A算法课件

合集下载

人教a版必修3数学教学课件第1章算法初步第1节算法与程序框图

人教a版必修3数学教学课件第1章算法初步第1节算法与程序框图
HISHISHULI
HONGNANJUJIAO
D典例透析
2.算法的特征
特征
有限性
确定性
可行性
有序性
说明
一个算法运行完有限个步骤后必须结束,而不能无限
地运行
算法的每一步计算,都必须有确定的结果,不能模棱
两可,即算法的每一步只有唯一的执行路径,对于相
同的输入只能得到相同的输出结果
算法中的每一步必须能用实现算法的工具精确表达,
并能在有限步内完成
算法从初始步骤开始,分为若干明确的步骤,每一个
步骤只能有一个确定的后续步骤,只有执行完前一步
才能执行后一步
IANLITOUXI
目标导航
特征
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
说明
算法一般要适用于不同形式的输入值,而不是局限于
目标导航
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
1.算法的概念
12 世纪的算法 用阿拉伯数字进行算术运算的过程
按照一定规则解决某一类问题的明确和有限的步
数学中的算法

通常可以编成计算机程序,让计算机执行并解决
现代算法
问题
名师点拨1.算法没有一个精确化的定义,可以理解为由基本运算
题型四
设计含有重复步骤的算法
【例4】 写出求1×2×3×4×5×6的算法.
分析:思路一:采取逐个相乘的方法;思路二:由于重复作乘法,故可
以设计作重复乘法运算的步骤.
解:算法1:第一步,计算1×2得到2.

数据排序——选择排序算法课件(共16张PPT)浙教版(2019)高中信息技术选修1

数据排序——选择排序算法课件(共16张PPT)浙教版(2019)高中信息技术选修1

n=6
m=int(rnd*6+1)
for i=1 to n-m
k=i
for j=m to n-i
if a(j)>a(j+1) then
t=a(j):a(j)=a(j+1):a(j+1)=t
elseif a(j)>a(k) then
k=j
endif
next j
tmp=a(k):a(k)=a(i):a(i)=tmp
下标
0
1
2
3
4
5
数组a
5
9
3
8
1
2
k
假设第一个人 身高是最高的
j
与后面的所有 数进行比较
k=j
比它大就跳 到它的位置 上
如果要找到的是最小数的位置k呢?
下标
0
1
2
3
4
5
数组a
5
9
3
8
1
2
通过变量描述选择排序的执行过程:
i表示轮次
0 1 2 3 4
k初值
0 1 2 3 4
j表示数组下标
1、2、3、4、5 2、3、4、5 3、4、5 4、5 5
考察:m的变化与排序区域
next j
tmp=a[k):a(k)=a(i):a(i)=tmp
next i
该程序段执行后,a(1)~a(6)个元素不可能的是(
)B
A.1,3,5,6,8,9 B.3,1,5,6,8,9
C.3,8,1,5,6,9 D.3,8,9,5,1,6
7.【2019.6舟山】有如下程序段:
a=””.join(a) count=0 for i in range(len(a)-1):

A算法ppt课件

A算法ppt课件
解:这个问题的全局择优搜索树如图1所示。 在图1中,每个节点旁边的数字是该节点的估 价函数值。例如,对节点S2,其估价函数的计 算为
f(S2)=d(S2)+W(S2)=2+2=4 从图1还可以看出,该问题的解为 S0 →S1 →S2 →S3 →Sg
5
图1 八数码难题的全局择优搜索树
6
7
2.局部择优搜索
对这一算法进一步分析也可以发现:如果取估 价函数f(n)=g(n),则它将退化为代价树的深度 优先搜索;如果取估价函数f(n)=d(n),则它将 退化为深度优先搜索。可见,深度优先搜索和 代价树的深度优先搜索是局部择优搜索的两个 特例。
9
A*算法
上一节讨论的启发式搜索算法,都没有 对估价函数f(n)做任何限制。实际上,估 价函数对搜索过程是十分重要的,如果 选择不当,则有可能找不到问题的解, 或者找到的不是问题的最优解。为此, 需要对估价函数进行某些限制。A*算法 就是对估价函数加上一些限制后得到的 一种启发式搜索算法。
退出; (5)若节点n不可扩展,则转到第(2)步; (6)扩展节点n,生成子节点ni(i=1,2,……),计算每一个子节点的
估价值f(ni) (i=1,2,……),并按估价值从小到大的顺序依次放入 Open表的首部,并为每一个子节点设置指向父节点的指针,然后 转第(2)步。
8
由于这一算法的第六步仅仅是把刚生成的子节 点按其估价函数值从小到大放入Open表中,这 样在算法第(3)步取出的节点仅是刚生成的子节 点中估价函数值最小的一个节点。因此,它是 一种局部择优的搜索方式。
2
1. 全局择优搜索
在全局择优搜索中,每当需要扩展节点时,总是从Open表的所有节点中 选择一个估价函数值最小的节点进行扩展。其搜索过程可能描述如下:

《AStar算法详解》课件

《AStar算法详解》课件

谢谢观看
01
定义
优先队列是一种数据结构,允许根据特定优先级对元素进行排序和检索

02
作用
在A*算法中,优先队列用于存储待探索节点,并根据优先级顺序进行检
索。优先级通常基于节点到目标的实际距离和启发式函数的预估距离。
03
注意事项
优先队列的选择和实现方式对算法性能有较大影响,应选择高效的数据
结构和实现方式。
路径修复
《astar算法详解》ppt课件
目录
• A算法简介 • A算法的关键技术 • A算法的步骤和流程 • A算法的优缺点分析 • A算法的案例分析
01
A算法简介
A*算法的起源和背景
起源
A*算法最初由Anthony Stentz于 1944年提出,用于解决路径规划 问题。
背景
随着计算机技术的发展,A*算法 逐渐成为一种广泛应用于图形搜 索和路径规划领域的算法。
案例二:游戏AI路径规划
总结词
在游戏中,AI角色的行为需要合理规 划路径,以确保其能够高效地完成任 务或达到目标位置。A*算法为游戏开 发者提供了一种有效的路径规划工具 。
详细描述
在游戏AI路径规划中,A*算法可以帮助AI角 色找到从起点到终点的最佳路径。通过在游 戏地图上建立节点和边,A*算法能够考虑游 戏逻辑、障碍物和角色移动能力等因素,从 而生成符合游戏规则的合理路径。
05
A算法的案例分析
案例一:地图导航
总结词
地图导航是A*算法最常见的应用场景之一,通过使用A*算法,可以快速找到两 点之间的最短路径。
详细描述
在地图导航中,A*算法通常用于在道路网络中寻找两点之间的最短路径。通过 将地图中的道路和障碍物表示为图中的节点和边,A*算法能够综合考虑路径长 度和方向变化,从而找到最短且最直接的路径。

人教a版必修3数学教学课件第1章算法初步第3节算法案例

人教a版必修3数学教学课件第1章算法初步第3节算法案例
多项式改写,依次计算一次多项式,由于后项计算用到前项的结果,
故应认真、细心,确保中间结果的准确性.若在多项式中有几项不
存在,可将这些项的系数看成0,即把这些项看成0·xn.
目标导航
题型一
题型二
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
题型三
【变式训练3】 用秦九韶算法求多项式f(x)=8x7+5x6+3x4+2x+1
当x=2时的值.
v3=-24×(-2)+2=50.故f(-2)=50.
错因分析:所求f(-2)的值是正确的,但是错解中没有抓住秦九韶算
法原理的关键,正确改写多项式,并使每一次计算只含有x的一次项.
目标导航
题型一
题型二
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
HONGNANJUJIAO
D典例透析
IANLITOUXI
目标导航
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
【做一做2】 用秦九韶算法求f(x)=2x3+x-3当x=3时的值的过程
中,v2=
.
解析:f(x)=((2x+0)x+1)x-3,
v0=2;
减小数.
解:(1)用辗转相除法求840和1 785的最大公约数.
1 785=840×2+105,
840=105×8.
所以840和1 785的最大公约数是105.

a星算法原理

a星算法原理

a星算法原理1. 基本思路A* 算法是基于图模型的搜索算法,其中图由若干个节点和连接这些节点的边组成。

搜索的目标是在图上寻找一条从起点到终点的最优路径。

A* 算法的基本思路如下:(1)首先将起点加入open列表(即待搜索的节点列表),定义一个空的close列表(即已搜索的节点列表)。

(2)从open列表中取出F值最小的节点,将其加入close列表。

(3)若该节点为终点,则搜索完成,否则将它的相邻节点加入open列表。

(4)对于所有加入open列表的节点,计算它们的F值,并更新它们的父节点。

(5)重复步骤2-4,直到open列表为空或者找到终点。

F值由G值和H值组成:F =G + HG值表示从起点到该节点的实际代价,H值表示从该节点到终点的启发式估价(即一个估计值,不一定是实际值,但必须保证不小于实际值)。

1.启发式估价函数必须保证不小于实际代价。

2.启发式估价函数应该尽量接近实际代价,否则会影响搜索效率。

3.启发式估价函数不能产生死循环或者走回头路的情况。

2. 估价函数的选取(1)曼哈顿距离曼哈顿距离指两点之间横纵坐标差的绝对值之和。

曼哈顿距离是一种比较简单的启发式估价函数,它适用于只能沿水平或竖直方向移动的情况。

曼哈顿距离在斜着走的时候有一定的误差,不够精确。

(2)欧几里得距离欧几里得距离指两点之间的直线距离。

欧几里得距离是一种比较精确的启发式估价函数,它适用于可以在任何方向上移动的情况。

欧几里得距离会导致算法不够稳定,容易出现死循环的情况。

(3)切比雪夫距离(4)自定义估价函数如果以上的估价函数不能满足需要,还可以根据具体需求自定义估价函数。

自定义估价函数要满足启发式估价函数的基本要求,并且尽量简单易实现。

3. A*算法的优缺点(1)A*算法具有较高的搜索效率,并且能够找到最优解。

(2)A*算法能够通过启发式估价函数优化搜索路径,从而减少搜索量。

(1)A*算法的搜索效率和搜索结果非常依赖于所选择的估价函数,不同的估价函数可能产生完全不同的搜索结果。

人工智能a算法

人工智能a算法

1.启发式搜索算法A启发式搜索算法A,一般简称为A算法,是一种典型的启发式搜索算法。

其基本思想是:定义一个评价函数f,对当前的搜索状态进行评估,找出一个最有希望的节点来扩展。

评价函数的形式如下:f(n)=g(n)+h(n)其中n是被评价的节点。

f(n)、g(n)和h(n)各自表述什么含义呢?我们先来定义下面几个函数的含义,它们与f(n)、g(n)和h(n)的差别是都带有一个"*"号。

g*(n):表示从初始节点s到节点n的最短路径的耗散值;h*(n):表示从节点n到目标节点g的最短路径的耗散值;f*(n)=g*(n)+h*(n):表示从初始节点s经过节点n到目标节点g的最短路径的耗散值。

而f(n)、g(n)和h(n)则分别表示是对f*(n)、g*(n)和h*(n)三个函数值的的估计值。

是一种预测。

A算法就是利用这种预测,来达到有效搜索的目的的。

它每次按照f(n)值的大小对OPEN表中的元素进行排序,f值小的节点放在前面,而f值大的节点则被放在OPEN表的后面,这样每次扩展节点时,都是选择当前f值最小的节点来优先扩展。

利用评价函数f(n)=g(n)+h(n)来排列OPEN表节点顺序的图搜索算法称为算法A。

过程A①OPEN:=(s),f(s):=g(s)+h(s);②LOOP:IF OPEN=()THEN EXIT(FAIL);③n:=FIRST(OPEN);④IF GOAL(n)THEN EXIT(SUCCESS);⑤REMOVE(n,OPEN),ADD(n,CLOSED);⑥EXPAND(n)→{mi},计算f(n,mi)=g(n,mi)+h(mi);g(n,mi)是从s通过n到mi的耗散值,f(n,mi)是从s通过n、mi到目标节点耗散值的估计。

·ADD(mj,OPEN),标记mi到n的指针。

·IF f(n,mk)<f(mk)THEN f(mk):=f(n,mk),标记mk到n的指针;比较f(n,mk)和f(mk),f(mk)是扩展n 之前计算的耗散值。

人教A版高中数学必修3第一章 算法初步1.1 算法与程序框图课件(7)

人教A版高中数学必修3第一章 算法初步1.1 算法与程序框图课件(7)
精品PPT
练习:
1、下列关于程序框图的说法正确的是 A、程序框图是描述算法的语言
A ( )
B、程序框图可以没有输出框,但必须要有输入框给变量赋值
C、程序框图可以描述算法,但不如自然语言描述算法直观
D、程序框图和流程图不是一个概念
精品PPT
例1.写出求任意两个数的平均数的算法,并
画出程序框图
程序框图
如何计算选手最后得分?
第一步:100+20=120 第二步: 120+30=150 第三步:150-15=135 第四步:135+50=185
如果引入变量S S=100; S=S+20; S=S+30; S=S-15; S=S+50 输出S
可使算法的表示非常简洁。
精品PPT
算法的概念
问题1:结合实际过程,应当如何理解“x=x+20”这样的式子? 问题2:左右两边的x的意义或取值是否一样?能不能消去?
求n除以i的余数r
i的值增加1,仍用i表示
i>n-1或r=0?


顺序结构

r=0?
循环结构 否
N不是质数
N是质数
条件结构
你能说出这三种基本逻辑结构的特点吗? 条件结构与循环结构有什么区别和联系?
精品PPT
1、顺序结构
顺序结构是最简单的算法结构,语句与语句之间,框与 框之间是按从上到下的顺序进行的,它是由若干个依次执行 的处理步骤组成的,它是任何一个算法都离不开的一种基本 算法结构。 顺序结构在程序框图中的体现就是用流程线将程 序框自上而下地连接起来,按顺序执行算法步骤。
精品PPT
探究
如图是求解一元二次方程 的 算法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档