应插入此10A电流插孔。
6.电流插孔当测量小于200mA的交、直流电流时,红表笔应插入此电流插孔。
7.V/Ω插孔当测量交、直流电压、电阻、二极管导通电压和短路检测时,红表笔应插入此V/Ω插孔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北建筑工程学院课程设计报告课程名称:电子技术综合课程设计题目名称: 3位半数字万用表设计学院:电气工程学院专业:电子信息工程班级:电子 132 学号: ********** 学生姓名:***指导教师:***职称:高级实验师成绩: 2015年7 月 12日一、摘要万用表结构简单、便于携带、使用方便、用途多样、量程范围广。
它是维修电子设备和调试电路的重要工具,是电子工程技术人员最常用的一种测量仪表。
设计目的是培养独立思考和创新意识,以及动手调试组装能力和分析解决问题的能力。
通过对mc14433的设计,检验对基础知识的掌握程度。
二、关键字1、三位半A/D转换器MC14433在数字仪表中,MC14433电路是一个低功耗三位半双积分式A、D转换器。
和其它典型的双积分A/D转换器类似,MC14433A/D转换器由积分器、比较器、计数器和控制电路组成。
如果必要设计应用者可参考相关参考书。
使用MC14433时只要外接两个电阻(分别是片内RC 振荡器外接电阻和积分电阻RI)和两个电容(分别是积分电容CI和自动调零补偿电容C0)就能执行三位半的A/D转换。
MC14433内部模拟电路实现了如下功能:(1)提高A/D 转换器的输入阻抗,使输入阻抗可达l00M僖陨希唬?2)和外接的RI、CI构成一个积分放大器,完成V/T 转换即电压-时间的转换;(3)构造了电压比较器,完成“0”电平检出,将输入电压与零电压进行比较,根据两者的差值决定极性输出是“1”还是“0”。
比较器的输出用作内部数字控制电路的一个判别信号;(4)与外接电容器C0构成自动调零电路。
图 1 MC14433原理框图除“模拟电路”以外,MC14433 内部含有四位十进制计数器,对反积分时间进行3位半BCD码计数(0~1999),并锁存于三位半十进制代码数据寄存器,在控制逻辑和实时取数信号(DU)作用下,实现A/D转换结果的锁定和存储。
借助于多路选择开关,从高位到低位逐位输出BCD码Q0~Q3,并输出相应位的多路选通脉冲标志信号DS1~DS4实现三位半数码的扫描方式(多路调制方式)输出。
MC14433内部的控制逻辑是A/D 转换的指挥中心,它统一控制各部分电路的工作。
根据比较器的输出极性接通电子模拟开关,完成A/D转换各个阶段的开关转换,产生定时转换信号以及过量程等功能标志信号。
在对基准电压VREF 进行积分时,控制逻辑令4位计数器开始计数,完成A/D 转换。
MC14433内部具有时钟发生器,它通过外接电阻构成的反馈,井利用内部电容形成振荡,产生节拍时钟脉冲,使电路统一动作,这是一种施密特触发式正反馈RC 多谐振荡器,一般外接电阻为360k偈保竦雌德饰?100kHz;当外接电阻为470k偈保竦雌德试蛭?66kHz,当外接电阻为750k偈保竦雌德饰?50kHz。
若采用外时钟频率。
则不要外接电阻,时钟频率信号从CPI(10脚)端输入,时钟脉冲CP 信号可从CPO(原文资料为CLKO)(11脚)处获得。
MC14433内部可实现极性检测,用于显示输入电压UX 的正负极性;而它的过载指示(溢出)的功能是当输入电压Vx 超出量程范围时,输出过量程标志OR(低有效)。
MC14433是双斜率双积分A/D 转换器,采用电压-时间间隔(V/T)方式,通过先后对被测模拟量电压UX和基准电压VREF 的两次积分,将输入的被测电压转换成与其平均值成正比的时间间隔,用计数器测出这个时间间隔对应的脉冲数目,即可得到被测电压的数字值。
双积分过程可以做如下概要理解:首先对被测电压UX 进行固定时间T1、固定斜率的积分,其中T1=4000Tcp。
显然,不同的输入电压积分的结果不同(不妨理解为输出曲线的高度不同)。
然后再以固定电压VREF 以及由RI,CI所决定的积分常数按照固定斜率反向积分直至积分器输出归零,显然对于上述一次积分过程形成的不同电压而言,这一次的积分时间必然不同。
于是对第二次积分过程历经的时间用时钟脉冲计数,则该数N就是被测电压对应的数字量。
由此实现了A/D转换。
积分电阻电容的选择应根据实际条件而定。
MC14433A /D 转换周期约需16000个时钟脉冲数,若时钟频率为48kHz ,则每秒可转换3次,若时钟频率为86kHz ,则每秒可转换4次。
C14433 采用24引线双列直插式封装,外引线排列,参考右图的引脚标注,各主要引脚功能说明如下: 图 2 MC14433引脚(1) 端:VAG ,模拟地,是高阻输入端,作为输入被测电压UX 和基准电压VREF 的参考点地。
(2) 端:RREF ,外接基准电压输入端。
(3) 端:UX ,是被测电压输入端。
(4) 端:RI ,外接积分电阻端。
(5) 端:RI /CI ,外接积分元件电阻和电容的公共接点。
(6) 端,C1,外接积分电容端,积分波形由该端输出。
(7) 和 (8) 端:C01和C02,外接失调补偿电容端。
推荐外接失调补偿电容C0取0.1μF 。
(9) 端:DU ,实时输出控制端,主要控制转换结果的输出,若在双积分放电周期即阶段5开始前,在DU 端输入一正脉冲,则该周期转换结果将被送入输出锁存器并经多路开关输出,否则输出端继续输出锁存器中原来的转换结果。
若该端通过一电阻和EOC 短接,则每次转换的结果都将被输出。
(10) 端:CPI (CLKI),时钟信号输入端。
模拟地 .V AG 1基准电压 V REF 2输入 V 13R1 4 R1/C1 5C1 6 C01 7C02 8DU 9 CLK1 10CLK2 11V EE 12 MC1443324 VDD 正电源 23 Q3 22 Q2 21 Q1 20 Q0 19 千位选通 18 百为选通 17十位选通 16个位选通 15 OR ¯超量程 14 EOC A/D 转换结束标志 13 V 地 积分元件 自动调零电容 实时输出控制端 时钟脉冲输入端 时钟脉冲输出端 负电源 BCD 码输出(11) 端:CPO (CLKO),时钟信号输出端。
(12) 端:VEE,负电源端,是整个电路的电源最负端,主要作为模拟电路部分的负电源,该端典型电流约为0.8mA,所有输出驱动电路的电流不流过该端,而是流向VSS端。
(13) 端:VSS 负电源端.(14) 端:EOC,转换周期结束标志输出端,每一A/D转换周期结束,EOC端输出一正脉冲,其脉冲宽度为时钟信号周期的1/2。
(15) 端:OR ,过量程标志输出端,当|UX|>VREF 时,OR输出低电平,正常量程OR为高电平。
(16)~(19) 端:对应为DS4~DS1,分别是多路调制选通脉冲信号个位、十位、百位和千位输出端,当DS端输出高电平时,表示此刻Q。
~Q3 输出的BCD 代码是该对应位上的数据。
(20)~(23)端:对应为Q0-Q3,分别是A/D 转换结果数据输出BCD代码的最低位(LSB)、次低位、次高位和最高位输出端。
(24) 端:VDD,整个电路的正电源端2、七段锁存-译码-驱动器CD4511CD4511 是专用于将二-十进制代码(BCD)转换成七段显示信号的专用标准译码器,它由4位锁存器,7段译码电路和驱动器三布分组成。
(1) 四位锁存器(LATCH):它的功能是将输入的A,B,C 和D代码寄存起来,该电路具有锁存功能,在锁存允许端(LE 端,即LATCHENABLE)控制下起锁存数据的作用。
图 3 CD4511当LE=1时,锁存器处于锁存状态,四位锁存器封锁输入,此时它的输出为前一次LE=0时输入的BCD码;当LE=0时,锁存器处于选通状态,输出即为输入的代码。
由此可见,利用LE 端的控制作用可以将某一时刻的输入BCD代码寄存下来,使输出不再随输入变化。
(2) 七段译码电路:将来自四位锁存器输出的BCD 代码译成七段显示码输出,MC4511中的七段译码器有两个控制端:① LT (LAMP TEST)灯测试端。
当LT = 0时,七段译码器输出全1,发光数码管各段全亮显示;当LT = 1时,译码器输出状态由BI端控制。
② BI (BLANKING)消隐端。
当BI = 0时,控制译码器为全0输出,发光数码管各段熄灭。
BI = 1时,译码器正常输出,发光数码管正常显示。
上述两个控制端配合使用,可使译码器完成显示上的一些特殊功能。
(3) 驱动器:利用内部设置的NPN 管构成的射极输出器,加强驱动能力,使译码器输出驱动电流可达20mA。
CD4511电源电压VDD的范围为5V-15V,它可与NMOS电路或TTL电路兼容工作。
CD4511采用16引线双列直插式封装,引脚分配见右图,真值表参见下图。
使用CD451l时应注意输出端不允许短路,应用时电路输出端需外接限流电阻。
3.七路达林顿驱动器阵列MC1413MC1413采用NPN达林顿复合晶体管的结构,因此具有很高的电流增益和很高的输入阻抗,可直接接受MOS 或CMOS 集成电路的输出信号,并把电压信号转换成足够大的电流信号驱动各种负载.该电路内含有7个集电极开路反相器(也称OC0门)。
MC1413电路结构和引脚如图3所示,它采用16引脚的双列直插式封装。
每一驱动器输出端均接有一释放电感负载能量的续流二极管。
4.高精度低漂移能隙基准电源MC1403图4 MC1403MC1403的输出电压的温度系数为零,即输出电压与温度无关.该电路的特点是:① 温度系数小;② 噪声小;③ 输入电压范围大,稳定性能好,当输入电压从+4.5V变化到+15V时,输出电压值变化量小于3mV;④输出电压值准确度较高,y。
值在2.475V~2.525V 以内;⑤ 压差小,适用于低压电源;⑥ 负载能力小,该电源最大输出电流为10mA。
三、设计要求1、主要内容(1)、利用所学过知识,通过上网或到图书馆查阅资料,设计出2-3个实现数字万用表的方案;只要求写出实现工作原理,画出电原理功能框图,描述其功能。
(2)、其中对将要实验方案3位半位数字万用表方案,须采用中、小规模集成电路、MC 14433A/D转换器等电路进行设计,写出已确定方案详细工作原理,计算出参数,设计出电原理图。
2、技术指标(1)测量直流电压200mv;2V;20V;200V;1000V;测量交流电压2V;20V;200V;750V(2)测量直流电流2MA;20MA;200MA;20A;测量交流电流2MA;20MA;200MA;20A;(3)电阻:200 、2K、20K、200K、2M、20M(4)电容;200nF、20nF、2nF 20μF、2μF(5)三位半数字显示。
第1章系统概述1.1、设计方案:方案一:基于mc14433的数字万用表Mc14433是三位半A/D转换器。
因此系统可以分为五部分:基准电压、A/D 转换器(mc14433)、七段数码管(显示器)、驱动器(mc1413)、译码器(cd4511/mc4511)。