一元二次方程与动点及答案

合集下载

一元二次方程的应用——动点问题

一元二次方程的应用——动点问题
分析: 点P的运动方向是由A
点Q的运动方向是由B 运动速度都是1cm⁄s C C
运动时间未定
运动距离
点P的运动距离即 AP的长度 点Q的运动距离即 BQ的长度
例:在Rt△ABC中,∠C=90°, AC=8,BC=6.点P由A点出发沿AC方向向点C 匀速移动,点Q由B点出发沿BC方向向点C匀 速移动,它们的速度都是1cm⁄s,几秒后 △PCQ的面积为△ABC面积的一半?
设时间为x,, 则可表示出CP=2x,BQ=x,QC=25-x
等量关系:P、Q两点相距25cm
解:设x秒后P、Q两点相距25cm.
在Rt△QCP中 QC2+PC2=PQ2
(25-x)2+(2x)2=252
5x2-50x=0
x1=0 (舍) ,x2=10 答:10秒后PQ相距25cm。
答:2秒后△PCQ的面积为Rt△ABC面积的一半.
例2:在Rt△ABC中,∠C=90°,AC=30cm, BC=25cm,动点P沿CA方向运动,速度是 2cm⁄s;动点Q从B点出发,沿BC方向运动, 速度是1cm⁄s,几秒后P、Q两点相距25cm?
分析
运动 点P的运动方向是由C 方向
A问题需要注意几个问题: 1、有几个动点?
2、怎样运动?即向哪儿运动?
3、运动的速度、时间、距离分别是多少?
例1:在Rt△ABC中,∠C=90°,AC=8,BC=6. 点P由A点出发沿AC方向向点C匀速移动,点Q 由B点出发沿BC方向向点C匀速移动,它们的速 度都是1cm⁄s,几秒后△PCQ的面积为 △ABC面积的一半?
若设时间为x, 则可表示出AP=x,BQ=x 所以PC=8-x, QC=6-x
等量关系:△PCQ的面积为△ABC面积的一半

一元二次方程与动点相结合的应用题

一元二次方程与动点相结合的应用题

一元二次方程与动点相结合的应用题1. 一元二次方程的基础1.1 什么是它?首先,一元二次方程其实就是一个简单的数学公式,通常看起来像这样:( ax^2 + bx + c = 0 )。

听起来复杂,但别担心,简单几何图形就是它的代表,像一座优雅的抛物线。

你想象一下,抛物线就像你在公园滑滑梯,越滑越快,越滑越高,哈哈。

1.2 现实生活中的应用那么,这个方程有什么用呢?其实,它在我们的生活中无处不在。

比如说,建筑师在设计桥梁时,得考虑到材料的强度和形状,常常用到这种方程。

而且,当你打篮球时,投篮的轨迹也可以用它来描述。

是不是觉得这些数学知识跟你生活中的每一秒都有关系?2. 动点的神奇之旅2.1 动点是什么?接下来,让我们聊聊动点。

动点就像公园里那只自由自在的小鸟,随心所欲地在空中飞翔。

动点在数学中,通常指的是在某个规律下运动的点,位置会随着时间变化。

比如说,一个小球从高处掉下,位置就是不断变化的。

2.2 动点与一元二次方程的结合想象一下,小球从高处掉下,它的运动轨迹可以用一元二次方程来描述。

这个时候,你就能感受到数学的魅力了!当小球落地的瞬间,那一刹那就像是电影中的慢动作,让人无比期待。

你会发现,动点和一元二次方程就像是亲密无间的小伙伴,互相依赖,缺一不可。

3. 实际案例3.1 小朋友的投篮让我们来个实例。

想象一个小朋友正在公园里投篮,他抬起手,球在空中划出一个优美的弧线。

这个弧线的形状,正好可以用一元二次方程来描绘。

小朋友投篮时,势头和角度决定了球的飞行轨迹,而这一切都能用方程来算出来,真是太神奇了!3.2 从方程到答案假设小朋友投篮的方程是 ( y = x^2 + 4x ),这时候,我们可以通过解这个方程来知道,球在最高点时的高度有多高。

然后,利用这个高度,我们就可以知道这个小球是否能进篮筐。

就像在做一道美味的菜,得先调好配方,才能品尝到美味。

最后,结合一元二次方程与动点的故事,我们可以看到,数学不再是枯燥无味的,而是充满了生活的乐趣和探索的意义。

(完整版)一元二次方程动点问题讲解

(完整版)一元二次方程动点问题讲解

1)设⊿ ABC位于直线L左侧部分的面积为S,写出S与x之间的函 数关系式; 2)当x为何值时,直线L平分⊿ ABC的面积?
(1)解:∠ BAC=45°,AP=x,
∴当L位于CD的右侧时,与
BC交于点Q
L
AP=X,PB=3-X
C
Q
CD=2,PQ=?
p
由小学学习的比例计算PQ 即:CD:DB=PQ:BQ
∴450=½×(2X-50)×3X
Q
X²-25X-30=0
C
解得:X₁=-5(舍去);X₂=30
解得:综合以上情况在10S,15S,30S时,△OPQ的面积为450
例2 在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始 以1cm/s的速度沿AB边向点B移动,点Q从点B开始以 2cm/s的速度沿BC边向点C移动,如果P、Q分别从A、B 同时出发,几秒后⊿ PBQ的面积等于8cm2?
C
通过观察,有两种情况:(1)蚂蚁未爬完OA这段距离
(2)蚂蚁爬完OA这段距离后,再由O点向B爬行
例1 如图OA=OB=50cm,OC是一条射线,OC⊥AB,一
只蚂蚁由点A以2cm/s的速度向B处爬行,同时另一只蚂
蚁由O点以3cm/s的速度沿oc方向爬行,则是否存在这样
的时刻,使两只蚂蚁所在位置与O点组成的三角形的面积
·ALeabharlann RP∴S◇=S△ABC-S△BPQ-S△APQ
∴16=32-½(8-X)²-½×(X)²
整理:x²-8x+16=0
整理:x₁=x₂=4
CQ
B
∴当AP=4cm时,平行四边形PQCR的面积等于16cm2
例4:⊿ABC中,AB=3, ∠ BAC=45°,CD⊥ AB,垂足为D,CD=2,P 是AB上的一动点(不与A,B重合),且AP=x,过点P作直线L与AB垂直.

完整版)一元二次方程解决动点问题

完整版)一元二次方程解决动点问题

完整版)一元二次方程解决动点问题研究目标】1.回顾几何图形中动点的行走路程;2.理解等量关系;3.掌握列出关于动点的一元二次方程;4.灵活选用适当的方法解一元二次方程;5.合理舍掉其中一个根。

重点难点】重点:用一元二次方程解决动点问题;难点:分析动点的运动,列出一元二次方程。

导学流程】一)了解感知:一般动态问题的解法是“动中求静”,即按题意确定动点的一个基本位置,然后按照这个基本位置作出恰当的图形,再按照题意逐步探索和求解。

完成课本56页C组1题。

二)深入研究:1.在等腰直角△ABC中,AB=BC=8cm,动点P从A点出发,沿AB向B移动,通过点P引平行于BC,AC的直线与AC,BC分别交于R、Q.当AP等于多少厘米时,平行四边形PQCR的面积等于16cm²?2.在△ABC中,∠B=90°,AB=BC=5cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从B开始沿边BC向点C以2cm/s的速度移动,若一动点运动到终点,则另一个也随之停止。

1)如果P、Q分别从A、B两点同时出发,那么几秒后,△PBQ的面积等于4cm²?2)在(1)中,△PBQ的面积能否等于7cm²?说明理由。

三)迁移运用:1.在矩形ABCD中,AB=5cm,BC=7cm,点P从点A开始以1cm/s的速度沿AB边向点B移动,点Q从点B开始以2cm/s的速度沿BC边向点C移动,如果P、Q分别从A、B同时出发了t秒,直至两动点中某一点到达端点后停止(即0<t<3.5)1)经过几秒后,PQ的长度等于5?DC2)经过几秒后,△BPQ的面积等于4?3)经过几秒后,DP=DQ?XXX学生课堂导学提纲编号:SXTG-025使用时间:2014-9-21编制人:XXX一、知识点梳理本节课我们将研究三角函数的相关概念和性质,包括正弦、余弦、正切等基本概念,以及它们的定义和性质。

二、课堂讲解1.三角函数的定义三角函数是一类最基本的函数,它们的定义涉及到三角形的角度和边长。

一元二次方程应用题(动点问题)

一元二次方程应用题(动点问题)

一元二次方程的概述
一元二次方程是指含有一个未知数的二次方程,表达式形式为ax²+bx+c=0。它是数学中常见的方程类型,具有 重要的应用价值。
寻找问题的关键变量和已知条件
在解决动点问题时,我们需要仔细分析问题,确定关键变量和已知条件。这样可以帮助我们建立一元二次方程, 进而求解问题。
如何列出动点问题的一元二次方程
一元二次方程应用题(动 点问题)
在这个演示我们将介绍 问题的定义和一元二次方程的基本概念,以及如何寻找关键变量并列出方程。 通过实际案例分析,帮助您掌握解决这类问题的技巧。
动点问题的介绍与定义
动点问题是指根据物体的运动轨迹及已知条件,找出该物体的位置或状态。它常常涉及时间、距离、速度等变 量。
在列出方程时,我们通常需要根据关键变量和已知条件进行代入。通过代入求解,我们可以得到方程的解,从 而解决动点问题。
解方程并求出问题的答案
解一元二次方程通常会涉及到配方法、因式分解、求根公式等解法。通过运用这些方法,我们可以计算出问题 的答案,并得出具体的结论。
实际应用案例分析
通过实际应用案例的分析,我们将展示动点问题在现实生活中的应用场景。这些案例将帮助您更好地理解和掌 握一元二次方程在动点问题中的应用。
总结和应用技巧
在这个部分,我们将对整个演示进行总结,并提供一些应用技巧,帮助您在解决动点问题时更加高效和准确。

一元二次方程——动点问题

一元二次方程——动点问题

Day5:一元二次方程之动点问题一元二次方程解决问题1.动点问题几何图形应用题,关键是将点的运动关系表示出来,找出未知量与已知量的内在联系,根据面积或体积公式列出方程.常见题型:选择题、解答题,求最值问题.易错点:找准动点的关系.中考回顾:常考,求最值或三角形为直角三角形等等.例1如图,点O 在线段AB 上,AO=1,OB=2,OC 为射线,且∠BOC=120°,动点P 以每秒2个单位长度的速度从点O 出发,沿射线OC 作匀速直线运动.设运动时间为t 秒,当△ABP 为直角三角形时,t 的值为()A.t=1B.t=1或8﹣C.t=8D.t=1或8例2如图,已知△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s 的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点停止运动时,另一点也随之停止,其中P、Q不与A、B重合.(1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)如果P、Q分别从A、B同时出发,那么几秒后,PQ的长度等于5cm?(3)在(1)中,△PBQ的面积能否等于7cm2?请说明理由.例3如图,在平面直角坐标系中,过原点O及点A(0,2)、C(6,0)作矩形OABC,∠AOC的平分线交AB于点D.点P从点O出发,以每秒2个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒2个单位长度的速度沿x轴正方向移动.设移动时间为t秒,则当t为何值时,△PBQ为直角三角形?参考答案1.【答案】B【考点】本题考查了动点问题,结合三角形,注意画出图形,帮助理解.【解析】如图1,当∠PAB=90°时,∵∠BOC=120°,∴∠AOP=60°,∴∠APO=30°,∴OP=2OA=2,∵OP=2t,∴t=1;如图2,当∠APB=90°,过P 作PD⊥AB,∵∠OPD=120°﹣90°=30°,∴OD=12∴AD=AO﹣OD=1﹣t,在Rt△ABP 中,根据勾股定理得:AP 2+BP 2=AB 2,即(2+t)222+(1﹣t)2=32,解得:t=8﹣(负值舍去);当∠ABP=90°时,此情况不存在;综上,当t=1或t=8﹣时,△ABP 是直角三角形.2.【答案】(1)1秒(2)2秒(3)不能【考点】一元二次方程在三角形中动点问题的应用.【解析】(1)设x 秒后,△PBQ 的面积等于4cm².此时,AP=x cm,PB=(5-x)cm,BQ=2x cm,由S △PBQ =4BQ PB 21=∙得()42-521=∙x x ,整理得0452=+-x x ,解得x 1=1,x 2=4.当x=4时,2x=8>7,不合要求.所以1秒后,△PBQ 的面积等于4cm².(2)设x 秒后,PQ 的长度等于5cm.由PB 2+BQ 2=5²得(5-x)²+(2x)²=5²整理得x²-2x=0,解得x 1=0(舍去),x 2=2.经检验,x=2符合要求,所以2秒后,PQ 的长度等于5cm.(3)不能.理由:设x 秒后,△PBQ 的面积等于7cm²,由题意得()72-521=∙x x ,整理得x²-5x+7=0,03-28-25<==∆,此方程无解,所以△PBQ 的面积不可能等于7cm².3.【答案】t=2或55+=t 或5-5=t 【考点】该题考查的是一元二次方程与直角坐标系结合的动点应用题型.【解析】过点P 作PG⊥OC,垂足为G.在Rt△POG 中,∵∠POG=45°,∴∠OPG=45°,∵OP=t 2,∴OG=PG=t,∴点P(t,t),又∵Q(2t,0),B(6,2),根据勾股定理可得PB²=(6-t)²+(2-t)²,QB²=(6-2t)²+2²,PQ²=(2t-t)²+t²=2t².在P、Q 移动过程中,PQ 始终与OD 垂直,容易得知∠BPQ 不可能等于90°.①若∠PQB=90°,则有PQ²+QB²=PB²,即2t²+[(6-2t)²+2²]=(6-t)²+(2-t)²,整理得4t²-8t=0,解得t 1=0(舍去),t 2=2,∴t=2.②若∠PBQ=90°,则有PB²+QB²=PQ²,∴[(6-t)²+(2-t)²]+[(6-2t)²+2²]=2t²,整理得t²-10t+20=0,解得t=5±5.∴当t=2或55+=t 或5-5=t 时,△PQB 为直角三角形.。

(完整版)一元二次方程与动点及答案

(完整版)一元二次方程与动点及答案

1、如图,在△ABC 中,∠B =90°,BC =12cm ,AB =6cm ,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动,如果P 、Q 分别从A 、B 同时出发,几秒后△PBQ 的面积等于8cm 2A3.如图,在△ABC中,∠B=90°,AB=6,BC=8.点P从点A开始沿边AB向点B 以1cm/s的速度移动,与此同时,点Q从点B开始沿边BC向点C以2cm/s的速度移动.设P、Q分别从A、B同时出发,运动时间为t,当其中一点先到达终点时,另一点也停止运动.解答下列问题:(1)经过几秒,△PBQ的面积等于8cm2?(2)是否存在这样的时刻t,使线段PQ恰好平分△ABC的面积?若存在,求出运动时间t;若不存在,请说明理由.4.如图所示,△ABC中,∠B=90°,点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,经几秒,使△PBQ的面积等于8cm2?(2)如果P,Q分别从A,B同时出发,并且P到B后又继续在BC边上前进,Q到C后又继续在CA边上前进,经过几秒,使△PCQ的面积等于12.6cm2?5.如图,A 、B 、C 、D 为矩形的4个顶点,AB=16cm ,BC=6cm ,动点P 、Q 分别从A 、C 同时出发,点P 以3厘米每秒的速度向点B 移动,一直到达点B 为止.点Q 以2厘米每秒的速度向点D 移动,经过多长时间P 、Q 两点之间的距离是10厘米?6.如图,A 、B 、C 、D 为矩形的4个顶点,AB =16cm ,BC =6cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3cm/s 的速度向点B 移动,一直到达点B 为止;点Q 以2cm/s 的速度向点B 移动,经过多长时间P 、Q 两点之间的距离是10cm?Q PBDAC7.如图,有一边长为5cm的正方形ABCD和等腰△PQR,PQ=PR=5cm,QR=8cm,点B、C、Q、R在同一条直线l上,当C、Q两点重合时,等腰△PQR以1cm/秒的速度沿直线l按箭头所示方向开始匀速运动,t秒后正方形ABCD与等腰△PQR重合部分的面积为Scm2.解答下列问题:(1)当t=3秒时,求S的值;(2)当t=5秒时,求S的值;的函数关系式.(3)当5秒≤t≤8秒时,求S与t8.2012•重庆模拟)如图,已知正方形ABCD的边长与Rt△PQR的直角边PQ的长均为6cm,QR=12cm,AB与QR在同一条直线l上.开始时点Q与点B重合,让△PQR以1cm/s速度在直线l上运动,直至点R与点A重合为止,设运动时间为t(s),t>0.(1)点P与点D重合时,令PR与BC交于M点,求PM的长度;(2)设△PQR与正方形ABCD重叠部分的面积为Scm2,直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)在运动的过程中,令线段PR与线段AD的交点为N(若无交点则不考虑),则是否存在t的值,使△NQR为等腰三角形?若存在,求出相应的t的值;若不存在,请说明理由.9.(2012•市南区模拟)如图,已知正方形ABCD的边长与Rt△PQR的直角边PQ的长均为4cm,QR=8cm,AB与QR在同一直线l上,开始时点Q与点A重合,让△PQR以1cm/s 的速度在直线l上运动,同时M点从点Q出发以1cm/s沿QP运动,直至点Q与点B重合.时,都停止运动,设运动的时间为t(s),四边形PMBN的面积为S(cm2)(1)当t=1s时,求S的值;(2)求S与t之间的函数关系式,并写出自变量t的取值范围(不考虑端点);(3)是否存在某一时刻t,使得四边形PMBN 的面积?若存在,求出此时t的值;若不存在,说明理由;(4)是否存在某一时刻t,使得四边形PMBN为平行四边形?若存在,求出此时t的值;若不存在,说明理由.10.如图1,在长为44,宽为12的矩形PQRS中,将一张直角三角形纸片ABC和一张正方形纸片DEFG如图放置,其中边AB、DE在PQ上,边EF在QR上,边BC、DG在同一直线上,且Rt△ABC两直角边BC=6,AB=8,正方形DEFG的边长为4.从初始时刻开始,三角形纸片ABC,沿AP方向以每秒1个单位长度的速度向左平移;同时正方形纸片DEFG,沿QR方向以每秒2个单位长度的速度向上平移,当边GF落在SR上时,纸片DEFG立即沿RS方向以原速度向左平移,直至G点与S点重合时,两张纸片同时停止移动.设平移时间为x秒.(1)请填空:当x=2时,CD= 2 ,DQ= 4 ,此时CD+DQ = CQ(请填“<”、“=”、“>”);(2)如图2,当纸片DEFG沿QR方向平移时,连接CD、DQ和CQ,求平移过程中△CDQ的面积S与x的函数关系式,并写出自变量x的取值范围(这里规定线段的面积为零);(3)如图3,当纸片DEFG沿RS方向平移时,是否存在这样的时刻x,使以A、C、D为的值;若不存在,请说明理由.顶点的三角形是等腰三角形?若存在,求出对应x11.(2013•长春)如图①,在▱ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B﹣A﹣D﹣A运动,沿B﹣A运动时的速度为每秒13个单位长度,沿A﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).(2)连结AQ,在点P沿B﹣A﹣D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式.(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D﹣A运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.12.(2006•青岛)如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜边上的中点.如图②,若整个△EFG从图①的位置出发,以1cm/s的速度沿射线AB方向平移,在△EFG平移的同时,点P从△EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情.况)(1)当x为何值时,OP∥AC;(2)求y与x之间的函数关系式,并确定自变量x的取值范围;(3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由.(参考数据:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)1.解:设x秒钟后,△PBQ的面积等于8cm2,由题意可得:2x(6-x)÷2=8解得x1=2,x2=4.经检验均是原方程的解.答:2或4秒钟后,△PBQ的面积等于8cm2.2.解:(1)由题意,得BQ=2t,PB=5-t.故答案为:2t,5-t.(2)在Rt△PBQ中,由勾股定理,得4t2+(5-t)2=25,解得:t 1=0,t2=2.(3)由题意,得2t(5−t)2=4,解得:t 1=1,t2=4(不符合题意,舍去),∴当t=1时,△PBQ的面积等于4cm2.3.解:(1)设经过x秒,△PBQ的面积等于8cm2则:BP=6-x,BQ=2x,所以S△P B Q=12×(6-x)×2x=8,即x2-6x+8=0,可得:x=2或4(舍去),即经过2秒,△PBQ的面积等于8cm2.(2)设经过y秒,线段PQ恰好平分△ABC的面积,△PBQ的面积等于12cm2,S△P B Q=1l th i n gs in th ei r be i ng ar e g o o d f o rs o 2×(6-y )×2y=12,即y 2-6y+12=0,因为△=b 2-4ac=36-4×12=-12<0,所以△PBQ 的面积不会等于12cm 2,则线段PQ 不能平分△ABC 的面积.4.相似三角形的判定与性质;一元二次方程的应用.几何动点问题.(1)设x 秒时.由三角形的面积公式列出关于x 的方程,(6﹣x )•2x=8,通过解方程求得x 1=2,x 2=4;(2)过Q 作QD ⊥CB ,垂足为D ,构建相似三角形△CQD ∽△CAB ,由该相似三角形的对应边成比例得到,即QD=;然后由三角形的面积公式列出关于x 的方程(14﹣x )•=12.6,解之得x 1=7,x 2=11.由实际情况出发,来对方程的解进行取舍.解:(1)设x 秒时,点P 在AB 上,点Q 在BC 上,且使△PBQ 面积为8cm 2,由题意得(6﹣x )•2x=8,解之,得x 1=2,x 2=4,经过2秒时,点P 到距离B 点4cm 处,点Q 到距离B 点4cm 处;或经4秒,点P 到距离B 点2cm 处,点Q 到距离B 点8cm 处,△PBQ 的面积为8cm 2,综上所述,经过2秒或4秒,△PBQ 的面积为8cm 2;(2)当P 在AB 上时,经x 秒,△PCQ 的面积为:×PB ×CQ=×(6﹣x )(8﹣2x )=12.6,解得:x 1=(不合题意舍去),x 2=,经x 秒,点P 移动到BC 上,且有CP=(14﹣x )cm ,点Q 移动到CA 上,且使CQ=(2x ﹣8)cm ,过Q 作QD ⊥CB ,垂足为D ,由△CQD ∽△CAB 得,即 QD=,由题意得(14﹣x )•=12.6,解之得x 1=7,x 2=11.经7秒,点P 在BC 上距离C 点7cm 处,点Q 在CA 上距离C 点6cm 处,使△PCQ 的面积等于12.6cm 2.经11秒,点P 在BC 上距离C 点3cm 处,点Q 在CA 上距离C 点14cm 处,14>10,点Q 已超出CA 的范围,此解不存在.综上所述,经过7秒和秒时△PCQ 的面积等于12.6cm 2.hingsintheirbeingaregoodforso 5.解:设P,Q两点从出发经过t秒时,点P,Q间的距离是10cm,作PH⊥CD,垂足为H,则PH=AD=6,PQ=10,HQ=CD-AP-CQ=16-5t,∵PH2+HQ2=PQ2可得:(16-5t)2+62=102,解得t1=4.8,t2=1.6.答:P,Q两点从出发经过 1.6或4.8秒时,点P,Q间的距离是10cm.6.答案略分析:7.(1)当t=3时,CQ=3,过P作PE⊥QR于E,易求得PE的长和△QPE的面积,设PQ交CD于G,由于CG∥PE,可证得△CQG∽△EQP,根据相似三角形的面积比等于相似比的平方即可得到S的值.(2)当t=5时,Q、B重合,线段PR与CD相交,设PR与CD相交于G,可仿照(1)的方法求得△RCG的面积,从而由△RPQ、△RCG的面积差求得阴影部分的面积.(3)当5≤t≤8时,AB与PQ相交,RP与CD相交,仿照(1)的方法,可求得正方形外部的两个小三角形的面积,进而可参照(2)的方法求得阴影部分的面积表达式,由此可得到关于S、t的函数关系式,根据函数的性质即可得到S的最大值.解答:解:(1)作PE⊥QR,E为垂足.∵PQ=PR,∴QE=RE=QR=4,在Rt△PEQ中∴PE==3;(1分)当t=3时,QC=3,设PQ与DC交于点G.∵PE∥DC,∴△QCG∽△QEP.(2分)∴,∵S△QEP=×4×3=6,∴S=×6=(cm2).(3分)(2)当t=5时,CR=3.i n th e i r b e i n g a r e g o o d f o r s 设PR 与DC 交于G ,由△RCG ∽△REP ,可求出CG=,所以,S △RCG =×3×=(cm 2),(5分)S=12﹣=(cm 2).(6分)(3)当5≤t ≤8时,QB=t ﹣5,RC=8﹣t ,设PQ 交AB 于点H ,由△QBH ∽△QEP ,EQ=4,∴BQ :EQ=(t ﹣5):4,∴S △BQH :S △PEQ =(t ﹣5)2:42,又S △PEQ =6,∴S △QBH =(t ﹣5)2(7分)由△RCG ∽△REP ,同理得S △RCG =(8﹣t )2(8分)∴S=12﹣(t ﹣5)2﹣(8﹣t )2.即S=﹣(9分)当t=﹣=时,S 最大,S 的最大值==(cm 2).(10分)a r e g o o d f o r s o 考8.点:相似形综合题.分析:(1)由正方形的性质可以得出DC ∥AB ,就有∠CDR=∠ARD ,在Rt △PQR 中,由PQ=6cm ,QR=12cm 有tan ∠ARD=,就可以得出MC ,再根据勾股定理就可以求出PM 的值;(2)分情况求出当当0<t ≤6时,当6<t ≤12时,12<t ≤18时,根据三角函数和梯形的面积公式三角形的面积公式就可以表示出S 的解析式;(3)根据等腰三角形的条件分三种情况进行计算,先运用勾股定理将三角形的三边表示出来,由等腰三角形的边的平方相等建立的等量关系求出其解就可以了.解答:解:(1)∵四边形ABCD 是正方形,∴CD=BC ,CD ∥AB ,∠C=90°,∴∠CDR=∠ARD ,∵PQ=6cm ,QR=12cm ,∴tan ∠ARD=,∴tan ∠CDR==,∵CD=6,∴CM=3,在Rt △CPM 中,由勾股定理,得PM==3.(2)如图1,当0<t ≤6时,∵QB=t ,QR=12,∴BR=12﹣t ,∴BM=6﹣0.5t ,∴S=,∴S=﹣t 2+6t ,如图2,当6<t ≤12时,∵AR=12﹣t+6=18﹣t ,BR=12﹣t ,∴SA=9﹣0.5t ,MB=6﹣0.5t∴S=,=3t+45,dAl l th i n gs i n t h e i r b e i n g a r e g o o d f o 如图3,12<t ≤18时,AR=6﹣(t ﹣12)=18﹣t ,AS=9﹣0.5t ,∴S=,=t 2﹣9t+81;(3)当6<t ≤12时,由图象得:QN 2=AQ 2+AN 2=(t ﹣6)2+(9﹣0.5t )2=t 2﹣21t+117,NR 2=AN 2+AR 2=(9﹣0.5t )2+(18﹣t )2=t 2﹣45t+405RQ 2=144①如图4,当QR 2=NR 2时,t 2﹣45t+405=144,解得:t 1=18+t >12(舍去),t 2=18﹣;②如图5,当QN 2=QR 2时,t 2﹣21t+117=144,解得:t 1=﹣1.2(舍去),t 2=18(舍去),③如图6,当QN 2=RN 2时,t 2﹣21t+117=t 2﹣45t+405,解得:t=12,12<t ≤18与6<t ≤12时一致,而t=18时△NQR 不存在,∴t=12或t=18﹣.andAllthingsintheirbeingaregoodforso9.(1)当t=1时,AQ=MQ=1,AB=PQ=4,∴MP=QB=4﹣1=3.∵QR=8,∴BR=8﹣3=5.∵在Rt△PQR中,PQ=4,QR=8,∴tan∠PRQ==.∴,∴,∴BN=2.5.S四边形PMBN==(0≤t≤4);(2)由题意,得AQ=MQ=t,PM=BQ=4﹣t,BR=8﹣(4﹣t)=4+t,∴BN=2+t,∴S四边形PMBN=,=t2﹣4t+12(0≤t≤4);(3)由题意,得t2﹣4t+12=×4×8,解得:t1=8+4(舍去),t2=8﹣4,∴t的值为8﹣4;(4)∵四边形PMBN是平行四边形,∴PM=BN.∵PM=4﹣t,BN=2+t,∴4﹣t=2+t,∴t=d A l l t h i n g s i n t he i r b e i n g a r e g o o df o r s o ∴t=时,四边形PMBN 为平行四边形.10.分析:(1)当x=2时,延长ED 交BC 于H ,延长GD 交PQ 于点K ,就有EQ=DK=2x ,BK=HD=x ,BQ=4+x ,就可以求出CH=6﹣2x ,再根据勾股定理就可以求出CD 、DQ 及CQ 的值;(2)由图形观察可以得出S △CDQ =S △CBQ ﹣S △CHD ﹣S 梯形HBQD ,只要根据条件分别表示出=S △CBQ 、S △CHD 、S 梯形HBQD 的面积即可;(3)根据数学分类讨论思想,从不同的时间进行计算.如图6,当CD=AC 时,作CH ⊥GD 的延长线于点H ,解直角三角形CHD ;如图7,当AD=AC 时,作DH ⊥PQ 于点H ,解直角三角形ADH ;如图8,当AD=CD 时,作DK ⊥BC 于BC 延长线于点K ,作DH ⊥PQ 于点H ,解直角三角形DCK 和直角三角形DHA ;如图9,当CD=AC 时,作DK ⊥BC 于BC 延长线于点K ,解直角三角形DKC ;如图10,当AD=AC 时,作DH ⊥PQ 于点,解直角三角形DHA .结合各图形运动的不同位置表示出相应线段的长度,根据勾股定理建立方程求出x 的值即可.解答:解:(1)延长ED 交BC 于H ,延长GD 交PQ 于点K ,∴EQ=DK=2x ,BK=HD=x ,BQ=4+x ,∵x=2,BC=6,DE=4,∴EQ=DK=HB=4,BK=HD=2,BQ=6,∴CH=2.在Rt △CHD 、Rt △DKQ 、Rt △CBQ 中,由勾股定理得:CD=2,DQ=4,CQ=6.∴CD+DQ=6,∴CD+DQ=CQ .故答案为:2,4,=;(2)当0≤x ≤2时,如图2,∵EQ=DK=2x ,BK=HD=x ,BQ=4+x ,CH=6﹣2x ,∴S △CDQ =,=﹣x 2﹣4x+12当2<x ≤3时,如图5,作CH ⊥DG 于H ,DK ⊥BC 于K ,l th i n g s in th ei r be i n g a r e g o o df o r s o ∴EQ=BK=2x ,CK=HD=6﹣2x ,BQ=4+x ,CH=x ,∴S △CDQ =CK •KD+KB •BQ ﹣﹣﹣,=(6﹣2x )x+2x (4+x )﹣﹣﹣,=x 2+4x ﹣12;当3<x ≤4时,如图3,作DH ⊥BC 的延长线于H ,∴EQ=HB=2x ,HD=x ,BQ=4+x ,CH=2x ﹣6,∴S △CDQ =HB •QB ﹣﹣﹣,=2x (4+x )﹣﹣﹣,=8x+2x 2﹣x 2+3x ﹣4x ﹣12﹣3x ,=x 2+4x ﹣12.∴S=,(3)∵纸片DEFG 沿RS 方向平移,∴4≤x ≤24.如图6,当CD=AC 时,作CH ⊥GD 的延长线于点H ,∴GR=2x ﹣4,BQ=x+4,∴DH=12﹣6﹣4=2,CH=(x+4)﹣(2x ﹣4)=8﹣x ,∵AB=8,BC=6,∴AC==10在Rt △CHD 中,由勾股定理,得(8﹣x )2+22=100,解得:x 1=8+4,x 2=8﹣4<4(舍去);如图7,当AD=AC 时,作DH ⊥PQ 于点H ,∴GR=2x ﹣4,BQ=x+4,∴DH=12﹣4=8,AH=(x+4+8)﹣(2x ﹣4)=16﹣x ,在Rt △ADH 中,由勾股定理,得(16﹣x )2+82=100,i n g s i n t h e i r b e i n g 解得:x 1=22,x 2=10;如图8,当AD=CD 时,作DK ⊥BC 于BC 延长线于点K ,作DH ⊥PQ 于点H ,∴GR=2x ﹣4,BQ=x+4,∴DK=2x ﹣4﹣(x+4)=x ﹣8,KC=12﹣4﹣6=2,AH=x+4+8﹣(2x ﹣4)=16﹣x ,DH=12﹣4=8.∴(x ﹣8)2+4=(16﹣x )2+64,∴x=15;综上所述:纸片DEFG 沿RS 方向平移,当x 的值为:22,10,15,8+4时,以A 、C 、D 为顶点的三角形是等腰三角形.andAllthingsintheirbeingaregoodfo 11.irbeingaregoodforso 分析:(1)分情况讨论,当点P沿A﹣D运动时,当点P沿D﹣A运动时分别可以表示出AP的值;(2)分类讨论,当0<t<1时,当1<t<时,根据三角形的面积公式分别求出S与t的函数关系式;(3)分情况讨论,当0<t<1时,当1<t<时,当<t<时,利用三角形的面积相等建立方程求出其解即可;(4)分情况讨论当P在A﹣D之间或D﹣A之间时,如图⑥,根据轴对称的性质可以知道四边形QCOC′为菱形,根据其性质建立方程求出其解,当P在D﹣A之间如图⑦,根据菱形的性质建立方程求出其解即可.解答:解:(1)当点P沿A﹣D运动时,AP=8(t﹣1)=8t﹣8.当点P沿D﹣A运动时,AP=50×2﹣8(t﹣1)=108﹣8t.(2分)(2)当点P与点A重合时,BP=AB,t=1.当点P与点D重合时,AP=AD,8t﹣8=50,t=.当0<t<1时,如图①.过点Q作QE⊥AB于点E.S△ABQ==,∴QE===.∴S=﹣30t2+30t.当1<t≤时,如图②.S==,∴S=48t﹣48;(3)当点P与点R重合时,AP=BQ,8t﹣8=5t,t=.当0<t≤1时,如图③.∵S△BPM=S△BQM,∴PM=QM.∵AB∥QR,n dAl l th i n g s i n t h e i r b e i n g a r e g o o d f o r s o ∴∠PBM=∠QRM ,∠BPM=∠MQR ,在△BPM 和△RQM 中,∴△BPM ≌△RQM .∴BP=RQ ,∵RQ=AB ,∴BP=AB ∴13t=13,解得:t=1当1<t ≤时,如图④.∵BR 平分阴影部分面积,∴P 与点R 重合.∴t=.当<t ≤时,如图⑤.∵S △ABR =S △QBR ,∴S △ABR <S 四边形BQPR .∴BR 不能把四边形ABQP 分成面积相等的两部分.综上所述,当t=1或时,线段PQ 扫过的图形(阴影部分)被线段BR 分成面积相等的两部分.(4)如图⑥,当P 在A ﹣D 之间或D ﹣A 之间时,C ′D ′在BC 上方且C ′D ′∥BC 时,∴∠C ′OQ=∠OQC .∵△C ′OQ ≌△COQ ,∴∠C ′OQ=∠COQ ,∴∠CQO=∠COQ ,∴QC=OC ,∴50﹣5t=50﹣8(t ﹣1)+13,或50﹣5t=8(t ﹣1)﹣50+13,解得:t=7或t=.当P 在A ﹣D 之间或D ﹣A 之间,C ′D ′在BC 下方且C ′D ′∥BC 时,如图⑦.同理由菱形的性质可以得出:OD=PD ,∴50﹣5t+13=8(t ﹣1)﹣50,解得:t=.n dAl l th i n gs in th ei r be i ng ar eg oo df or s o∴当t=7,t=,t=时,点C 、D 关于直线PQ 的对称点分别为C ′、D ′,且C ′D ′∥BC .beingaregoodforso 分析:(1)由于O是EF中点,因此当P为FG中点时,OP∥EG∥AC,据此可求出x的值.(2)由于四边形AHPO形状不规则,可根据三角形AFH和三角形OPF的面积差来得出四边形AHPO的面积.三角形AHF中,AH的长可用AF的长和∠FAH的余弦值求出,同理可求出FH的表达式(也可用相似三角形来得出AH、FH的长).三角形OFP中,可过O作OD⊥FP于D,PF的长易知,而OD的长,可根据OF的长和∠FOD的余弦值得出.由此可求得y、x的函数关系式.(3)先求出三角形ABC和四边形OAHP的面积,然后将其代入(2)的函数式中即可得出x的值.解答:解:(1)∵Rt△EFG∽Rt△ABC∴,∴FG==3cm∵当P为FG的中点时,OP∥EG,EG∥AC∴OP∥AC∴x==×3=1.5(s)∴当x为1.5s时,OP∥AC.(2)在Rt△EFG中,由勾股定理得EF=5cm∵EG∥AH∴△EFG∽△AFH∴∴AH=(x+5),FH=(x+5)过点O作OD⊥FP,垂足为D∵点O为EF中点∴OD=EG=2cm∵FP=3﹣x∴S 四边形OAHP =S △AFH ﹣S △OFP =•AH •FH ﹣•OD •FP=•(x+5)•(x+5)﹣×2×(3﹣x )=x 2+x+3(0<x <3).(3)假设存在某一时刻x ,使得四边形OAHP 面积与△ABC 面积的比为13:24则S 四边形OAHP =×S △ABC ∴x 2+x+3=××6×8∴6x 2+85x ﹣250=0解得x 1=,x 2=﹣(舍去)∵0<x <3∴当x=(s )时,四边形OAHP 面积与△ABC 面积的比为13:24.。

一元二次方程应用题动点问题

一元二次方程应用题动点问题

一元二次方程应用题动点问题1. 引言嘿,朋友们!今天咱们聊聊一元二次方程。

听到这个名词,有人可能会皱起眉头,觉得这是个高深莫测的数学问题,其实它就像个大闸蟹,外表坚硬,里面却是满满的美味。

动点问题听起来也有点复杂,但实际上,它们和我们生活中的许多事都息息相关。

比如说,咱们的运动、追逐梦想,甚至是追公交车的那一瞬间,都是动态变化的过程,不是吗?今天,就让我们轻松地探索一下这些动点问题,用一元二次方程来解锁它们的秘密。

2. 一元二次方程的基本概念2.1 方程的定义说到一元二次方程,咱们得先搞清楚这是什么玩意儿。

一元二次方程的标准形式是这样的:( ax^2 + bx + c = 0 )。

看上去是不是很高大上?其实,a、b、c 就是一些常数,而 x 就是我们要找的未知数。

简单来说,它就像是在说:“嘿,x 你在哪儿呢?”每个数都有自己的故事,就像我们每个人都有自己的烦恼和喜好。

2.2 动点的概念那么,动点又是什么呢?想象一下你在公园里散步,突然发现一只小狗在草地上追蝴蝶。

这个小狗就是动点,它的位置会随着时间不断变化。

用数学的语言来说,动点就是指在某个时间段内,位置随着变化而不断更新的点。

就像我,今天心情好,走路像个小精灵,明天心情差,走路就像个拖着沉重行李的人,这就是动态变化的魅力。

3. 应用实例3.1 追逐游戏让我们通过一个有趣的例子来说明吧。

想象一下,有两个小朋友在操场上玩追逐游戏。

小明的速度是每秒3米,而小红则快了点,能达到每秒5米。

小明从某个点出发,而小红则在距离小明10米的地方开始追。

我们要想知道小红什么时候能追上小明,就得用一元二次方程来帮忙。

假设小明的起始位置是0米,那么他在t秒后的位置就是 ( 3t ) 米;小红的起始位置是10米,她在t秒后的位置是 ( 10 + 5t ) 米。

要想知道小红什么时候追上小明,就得解方程:3t = 10 + 5t经过简单的变形,我们可以得到:2t = 10从而得出 ( t = 5 ) 秒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、如图,在△ABC 中,∠B =90°,BC =12cm ,AB =6cm ,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动,如果P 、Q 分别从A 、B 同时出发,几秒后△PBQ 的面积等于8cm 2?2.△ABC 中,∠B=90°,AB=5cm ,BC=6cm ,点P 从点A 开始沿边AB 向终点B 以1cm/s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2cm/s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:BQ= ,PB= (用含t 的代数式表示);(2)当t 为何值时,PQ 的长度等于5cm ?(3)是否存在t 的值,使得△PBQ 的面积等于4cm 2?若存在,请求出此时t 的值;若不存在,请说明理由.P C A B Q ↑3.如图,在△ABC中,∠B=90°,AB=6,BC=8.点P从点A开始沿边AB向点B 以1cm/s的速度移动,与此同时,点Q从点B开始沿边BC向点C以2cm/s的速度移动.设P、Q分别从A、B同时出发,运动时间为t,当其中一点先到达终点时,另一点也停止运动.解答下列问题:(1)经过几秒,△PBQ的面积等于8cm2?(2)是否存在这样的时刻t,使线段PQ恰好平分△ABC的面积?若存在,求出运动时间t;若不存在,请说明理由.4.如图所示,△ABC中,∠B=90°,点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,经几秒,使△PBQ的面积等于8cm2?(2)如果P,Q分别从A,B同时出发,并且P到B后又继续在BC边上前进,Q到C后又继续在CA边上前进,经过几秒,使△PCQ的面积等于12.6cm2?5.如图,A 、B 、C 、D 为矩形的4个顶点,AB=16cm ,BC=6cm ,动点P 、Q 分别从A 、C 同时出发,点P 以3厘米每秒的速度向点B 移动,一直到达点B 为止.点Q 以2厘米每秒的速度向点D 移动,经过多长时间P 、Q 两点之间的距离是10厘米?6.如图,A 、B 、C 、D 为矩形的4个顶点,AB =16cm ,BC =6cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3cm/s 的速度向点B 移动,一直到达点B 为止;点Q 以2cm/s 的速度向点B 移动,经过多长时间P 、Q 两点之间的距离是10cm?Q P B DAC7.如图,有一边长为5cm的正方形ABCD和等腰△PQR,PQ=PR=5cm,QR=8cm,点B、C、Q、R在同一条直线l上,当C、Q两点重合时,等腰△PQR以1cm/秒的速度沿直线l按箭头所示方向开始匀速运动,t秒后正方形ABCD与等腰△PQR重合部分的面积为Scm2.解答下列问题:(1)当t=3秒时,求S的值;(2)当t=5秒时,求S的值;(3)当5秒≤t≤8秒时,求S与t的函数关系式.QR=12cm,AB与QR在同一条直线l上.开始时点Q与点B重合,让△PQR以1cm/s速度在直线l上运动,直至点R与点A重合为止,设运动时间为t(s),t>0.(1)点P与点D重合时,令PR与BC交于M点,求PM的长度;(2)设△PQR与正方形ABCD重叠部分的面积为Scm2,直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)在运动的过程中,令线段PR与线段AD的交点为N(若无交点则不考虑),则是否存在t的值,使△NQR为等腰三角形?若存在,求出相应的t的值;若不存在,请说明理由.4cm,QR=8cm,AB与QR在同一直线l上,开始时点Q与点A重合,让△PQR以1cm/s的速度在直线l上运动,同时M点从点Q出发以1cm/s沿QP运动,直至点Q与点B重合时,都停止运动,设运动的时间为t(s),四边形PMBN的面积为S(cm2).(1)当t=1s时,求S的值;(2)求S与t之间的函数关系式,并写出自变量t的取值范围(不考虑端点);(3)是否存在某一时刻t,使得四边形PMBN的面积?若存在,求出此时t的值;若不存在,说明理由;(4)是否存在某一时刻t,使得四边形PMBN为平行四边形?若存在,求出此时t的值;若不存在,说明理由.10.如图1,在长为44,宽为12的矩形PQRS中,将一张直角三角形纸片ABC和一张正方形纸片DEFG如图放置,其中边AB、DE在PQ上,边EF在QR上,边BC、DG在同一直线上,且Rt△ABC两直角边BC=6,AB=8,正方形DEFG的边长为4.从初始时刻开始,三角形纸片ABC,沿AP方向以每秒1个单位长度的速度向左平移;同时正方形纸片DEFG,沿QR方向以每秒2个单位长度的速度向上平移,当边GF落在SR上时,纸片DEFG立即沿RS方向以原速度向左平移,直至G点与S点重合时,两张纸片同时停止移动.设平移时间为x秒.(1)请填空:当x=2时,CD=2,DQ=4,此时CD+DQ=CQ(请填“<”、“=”、“>”);(2)如图2,当纸片DEFG沿QR方向平移时,连接CD、DQ和CQ,求平移过程中△CDQ 的面积S与x的函数关系式,并写出自变量x的取值范围(这里规定线段的面积为零);(3)如图3,当纸片DEFG沿RS方向平移时,是否存在这样的时刻x,使以A、C、D为顶点的三角形是等腰三角形?若存在,求出对应x的值;若不存在,请说明理由.11.(2013•长春)如图①,在▱ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B 出发,沿B﹣A﹣D﹣A运动,沿B﹣A运动时的速度为每秒13个单位长度,沿A﹣D﹣A 运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).(2)连结AQ,在点P沿B﹣A﹣D运动过程中,当点P与点B、点A不重合时,记△APQ 的面积为S.求S与t之间的函数关系式.(3)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D﹣A运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.12.(2006•青岛)如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A 与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜边上的中点.如图②,若整个△EFG从图①的位置出发,以1cm/s的速度沿射线AB方向平移,在△EFG平移的同时,点P从△EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况).(1)当x为何值时,OP∥AC;(2)求y与x之间的函数关系式,并确定自变量x的取值范围;(3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由.(参考数据:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)1.解:设x秒钟后,△PBQ的面积等于8cm2,由题意可得:2x(6-x)÷2=8解得x1=2,x2=4.经检验均是原方程的解.答:2或4秒钟后,△PBQ的面积等于8cm2.2.解:(1)由题意,得BQ=2t,PB=5-t.故答案为:2t,5-t.(2)在Rt△PBQ中,由勾股定理,得4t2+(5-t)2=25,解得:t1=0,t2=2.(3)由题意,得2t(5−t)2=4,解得:t1=1,t2=4(不符合题意,舍去),∴当t=1时,△PBQ的面积等于4cm2.3.解:(1)设经过x秒,△PBQ的面积等于8cm2则:BP=6-x,BQ=2x,所以S△P B Q=12×(6-x)×2x=8,即x2-6x+8=0,可得:x=2或4(舍去),即经过2秒,△PBQ的面积等于8cm2.(2)设经过y秒,线段PQ恰好平分△ABC的面积,△PBQ的面积等于12cm2,S△P B Q= 12×(6-y)×2y=12,即y2-6y+12=0,因为△=b2-4ac=36-4×12=-12<0,所以△PBQ的面积不会等于12cm2,则线段PQ不能平分△ABC的面积.的方程,(应边成比例得到;的方程(=12.6由题意得的面积为:(不合题意舍去)得,由题意得•秒和解得t1=4.8,t2=1.6.答:P,Q两点从出发经过1.6或4.8秒时,点P,Q间的距离是10cm.=3∴×6=,××=(﹣(==﹣((时,= ARD=,就可以得出ARD=,CDR==,=3,t,,ttt=18+t.∴MP=QB=4﹣1=3.∵QR=8,∴BR=8﹣3=5.∵在Rt△PQR中,PQ=4,QR=8,∴tan∠PRQ==.∴,∴,∴BN=2.5.S四边形PMBN==(0≤t≤4);(2)由题意,得AQ=MQ=t,PM=BQ=4﹣t,BR=8﹣(4﹣t)=4+t,∴BN=2+t,∴S四边形PMBN=,=t2﹣4t+12(0≤t≤4);(3)由题意,得t2﹣4t+12=×4×8,解得:t1=8+4(舍去),t2=8﹣4,∴t的值为8﹣4;(4)∵四边形PMBN是平行四边形,∴PM=BN.∵PM=4﹣t,BN=2+t,∴4﹣t=2+t,∴t=∴t=时,四边形PMBN为平行四边形.,,.,,=﹣﹣)﹣﹣,﹣﹣,﹣﹣,,,4;158+4时,根据三角形的面积公式分别求出<时,当<<t=,=.时,如图②=t=.时,如图④t=<≤时,线段.t=.t=,时,∴=∴(FH=EG=2cm•••(×x∴+x+3=×=(舍去)(。

相关文档
最新文档