一元二次方程应用(动点问题)

合集下载

一元二次方程的应用——动点问题

一元二次方程的应用——动点问题
分析: 点P的运动方向是由A
点Q的运动方向是由B 运动速度都是1cm⁄s C C
运动时间未定
运动距离
点P的运动距离即 AP的长度 点Q的运动距离即 BQ的长度
例:在Rt△ABC中,∠C=90°, AC=8,BC=6.点P由A点出发沿AC方向向点C 匀速移动,点Q由B点出发沿BC方向向点C匀 速移动,它们的速度都是1cm⁄s,几秒后 △PCQ的面积为△ABC面积的一半?
设时间为x,, 则可表示出CP=2x,BQ=x,QC=25-x
等量关系:P、Q两点相距25cm
解:设x秒后P、Q两点相距25cm.
在Rt△QCP中 QC2+PC2=PQ2
(25-x)2+(2x)2=252
5x2-50x=0
x1=0 (舍) ,x2=10 答:10秒后PQ相距25cm。
答:2秒后△PCQ的面积为Rt△ABC面积的一半.
例2:在Rt△ABC中,∠C=90°,AC=30cm, BC=25cm,动点P沿CA方向运动,速度是 2cm⁄s;动点Q从B点出发,沿BC方向运动, 速度是1cm⁄s,几秒后P、Q两点相距25cm?
分析
运动 点P的运动方向是由C 方向
A问题需要注意几个问题: 1、有几个动点?
2、怎样运动?即向哪儿运动?
3、运动的速度、时间、距离分别是多少?
例1:在Rt△ABC中,∠C=90°,AC=8,BC=6. 点P由A点出发沿AC方向向点C匀速移动,点Q 由B点出发沿BC方向向点C匀速移动,它们的速 度都是1cm⁄s,几秒后△PCQ的面积为 △ABC面积的一半?
若设时间为x, 则可表示出AP=x,BQ=x 所以PC=8-x, QC=6-x
等量关系:△PCQ的面积为△ABC面积的一半

(完整版)一元二次方程动点问题讲解

(完整版)一元二次方程动点问题讲解

1)设⊿ ABC位于直线L左侧部分的面积为S,写出S与x之间的函 数关系式; 2)当x为何值时,直线L平分⊿ ABC的面积?
(1)解:∠ BAC=45°,AP=x,
∴当L位于CD的右侧时,与
BC交于点Q
L
AP=X,PB=3-X
C
Q
CD=2,PQ=?
p
由小学学习的比例计算PQ 即:CD:DB=PQ:BQ
∴450=½×(2X-50)×3X
Q
X²-25X-30=0
C
解得:X₁=-5(舍去);X₂=30
解得:综合以上情况在10S,15S,30S时,△OPQ的面积为450
例2 在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始 以1cm/s的速度沿AB边向点B移动,点Q从点B开始以 2cm/s的速度沿BC边向点C移动,如果P、Q分别从A、B 同时出发,几秒后⊿ PBQ的面积等于8cm2?
C
通过观察,有两种情况:(1)蚂蚁未爬完OA这段距离
(2)蚂蚁爬完OA这段距离后,再由O点向B爬行
例1 如图OA=OB=50cm,OC是一条射线,OC⊥AB,一
只蚂蚁由点A以2cm/s的速度向B处爬行,同时另一只蚂
蚁由O点以3cm/s的速度沿oc方向爬行,则是否存在这样
的时刻,使两只蚂蚁所在位置与O点组成的三角形的面积
·ALeabharlann RP∴S◇=S△ABC-S△BPQ-S△APQ
∴16=32-½(8-X)²-½×(X)²
整理:x²-8x+16=0
整理:x₁=x₂=4
CQ
B
∴当AP=4cm时,平行四边形PQCR的面积等于16cm2
例4:⊿ABC中,AB=3, ∠ BAC=45°,CD⊥ AB,垂足为D,CD=2,P 是AB上的一动点(不与A,B重合),且AP=x,过点P作直线L与AB垂直.

一元二次方程的应用动点问题(共8张PPT)

一元二次方程的应用动点问题(共8张PPT)
(2)点P,Q出发几秒后, 可使△PCQ 的面积为9 cm2 ? △PCQ的面积能为10cm2?
(3)当点P、Q出发几秒后,
PQ的长度为 4 2 cm?
有关“动点”的运动问题”
1)关键—— 以静代动把动的点进行转换,
2)方法—— 时间变路程
变为线段的长度,
2、在直角三角形ABC中,AB=BC=12cm,点D从点A开始以2cm/s的速度沿AB边向点B移动,过点D做DE平行于BC,DF平行于AC,点E.




一个长为10m的梯子斜靠在墙上, 梯子的顶端距地面的垂直距离为8m, 如果梯子的顶端下滑1m,梯子的底端 滑动xm,可列方程为:__________
:如图,△ABC是边长3cm的等边三角形, 动点P、Q同时从A、B两点出发,分别沿AB、 BC方向匀速移动,点P的速度为1cm/s,点Q的 速度为2cm/s,当点Q到达点C时,P、Q两点 停顿运动,设点P的运动时间为t〔s〕,解答 以下问题: 〔1〕当t为何值时,△PBQ是直角三角形? (2)△PBQ能否为等边三角形?假设能,请求出t 的值,假设不能,说明理由.
点D从点A开始以2cm/s的速度沿AB边 向点B移动,过点D做DE平行于BC,DF平 一元二次方程的应用动点问题
2、在直角三角形ABC中,AB=BC=12cm,点D从点A开始以2cm/s的速度沿AB边向点B移动,过点D做DE平行于BC,DF平行于AC,点E. 点 P 沿 AC 边从点 A 向终点 C 以 1 cm/s的速度移动; 有关“动点”的运动问题”
一元二次方程的应用动点问题
3)常找的数量关系——面积,勾股定理等; (3)当点P、Q出发几秒后,
F分别在AC,BC上,问:点D出发几秒后四边形DFCE的面积为20cm2? 点 P 沿 AC 边从点 A 向终点 C 以 1 cm/s的速度移动;

一元二次方程——动点问题

一元二次方程——动点问题

2
整理,得 x26x80
解这个方程,得 x1 2,x2 4
Q
0x6 所以2秒或4秒后⊿ PBQ的面
积等于8cm2
A
B
P
例2:等腰直角⊿ ABC中,AB=BC=8cm,动点P从A 点出发,沿AB向B移动,通过点P引平行于BC,AC的 直线及AC,BC分别交于R、Q.当AP等于多少厘米 时,平行四边形PQCR的面积等于16cm2?
A
D
P
(2)P、Q两点从出发开始到几秒时,
点P和点Q的距离是10cm?
Q
B

C
4.如图,在矩形ABCD中,AB=12cm, BC=6cm.点P沿AB边从点A开始向点B以 2cm/s的速度移动,点Q沿DA边从点D开始 向点A以1cm/s的速度移动.如果P、Q同时 出发,用t(s)表示移动的时间(0≤t≤6). 那么当t为何值时,ΔQAP的面积等于8cm2?
一元二次方程——动点问题
(2)经过多少时间后,S△PCQ的面积为15cm2?
(3)请用配方法说明,何时△PCQ的面积最大, 最大面积是多少?
2.如图,用一块长为50cm、宽为30cm的长方形铁片制 作一个无盖的盒子,若在铁片的四个角截去四个相同的小 正方形,设小正方形的边长为xcm. (1)底面的长AB=_______cm,宽BC=__________cm (用含x的代数式表示) (2)当做成盒子的底面积为300cm2时,求该盒子的容 积.
解:设AP=x,则PR=x,PB=8-x
根据题意得:x8-x 16
整理得:x2 8x 16 0 解这个方程得:x1 x2 4 答:当AP 4cm时,四边形面积为16cm2
CQ
A
R
P
B

一元二次方程应用题(动点问题)

一元二次方程应用题(动点问题)

一元二次方程的概述
一元二次方程是指含有一个未知数的二次方程,表达式形式为ax²+bx+c=0。它是数学中常见的方程类型,具有 重要的应用价值。
寻找问题的关键变量和已知条件
在解决动点问题时,我们需要仔细分析问题,确定关键变量和已知条件。这样可以帮助我们建立一元二次方程, 进而求解问题。
如何列出动点问题的一元二次方程
一元二次方程应用题(动 点问题)
在这个演示我们将介绍 问题的定义和一元二次方程的基本概念,以及如何寻找关键变量并列出方程。 通过实际案例分析,帮助您掌握解决这类问题的技巧。
动点问题的介绍与定义
动点问题是指根据物体的运动轨迹及已知条件,找出该物体的位置或状态。它常常涉及时间、距离、速度等变 量。
在列出方程时,我们通常需要根据关键变量和已知条件进行代入。通过代入求解,我们可以得到方程的解,从 而解决动点问题。
解方程并求出问题的答案
解一元二次方程通常会涉及到配方法、因式分解、求根公式等解法。通过运用这些方法,我们可以计算出问题 的答案,并得出具体的结论。
实际应用案例分析
通过实际应用案例的分析,我们将展示动点问题在现实生活中的应用场景。这些案例将帮助您更好地理解和掌 握一元二次方程在动点问题中的应用。
总结和应用技巧
在这个部分,我们将对整个演示进行总结,并提供一些应用技巧,帮助您在解决动点问题时更加高效和准确。

一元二次方程应用(动点问题)

一元二次方程应用(动点问题)

4.动点问题例1:如图:在Rt △ACB 中,∠C=90°,点P 、Q 同时由A 、B 两点 出发分别沿AC 、BC 方向向 点C 匀速移动,它们的速度都是1m/s ,几秒后△PCQ 的面积为 Rt △ACB 面积的一 半?变式练习: 1、 如图:在△ABC 中,∠B=90°,点P 从点A 开始沿AB 边向点B 以1厘米/秒的速度移动,点Q 从点B 开始,沿BC 边向点C 以2厘米/秒的速度移动,如果P 、Q 分别从A 、B 同时出发,几秒后△PBQ 的面积等于8平方厘米?AB C P Q 6cm 8cm2、如图,在△ABC 中,AB=6cm ,AC=12cm 动点D 从A 点出发到B 点为止,运动的速度为1cm/秒;同时动点E 从C 点出发到A 点为止,点E 运动的速度为2cm/秒那么当点A 、D 、E 为顶点的三角形与△ABC 相似时,运动的时间是( )3.如图,在矩形ABCD 中,AB=3,BC=4,点P 以每秒2个单位长度的速度从点C 出发,沿CA 向点A 运动;点Q 同时以每秒1个单位长度的速度从点A 出发,沿AB 向点B 运动,设P 、Q 两点移动t 秒(1)求△APQ 与△ABC 相似时t 的值(2)求四边形BCPQ 面积S 与时间t 的关系式(3)求△APQ 为等腰三角形时t 的值BCE D A例2:一艘轮船以20海里/时的速度由西向东航行,途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20 海里的圆形区域(包括边界)都属台10风区.当轮船到A处时,测得台风中心移到位于点A正南方向B处,且AB=100海里.若这艘轮船自A处按原速度继续航行,在途中会不会遇到台风?若会,试求轮船最初遇到台风的时间;若不会,请说明理由.变式练习:某军舰以20节的速度由西向东航行,一艘电子侦察船以30节的速度由南向北航行,它能侦察出周围50海里(包括50海里)范围内的目标。

一元二次方程——动点问题

一元二次方程——动点问题

Day5:一元二次方程之动点问题一元二次方程解决问题1.动点问题几何图形应用题,关键是将点的运动关系表示出来,找出未知量与已知量的内在联系,根据面积或体积公式列出方程.常见题型:选择题、解答题,求最值问题.易错点:找准动点的关系.中考回顾:常考,求最值或三角形为直角三角形等等.例1如图,点O 在线段AB 上,AO=1,OB=2,OC 为射线,且∠BOC=120°,动点P 以每秒2个单位长度的速度从点O 出发,沿射线OC 作匀速直线运动.设运动时间为t 秒,当△ABP 为直角三角形时,t 的值为()A.t=1B.t=1或8﹣C.t=8D.t=1或8例2如图,已知△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s 的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点停止运动时,另一点也随之停止,其中P、Q不与A、B重合.(1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)如果P、Q分别从A、B同时出发,那么几秒后,PQ的长度等于5cm?(3)在(1)中,△PBQ的面积能否等于7cm2?请说明理由.例3如图,在平面直角坐标系中,过原点O及点A(0,2)、C(6,0)作矩形OABC,∠AOC的平分线交AB于点D.点P从点O出发,以每秒2个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒2个单位长度的速度沿x轴正方向移动.设移动时间为t秒,则当t为何值时,△PBQ为直角三角形?参考答案1.【答案】B【考点】本题考查了动点问题,结合三角形,注意画出图形,帮助理解.【解析】如图1,当∠PAB=90°时,∵∠BOC=120°,∴∠AOP=60°,∴∠APO=30°,∴OP=2OA=2,∵OP=2t,∴t=1;如图2,当∠APB=90°,过P 作PD⊥AB,∵∠OPD=120°﹣90°=30°,∴OD=12∴AD=AO﹣OD=1﹣t,在Rt△ABP 中,根据勾股定理得:AP 2+BP 2=AB 2,即(2+t)222+(1﹣t)2=32,解得:t=8﹣(负值舍去);当∠ABP=90°时,此情况不存在;综上,当t=1或t=8﹣时,△ABP 是直角三角形.2.【答案】(1)1秒(2)2秒(3)不能【考点】一元二次方程在三角形中动点问题的应用.【解析】(1)设x 秒后,△PBQ 的面积等于4cm².此时,AP=x cm,PB=(5-x)cm,BQ=2x cm,由S △PBQ =4BQ PB 21=∙得()42-521=∙x x ,整理得0452=+-x x ,解得x 1=1,x 2=4.当x=4时,2x=8>7,不合要求.所以1秒后,△PBQ 的面积等于4cm².(2)设x 秒后,PQ 的长度等于5cm.由PB 2+BQ 2=5²得(5-x)²+(2x)²=5²整理得x²-2x=0,解得x 1=0(舍去),x 2=2.经检验,x=2符合要求,所以2秒后,PQ 的长度等于5cm.(3)不能.理由:设x 秒后,△PBQ 的面积等于7cm²,由题意得()72-521=∙x x ,整理得x²-5x+7=0,03-28-25<==∆,此方程无解,所以△PBQ 的面积不可能等于7cm².3.【答案】t=2或55+=t 或5-5=t 【考点】该题考查的是一元二次方程与直角坐标系结合的动点应用题型.【解析】过点P 作PG⊥OC,垂足为G.在Rt△POG 中,∵∠POG=45°,∴∠OPG=45°,∵OP=t 2,∴OG=PG=t,∴点P(t,t),又∵Q(2t,0),B(6,2),根据勾股定理可得PB²=(6-t)²+(2-t)²,QB²=(6-2t)²+2²,PQ²=(2t-t)²+t²=2t².在P、Q 移动过程中,PQ 始终与OD 垂直,容易得知∠BPQ 不可能等于90°.①若∠PQB=90°,则有PQ²+QB²=PB²,即2t²+[(6-2t)²+2²]=(6-t)²+(2-t)²,整理得4t²-8t=0,解得t 1=0(舍去),t 2=2,∴t=2.②若∠PBQ=90°,则有PB²+QB²=PQ²,∴[(6-t)²+(2-t)²]+[(6-2t)²+2²]=2t²,整理得t²-10t+20=0,解得t=5±5.∴当t=2或55+=t 或5-5=t 时,△PQB 为直角三角形.。

一元二次方程的应用(动点问题)

一元二次方程的应用(动点问题)

二次函数
一元二次方程的图像是抛物线,其性质和特征对于
顶点和轴对称
抛物线的顶点是二次函数的最值点,而抛物线关于
什么是动点问题
动点问题涉及物体、车辆、人员等在空间或时间中的运动,通过建立一元二次方程描绘其变化规律。
1 运动轨迹
描述物体或人员在空间中的路径或轨迹,了 解运动方式和特点。
2 运动速度
计算物体或人员在不同时间点的速度,以推 断其行进过程。
例一:物体自由落体问题
考虑一个物体自由落体的场景,建立一元二次方程解决高度、时间和速度等相关问题。
下落距离
计算物体自由落体所经历的高度以及特定时间点的 下落距离。
速度计算
根据物体自由落体的加速度和时间,计算物体的速 度。
达到特定时间
通过一元二次方程,求解物体自由落体到达特定时
抛物线轨迹
分析抛物线运动的特点,找出物体的最高点和最远
物体自由落体问题
计算自由落体物体的高度、速度等参数,并确 定其运动轨迹。
两车相遇问题
研究两辆车从不同地点同时出发,相向而行的 问题,求出两车相遇的时间和位置。
跳伞问题
求解跳伞过程中的空中时间、速度、高度等数 据,为安全跳伞提供参考。
炮弹射击问题
通过炮弹的射程、发射角度等参数,计算击中 目标所需的条件与策略。
一元二次方程的应用(动 点问题)
一元二次方程的应用(动点问题) PPT大纲
一元二次方程的定义和基本形式
介绍一元二次方程的定义、基本形式和一些基础概念,帮助理解和解决动点问题。
方程的定义
一元二次方程是形如ax²+bx+c=0的方程,其中a、b、 c都是实数,a≠0。
基本形式
一元二次方程的一般形式为ax²+bx+c=0,其中a、b、 c是已知实数,且a≠0。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.动点问题
例1:如图:在Rt △ACB 中,∠C=90°,点P 、Q 同时由A 、B 两点 出发分别沿AC 、
BC 方向向 点C 匀速移动,它们的速度都是1m/s ,几秒后△PCQ 的面积为 Rt △ACB 面积的一 半?
变式练习: 1、 如图:在△ABC 中,∠B=90°,点P 从点A 开始沿AB 边向点B 以1厘米/秒的速度移动,点Q 从点B 开始,沿BC 边向点C 以2厘米/秒的速度移动,如果P 、Q 分别从A 、B 同时出发,几秒后△PBQ 的面积等于8平方厘米?
A
B
C P Q 6cm 8cm
2、如图,在△ABC 中,AB=6cm ,AC=12cm 动点D 从A 点出发到B 点为止,运动的速度为1cm/秒;同时动点E 从C 点出发到A 点为止,点E 运动的速度为2cm/秒那么当点A 、D 、E 为顶点的三角形与△ABC 相似时,运动的时间是( )
3.如图,在矩形ABCD 中,AB=3,BC=4,点P 以每秒2个单位长度的速度从点C
出发,沿CA 向点A 运动;点Q 同时以每秒1个单位长度的速度从点A 出发,沿AB 向点B 运动,设P 、Q 两点移动t 秒
(1)求△APQ 与△ABC 相似时t 的值 B
C
E D A
(2)求四边形BCPQ面积S与时间t的关系式
(3)求△APQ为等腰三角形时t的值
例2:一艘轮船以20海里/时的速度由西向东航行,途中接到台风警报,台风中心正
10
以40海里/时的速度由南向北移动,距台风中心20 海里的圆形区域(包括边界)都属台风区.当轮船到A处时,测得台风中心移到位于点A正南方向B处,且AB=100海里.若这艘轮船自A处按原速度继续航行,在途中会不会遇到台风?若会,试求轮船最初遇到台风的时间;若不会,请说明理由.
变式练习:某军舰以20节的速度由西向东航行,一艘电子侦察船以30节的速度由南向北航行,它能侦察出周围50海里(包括50海里)范围内的目标。

如图,当该军舰行至A处时,电子侦察船正位于A处正南方向的B处,且AB=90海里。

如果军舰和侦察船仍按原速度沿原方向继续航行,那么航行途中侦察船能否侦察到这艘军舰?如果能,最早何时能侦察到?如果不能,请说明理由。

相关文档
最新文档