(完整版)一元二次方程动点问题讲解
一元二次方程应用题动点问题

拓展与创新
例3如图,Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,现有两个
动点P、Q分别从点A和点B同时出发,其中点P以2cm/s的速度,沿 AB向终点B移动;点Q以1cm/s的速度沿BC向终点C移动,其中一点 到终点,另一点也随之停止.连接PQ.设动点运动时间为x秒 (1)用含x的代数式表示BQ、PB的长度;
现在您正浏览在第12页,共14页。
课外延伸
4.有一边为5cm的正方形ABCD和等腰三角形PQR,PQ=PR
=5cm,QR=8cm,点B、C、Q、R在同一直线l上,当C、Q
两点重合时,等腰三角形PQR以1cm/s的速度沿直线l按箭头方
向匀速运动,
(1)t秒后正方形ABCD与等腰三角形PQR重合部分的面积为5
新知探究
Rt△ABC中,AB=BC=12cm,动点P从A点出发,以2cm/s的速 度沿AB向B移动,通过点P作PR//BC,PQ//AC,求P出发几 秒时,四边形PQCR的面积等于20cm2?
∵0<x<6
2X
现在您正浏览在第5页,共14页。
2X
12-2X
例2 如图,在△ABC中∠B=90°,AB=6cm,
BC=3cm,点P以1的速度从点B开始沿
边BC向点C移动.如果点P、Q同时出发,几秒后
PQ之间的的距离等于 cm? 4 2
C
(2t)2(6t)2(42)2
↑ Q
t2 t2 5
A P→
现在您正浏览在第6页,共14页。
B t=2不符合题意,舍去
(2)当x为何值时,△PBQ为等腰三角形;
(3)是否存在x的值,使得四边形APQC的面积等于20cm2?若存在
,请求出此时x的值;若不存在,请说明理由.
九年级一二次方程动点问题

九年级一二次方程动点问题
九年级的二元一次方程动点问题通常涉及到两个变量(如x和y)和一个常数(如k),问题通常会给出一个几何图形(如直线、线段、三角形等),然后在图形中有一个或两个动点,要求根据给定的条件列出一个或两个二元一次方程。
例如,题目可能会给出一个直线段AB,A点的坐标为(x1, y1),B点的坐标为(x2, y2),线段AB的长度为k,现在要求动点C沿着直线段从A移动到B,求动点C的坐标。
解决这类问题的方法是首先根据已知条件列出方程,然后通过解方程得到动点C 的坐标。
具体步骤如下:
1. 根据已知条件列出方程。
2. 解方程得到动点C的坐标。
3. 检查解是否合理,如果解不满足题意,需要重新列方程并解。
例如,假设线段AB的长度为3,A点的坐标为(1, 2),B点的坐标为(4, 5),现在要求动点C沿着直线段从A移动到B,求动点C的坐标。
根据已知条件,我们可以列出方程:
(x - 1)(4 - x) = 3
解这个方程,我们可以得到动点C的坐标为(2, 3)或(3, 4)。
由于动点C必须在线段AB上,所以动点C的坐标为(2, 3)。
列一元二次方程解应用题的四种类型 利润、增长率、面积、动点问题

列一元二次方程解应用题的四种类型(利润、增长率、面积、动点问题)1、商品销售问题售价—进价=利润单价×销售量=销售额一件商品的利润×销售量=总利润某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.如果商场每天要盈利1200元,每件衬衫应降价多少元?分析:设每件衬衫应该降价x元,则每件衬衫的盈利元;商场每天可以多销售件,则商场降价后每天售出的数量为件。
根据:利润=单件的利润╳数量,我们可以列出方程:解这个方程得:答:;例1. 某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3圆;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?练习:1、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?2、某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价3、某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?4、某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R(元),售价每只为P(元),且RP与x的关系式分别为R=500+30X,P=170—2X。
一元二次方程的应用3 动点问题

练习
1、某农场要建一个长方形的养鸡场, 鸡场的一边靠墙,墙长25m,另三边用 总长40m的木栏围成。 (1)试通过计算说明鸡场的面积能达 到180m2; (2)鸡场的面积能达到250m2吗?为什 么?
2、将一块长比宽多3cm的长方形铁皮 四角各剪去一个边长为4cm的小正方形, • 做成一个无盖的盒子.已知盒子的体 积是280cm3,求原铁皮的边长.
的速度移动,与此同时,点Q从点B 开始沿边BC向点C以2cm/s的速度移 动。如果P、Q分别 从A、B同时出发, 经过几秒,三角形 PBQ的面积等于8cm2? (AB=6cm,BC=8cm)
s
练习: 1、如图,在矩形ABCD中, AB=6cm,BC=3cm。点P沿边AB从点 A开始向点B以2cm/s的速度移动,点Q 沿边DA从点D开始向点A以1cm/s的速 度移动。如果P、Q同时出发,用t(s) 表示移动的时间(0≤t≤3)。那么,当t 为何值时, △QAP的面积 等于2cm2?
2、用长为100 cm的金属丝制作一 个矩形框子。框子各边多长时,框 子的面积是600 cm2?能制成面积 是800 cm2的矩形框子吗?
3、据新华网报道,2000年我国共有 荒漠化、沙化土地216.5万平方千米, 2002年初增长到267.4万平方千米。 从2000年初到2002年初的两年间, 我国荒漠化、沙化土地面积的年平 均增长率是多少?
一元二次方程的应用3
动点问题
例1、矩形ABCD中,点P从点A沿AB 向B点以每秒2cm的速度移动,点Q从 点B开始沿BC向C点以每秒1cm的速度 移动,AB=6cm,BC=4cm, 若P、Q两点分别从A、B 同时出发,问几秒钟后P、 Q两点之间的距离为 cm2
例2、 如图,在
ABC中, B 90, 点p从点A开始沿边AB向点B以1cm
行程(或动点)问题及平均变化率问题

探究归纳
填空: 1. 前年生产1吨甲种药品的成本是5000元,随着生产 技术的进步,去年生产1吨甲种药品的成本是4650 元, 则下降率是 7% .如果保持这个下降率,则现在生 产1吨甲种药品的成本是 4324.5 元.
下降率= 下降前的量-下降后的量 下降前的量
2. 前年生产1吨甲种药品的成本是5000元,随着生产 技术的进步,设下降率是x,则去年生产1吨甲种药品的 成本是 5000(1-x) 元,如果保持这个下降率,则现在 生产1吨甲种药品的成本是 5000(1-x)2 元.
的投资总额为8万元,若设该校今明两年在实验器材投
资上的平均增长率是x,则可列方程
为 2(1+x)+2(1+x)2=8
.
3.青山村种的水稻去年平均每公顷产7200千克, 今年平均每公顷产8712千克,求水稻每公顷产量 的年平均增长率.
解:设水稻每公顷产量的平均增长率为x, 根据题意,得 7200(1+x)2=8712 系数化为1得, (1+x)2=1.21 直接开平方得, 1+x=1.1, 1+x=-1.1 则 x1=0.1, x2=-1.1, 答:水稻每公顷产量的年平均增长率为10%.
(12-x)2+(x+5)2=132
5m x
解: 设梯子底端滑动x m, 那么滑动后梯子底端距墙(x+5)m;
根据题意,可得方程:
(12-x)2+(x+5)2=132
解得: x1=0, x2=7. ∵x>0, ∴x=7.
答:梯子顶端下滑7米时,梯子底端滑动的 距离和它相等.
归纳总结
(1)分析题意,找出等量关系,用字母 表示问题里的未知数.
问题2 从上面的绝对量的大小能否说明相对量的 大小呢?也就说能否说明乙种药品成本的年平均下降率 大呢?
一元二次方程的应用动点问题(共8张PPT)

(3)当点P、Q出发几秒后,
PQ的长度为 4 2 cm?
有关“动点”的运动问题”
1)关键—— 以静代动把动的点进行转换,
2)方法—— 时间变路程
变为线段的长度,
2、在直角三角形ABC中,AB=BC=12cm,点D从点A开始以2cm/s的速度沿AB边向点B移动,过点D做DE平行于BC,DF平行于AC,点E.
E
A
D
B
一个长为10m的梯子斜靠在墙上, 梯子的顶端距地面的垂直距离为8m, 如果梯子的顶端下滑1m,梯子的底端 滑动xm,可列方程为:__________
:如图,△ABC是边长3cm的等边三角形, 动点P、Q同时从A、B两点出发,分别沿AB、 BC方向匀速移动,点P的速度为1cm/s,点Q的 速度为2cm/s,当点Q到达点C时,P、Q两点 停顿运动,设点P的运动时间为t〔s〕,解答 以下问题: 〔1〕当t为何值时,△PBQ是直角三角形? (2)△PBQ能否为等边三角形?假设能,请求出t 的值,假设不能,说明理由.
点D从点A开始以2cm/s的速度沿AB边 向点B移动,过点D做DE平行于BC,DF平 一元二次方程的应用动点问题
2、在直角三角形ABC中,AB=BC=12cm,点D从点A开始以2cm/s的速度沿AB边向点B移动,过点D做DE平行于BC,DF平行于AC,点E. 点 P 沿 AC 边从点 A 向终点 C 以 1 cm/s的速度移动; 有关“动点”的运动问题”
一元二次方程的应用动点问题
3)常找的数量关系——面积,勾股定理等; (3)当点P、Q出发几秒后,
F分别在AC,BC上,问:点D出发几秒后四边形DFCE的面积为20cm2? 点 P 沿 AC 边从点 A 向终点 C 以 1 cm/s的速度移动;
一元二次方程——动点问题

Day5:一元二次方程之动点问题一元二次方程解决问题1.动点问题几何图形应用题,关键是将点的运动关系表示出来,找出未知量与已知量的内在联系,根据面积或体积公式列出方程.常见题型:选择题、解答题,求最值问题.易错点:找准动点的关系.中考回顾:常考,求最值或三角形为直角三角形等等.例1如图,点O 在线段AB 上,AO=1,OB=2,OC 为射线,且∠BOC=120°,动点P 以每秒2个单位长度的速度从点O 出发,沿射线OC 作匀速直线运动.设运动时间为t 秒,当△ABP 为直角三角形时,t 的值为()A.t=1B.t=1或8﹣C.t=8D.t=1或8例2如图,已知△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s 的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点停止运动时,另一点也随之停止,其中P、Q不与A、B重合.(1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)如果P、Q分别从A、B同时出发,那么几秒后,PQ的长度等于5cm?(3)在(1)中,△PBQ的面积能否等于7cm2?请说明理由.例3如图,在平面直角坐标系中,过原点O及点A(0,2)、C(6,0)作矩形OABC,∠AOC的平分线交AB于点D.点P从点O出发,以每秒2个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒2个单位长度的速度沿x轴正方向移动.设移动时间为t秒,则当t为何值时,△PBQ为直角三角形?参考答案1.【答案】B【考点】本题考查了动点问题,结合三角形,注意画出图形,帮助理解.【解析】如图1,当∠PAB=90°时,∵∠BOC=120°,∴∠AOP=60°,∴∠APO=30°,∴OP=2OA=2,∵OP=2t,∴t=1;如图2,当∠APB=90°,过P 作PD⊥AB,∵∠OPD=120°﹣90°=30°,∴OD=12∴AD=AO﹣OD=1﹣t,在Rt△ABP 中,根据勾股定理得:AP 2+BP 2=AB 2,即(2+t)222+(1﹣t)2=32,解得:t=8﹣(负值舍去);当∠ABP=90°时,此情况不存在;综上,当t=1或t=8﹣时,△ABP 是直角三角形.2.【答案】(1)1秒(2)2秒(3)不能【考点】一元二次方程在三角形中动点问题的应用.【解析】(1)设x 秒后,△PBQ 的面积等于4cm².此时,AP=x cm,PB=(5-x)cm,BQ=2x cm,由S △PBQ =4BQ PB 21=∙得()42-521=∙x x ,整理得0452=+-x x ,解得x 1=1,x 2=4.当x=4时,2x=8>7,不合要求.所以1秒后,△PBQ 的面积等于4cm².(2)设x 秒后,PQ 的长度等于5cm.由PB 2+BQ 2=5²得(5-x)²+(2x)²=5²整理得x²-2x=0,解得x 1=0(舍去),x 2=2.经检验,x=2符合要求,所以2秒后,PQ 的长度等于5cm.(3)不能.理由:设x 秒后,△PBQ 的面积等于7cm²,由题意得()72-521=∙x x ,整理得x²-5x+7=0,03-28-25<==∆,此方程无解,所以△PBQ 的面积不可能等于7cm².3.【答案】t=2或55+=t 或5-5=t 【考点】该题考查的是一元二次方程与直角坐标系结合的动点应用题型.【解析】过点P 作PG⊥OC,垂足为G.在Rt△POG 中,∵∠POG=45°,∴∠OPG=45°,∵OP=t 2,∴OG=PG=t,∴点P(t,t),又∵Q(2t,0),B(6,2),根据勾股定理可得PB²=(6-t)²+(2-t)²,QB²=(6-2t)²+2²,PQ²=(2t-t)²+t²=2t².在P、Q 移动过程中,PQ 始终与OD 垂直,容易得知∠BPQ 不可能等于90°.①若∠PQB=90°,则有PQ²+QB²=PB²,即2t²+[(6-2t)²+2²]=(6-t)²+(2-t)²,整理得4t²-8t=0,解得t 1=0(舍去),t 2=2,∴t=2.②若∠PBQ=90°,则有PB²+QB²=PQ²,∴[(6-t)²+(2-t)²]+[(6-2t)²+2²]=2t²,整理得t²-10t+20=0,解得t=5±5.∴当t=2或55+=t 或5-5=t 时,△PQB 为直角三角形.。
北师大版九年级上册第二单元一元二次方程中的最值问题及动点问题学生版

AC B p Q【例3】如图,Rt △ABC 中,∠B=90°,AC=10cm ,BC=6cm ,现有两个动点P 、Q 分别从点A 和点B 同时出发,其中点P 以2cm/s 的速度,沿AB 向终点B 移动;点Q 以1cm/s 的速度沿BC 向终点C 移动,其中一点到终点,另一点也随之停止.连接PQ .设动点运动时间为x 秒.(1)用含x 的代数式表示BQ 、PB 的长度;(2)当x 为何值时,△PBQ 为等腰三角形;(3)是否存在x 的值,使得四边形APQC 的面积等于20cm 2?若存在,请求出此时x 的值;若不存在,请说明理由.练习:如图,在长方形ABCD 中,AB=5cm ,BC=7cm ,点P 从点A 开始沿线段AB 向点B 以1cm/s 的速度移动,点Q 从点B 开始沿线段BC 向点C 以2cm/s 的速度移动,点P 、Q 分别从A ,B 两点同时出发了t 秒钟,直至两动点中某一点到达端点后停止(即0<t <3.5)(1)经过几秒钟后,PQ 的长度等于5cm .(2)经过几秒钟后,△BPQ 的面积等于4cm .(3)经过几秒钟后,△DPQ 是等腰三角形?【例4】已知:如图,△ABC 是边长为3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动,它们的速度都是1cm /s ,当点P 到达点B 时,P 、Q 两点停止运动,设点P 的运动时间t (s ),解答下列各问题:(1)求ABC ∆的面积(2)当t 为何值是,△PBQ 是直角三角形?(3)是否存在某一时刻t ,使PBQ ∆的面积是ABC ∆面积的九分之二?如果存在,求出t 的值;不存在请说明理由。
练习:如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动.设动点运动时间为t秒.(1)求AD的长;(2)当△PDC的面积为15平方厘米时,求t的值;(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点PS△ABC?若存在,请求出t的值;运动到终点D时,点M也停止运动.是否存在t,使得S△PMD=112若不存在,请说明理由.【例5】如图,已知A,B两点是直线AB与x轴的正半轴,y轴的正半轴的交点,且OA,OB的长分别是x2-14x+48=0的两个根(OA>OB),射线BC平分∠ABO交x轴于C点,若有一动点P以每秒1个单位的速度从B点开始沿射线BC移动,运动时间为t秒(1)设△APB和△OPB的面积分别为S1,S2,求S1:S2;(2)求直线BC的解析式;(3)在点P的运动过程中,△OPB可能是等腰三角形吗?若可能,求出时间t;若不可能,请说明理由.巩固检测1、如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN长是2、在Rt△ABC中,∠C=90°,D为BC上一点,∠DAC=30°,BD=2,AB=23,则AC的长是3、用16cm长的铁丝弯成一个矩形,用长18cm长的铁丝弯成一个腰长为5cm的等腰三角形,如果矩形的面积与等腰三角形的面积相等,则矩形的边长为4、如图,在边长为12cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟1cm的速度移动,点Q从点B开始沿BC边向点C以每秒钟2cm的速度移动.若P、Q分别从A、B同时出发,其中任意一点到达目的地后,两点同时停止运动,求:(1)经过6秒后,BP= cm,BQ= cm;(2)经过几秒后,△BPQ是直角三角形?(3)经过几秒△BPQ的面积等于103cm2?5、练习:如图1,在△ABC中,∠B=90°,AB=BC=2,点P从A出发沿线段AB运动,过点P作PF∥BC,交线段AC于点F.(1)点P在运动的过程中,△APF的形状(填“改变”或“不变”).如果改变,请指出所有可能出现的形状;如果不变,请指出它是什么三角形.(2)如图2以顶点B为坐标原点,线段AB所在直线为x轴,建立平面直角坐标系,点P从A出发的同时,点Q从C出发沿BC的延长线运动,它们的运动速度相同,连线PQ与边AC交于点D.试解决以下两个问题:①当AP为何值时,S△PCQ=14S△ABC;②作PE⊥AC于点E,当点P、Q运动时,线段DE的长度是否改变?证明你的结论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1)设⊿ ABC位于直线L左侧部分的面积为S,写出S与x之间的函 数关系式; 2)当x为何值时,直线L平分⊿ ABC的面积?
(1)解:∠ BAC=45°,AP=x,
∴当L位于CD的右侧时,与
BC交于点Q
L
AP=X,PB=3-X
C
Q
CD=2,PQ=?
p
由小学学习的比例计算PQ 即:CD:DB=PQ:BQ
∴450=½×(2X-50)×3X
Q
X²-25X-30=0
C
解得:X₁=-5(舍去);X₂=30
解得:综合以上情况在10S,15S,30S时,△OPQ的面积为450
例2 在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始 以1cm/s的速度沿AB边向点B移动,点Q从点B开始以 2cm/s的速度沿BC边向点C移动,如果P、Q分别从A、B 同时出发,几秒后⊿ PBQ的面积等于8cm2?
C
通过观察,有两种情况:(1)蚂蚁未爬完OA这段距离
(2)蚂蚁爬完OA这段距离后,再由O点向B爬行
例1 如图OA=OB=50cm,OC是一条射线,OC⊥AB,一
只蚂蚁由点A以2cm/s的速度向B处爬行,同时另一只蚂
蚁由O点以3cm/s的速度沿oc方向爬行,则是否存在这样
的时刻,使两只蚂蚁所在位置与O点组成的三角形的面积
·ALeabharlann RP∴S◇=S△ABC-S△BPQ-S△APQ
∴16=32-½(8-X)²-½×(X)²
整理:x²-8x+16=0
整理:x₁=x₂=4
CQ
B
∴当AP=4cm时,平行四边形PQCR的面积等于16cm2
例4:⊿ABC中,AB=3, ∠ BAC=45°,CD⊥ AB,垂足为D,CD=2,P 是AB上的一动点(不与A,B重合),且AP=x,过点P作直线L与AB垂直.
1)设⊿ ABC位于直线L左侧部分的面积为S,写出S与x之间的函 数关系式; 2)当x为何值时,直线L平分⊿ ABC的面积?
(1)解:∠ BAC=45°,AP=x,
C
当L位于CD的左侧时,与AC L
Q
交于点Q,则PQ=X
p
A·
∴S△APQ=½×x×x=½x²
DB
(0<x≤2)
例4:⊿ABC中,AB=3, ∠ BAC=45°,CD⊥ AB,垂足为D,CD=2,P 是AB上的一动点(不与A,B重合),且AP=x,过点P作直线L与AB垂直.
为(415)0蚂cm蚁²?未爬完OA这段距离 A ·P
·0
B
解:设离开A点x秒后,
op=50-2x oq=3x
∴S△OPQ=½×(50-2X)×3X
Q
∴450=½×(50-2X)×3X
∴X²-25X+150=0
C
解得:X₁=10;X₂=15
例1 如图OA=OB=50cm,OC是一条射线,OC⊥AB,一
BC上; C.可以在线段AB上,也可以在线段BC上;
ii)求货轮从出发到两船相遇共航行
·客A轮
了多少海里?(结果保留根号)
· D 货轮
C
B
ii)求货轮从出发到两船相遇共航行了多少海里?(结果保留 根号)
解:设货轮从出发到两船相遇共航行了x海里,过D作
DF⊥ CB,连接DE,则
点出发,沿AB向B移动,通过点P引平行于BC,AC的
直线与AC,BC分别交于R、Q.当AP等于多少厘米
时,平行四边形PQCR的面积等于16cm2?
解:设AP=X,PB=8-X ∴S◇=底×高
以题意得方程:CQ×PB=16
·A
R
P
即得方程:x×(8-x)=16
整理:x²-8x+16=0
整理:x₁=x₂=4
1)设⊿ ABC位于直线L左侧部分的面积为S,写出S与x之间的函 数关系式; 2)当x为何值时,直线L平分⊿ ABC的面积?
(2)解:∠
BAC=45°,AD=2,
L
∴S△ABC=3,S△ADC=2
p
∴当1<x<2时可能平分
1 32 1 1 x2
A·
2
22
x 3 ∴负值不符合题意,应舍去
x 3 时可能平分
只蚂蚁由点A以2cm/s的速度向B处爬行,同时另一只蚂
蚁由O点以3cm/s的速度沿oc方向爬行,则是否存在这样
的时刻,使两只蚂蚁所在位置与O点组成的三角形的面积
为 解4:5当0c蚂m蚁²?爬完OA这段距离用 了25秒,再继续爬时;
A·
·0 P
B
OQ=3X; OP=2X-50;
∴S△OPQ=½×(2X-50)×3X
解:设x秒后,三角形的面积为8 D
C
则AP=Xcm PB=6-X
Q
BQ=2X 依题意列方程:½2x(6-x)=8
整理 得到 x2 6x 8 0
解这个方程,得
x1 2, x2 4
∵0≤x≤6
A· P
·B
所以2秒或4秒后⊿ PBQ的面积等于8cm²
n--5
例3:等腰直角⊿ ABC中,AB=BC=8cm,动点P从A
C DB
例5:客轮沿折线A-B-C从A出发经B再到C匀速航行,货轮
从AC的中点D出发沿某一方向匀速直线航行,将一批物品
送达客轮,两船若同时起航,并同时到达折线A-B-C上的某
点E处,已知AB=BC=200海里, ∠ABC=90°,客轮速度是货
轮速度的2倍.
i)选择:两船相遇之处E点(B )A.在线段AB上; B.在线段
A·
DB
∴2:1=pQ:3-X ∴pQ=2(3-X) ∴(2≤x<3)
∴S△PQB=½PB×PQ=½(3-x)×2(3-x)=(3-x)²
∴S△=S△ABC-S△PBQ=3-(3-x)²∴(2≤x<3)
例4:⊿ABC中,AB=3, ∠ BAC=45°,CD⊥ AB,垂足为D,CD=2,P 是AB上的一动点(不与A,B重合),且AP=x,过点P作直线L与AB垂直.
CQ
B
∴当AP=4cm时,平行四边形PQCR的面积等于16cm2
例3:等腰直角⊿ ABC中,AB=BC=8cm,动点P从A
点出发,沿AB向B移动,通过点P引平行于BC,AC的
直线与AC,BC分别交于R、Q.当AP等于多少厘米
时,平行四边形PQCR的面积等于16cm2?
解:设AP=X,PB=8-X ∴S△ABC=32 S△APQ=½(X)² S△BPQ=½(8-X)²
一元二次方程中的动点问题
例1 如图OA=OB=50cm,OC是一条射线,OC⊥AB,一
只蚂蚁由点A以2cm/s的速度向B处爬行,同时另一只蚂
蚁由O点以3cm/s的速度沿oc方向爬行,则是否存在这样
的时刻,使两只蚂蚁所在位置与O点组成的三角形的面积
为45A0·cmP²? 0·
B A·
·0 P
B
Q
Q
C