函数信号发生器

合集下载

函数信号发生器使用说明(超级详细)

函数信号发生器使用说明(超级详细)

函数信号发⽣器使⽤说明(超级详细)函数信号发⽣器使⽤说明1-1 SG1651A函数信号发⽣器使⽤说明⼀、概述本仪器是⼀台具有⾼度稳定性、多功能等特点的函数信号发⽣器。

能直接产⽣正弦波、三⾓波、⽅波、斜波、脉冲波,波形对称可调并具有反向输出,直流电平可连续调节。

TTL可与主信号做同步输出。

还具有VCF输⼊控制功能。

频率计可做内部频率显⽰,也可外测1Hz~10.0MHz的信号频率,电压⽤LED显⽰。

⼆、使⽤说明2.1⾯板标志说明及功能见表1和图1图1DC1641数字函数信号发⽣器使⽤说明⼀、概述DC1641使⽤LCD显⽰、微处理器(CPU)控制的函数信号发⽣器,是⼀种⼩型的、由集成电路、单⽚机与半导体管构成的便携式通⽤函数信号发⽣器,其函数信号有正弦波、三⾓波、⽅波、锯齿波、脉冲五种不同的波形。

信号频率可调范围从0.1Hz~2MHz,分七个档级,频率段、频率值、波形选择均由LCD显⽰。

信号的最⼤幅度可达20Vp-p。

脉冲的占空⽐系数由10%~90%连续可调,五种信号均可加±10V的直流偏置电压。

并具有TTL电平的同步信号输出,脉冲信号反向及输出幅度衰减等多种功能。

除此以外,能外接计数输⼊,作频率计数器使⽤,其频率范围从10Hz~10MHz(50、100MHz[根据⽤户需要])。

计数频率等功能信息均由LCD显⽰,发光⼆极管指⽰计数闸门、占空⽐、直流偏置、电源。

读数直观、⽅便、准确。

⼆、技术要求2.1函数发⽣器产⽣正弦波、三⾓波、⽅波、锯齿波和脉冲波。

2.1.1函数信号频率范围和精度a、频率范围由0.1Hz~2MHz分七个频率档级LCD显⽰,各档级之间有很宽的覆盖度,如下所⽰:频率档级频率范围(Hz)1 0.1~210 1~20100 10~2001K 100~2K10K 1K ~20K100K 10K ~200K1M 100K ~2M频率显⽰⽅式:LCD显⽰,发光⼆极管指⽰闸门、占空⽐、直流偏置、电源。

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原理

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原理

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原理什么是函数信号发生器?函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。

在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。

函数信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。

各种波形曲线均可以用三角函数方程式来表示。

能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。

函数信号发生器的工作原理:函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。

在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。

它能够产生多种波形,如三角波、锯齿波、矩形波、正弦波,所以在生产实践和科技领域中有着广泛的应用。

函数信号发生器系统主要由主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器和指示电压表构成。

当输入端输入小信号正弦波时,该信号分两路传输,一路完成整流倍压功能,提供工作电源;另一路进入一个反相器的输入端,完成信号放大功能。

该放大信号经后级的门电路处理,变换成方波后经输出,输出端为可调电阻。

函数信号发生器产生的各种波形曲线均可以用三角函数方程式来表示,函数信号发生器在电路实验和设备检测中具有十分广泛的用途。

例如在通信、广播、电视系统中,都需要射频发射,这里的射频波就是载波,把音频、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。

在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

函数信号发生器的注意事项

函数信号发生器的注意事项

函数信号发生器的注意事项函数信号发生器是电子实验室中不可或缺的工具,它能够输出各种不同的信号波形,为电路的测试和调试提供了帮助。

但是在使用函数信号发生器时,我们需要注意一些事项,以确保使用的安全和方便。

下面,我们将详细介绍函数信号发生器的注意事项。

1. 电源问题函数信号发生器需要外接电源,因此首要注意事项是电源问题。

当您连接电源时,请务必仔细阅读使用说明,并确保电源符合规格和安全标准。

不要试图自行改装电源线或增加过多扩展块。

同时,为了避免电源伤害用户,在使用前仔细检查电源是否安装到位和连接正确,以确保其安全可靠。

2. 输出端口函数信号发生器的输出端口十分重要,是我们在使用时经常需要注意的地方。

首先,需要了解信号发生器所使用的输出端口类型,如BNC接口、USB接口和RJ45接口等。

在使用时,请清洁接口,并确保连接牢固。

此外,为了保护输出端口,不要过度插拔接口以避免损坏端口。

3. 温度环境函数信号发生器的正常工作需要适当的温度环境。

在使用前,请确保其工作环境符合规格和安全标准。

同样,确保设备不要因为长时间工作而过热,不要直接暴露在阳光下,不要将电源线缠绕在设备上以避免过度加热。

4. 频率和幅度范围函数信号发生器的频率和幅度范围是决定设备使用范围的重要参数。

若干信号发生器有着很高的接口速度和频率范围,但也有很多型号适用于数码信号和其他低速应用。

在购买信号发生器时,请确保其频率和幅度符合您的要求。

5. 质量和维护最后,需要特别注意设备的质量和维护问题。

在选择信号发生器时,要选择质量可靠的产品,并避免选择某些廉价的,低品质产品。

同时,日常保养也是维持设备正常工作的重要手段。

在日常使用中,及时清洁,定期校准并检查设备,以确保其性能。

总之,以上是我们在使用函数信号发生器时,需要特别注意的一些事项。

希望这些信息能对您的日常使用有所帮助,从而更加安全地使用函数信号发生器,并为实验室的测试和调试提供方便。

函数信号发生器功能函数信号发生器怎么用

函数信号发生器功能函数信号发生器怎么用

函数信号发生器功能-函数信号发生器怎么用————————————————————————————————作者:————————————————————————————————日期:函数信号发生器功能,函数信号发生器怎么用函数信号发生器是一种信号发生装置,能直接产生正弦波、三角波、方波、斜波、脉冲波,波形对称可调并具有反向输出,直流电平可连续调节。

频率范围可从几个微赫到几十兆赫,由0.1Hz~2MHz分七个频率档,各档级之间有很宽的覆盖度,频率段、频率值、波形选择均由LCD显示。

信号的最大幅度可达20Vp-p。

脉冲的占空比系数由10%~90%连续可调,五种信号均可加±10V的直流偏置电压。

并具有TTL电平的同步信号输出,脉冲信号反向及输出幅度衰减等多种功能。

除此以外,能外接计数输入,作频率计数器使用,其频率范围从10Hz~10MHz。

计数频率等功能信息均由LCD显示,发光二极管指示计数闸门、占空比、直流偏置、电源。

读数直观、方便、准确。

电压用LED显示。

还具有VCF输入控制功能。

一、面板说明见下图面板说明序号面板标志名称作用1 电源电源开关按下开关,电源接通,电源指示灯亮2波形波形选择1、输出波形选择2、与13、19配合使用可得到正负相锯齿波和脉冲波3 频率频率选择开关频率选择开关与“9”配合选择工作频率外测频率时选择闸门时间4 Hz 频率单位指示频率单位,灯亮有效5 KHz 频率单位指示频率单位,灯亮有效6 闸门闸门显示此灯闪烁,说明频率计正在工作7 溢出频率溢出显示当频率超过5个LED所显示范围时灯亮8 频率LED 所有内部产生频率或外测时的频率均由此5个LED显示9 频率调节频率调节与“3”配合选择工作频率1 0 直流/拉出直流偏置调节输出拉出此旋钮可设定任何波形的直流工作点,顺时针方向为正,逆时针方向为负11压控输入压控信号输入外接电压控制频率输入端12TTL输出TTL输出输出波形为TTL脉冲,可做同步信号1 3 幅度调节反向/拉出斜波倒置开关幅度调节旋钮1、与“19”配合使用,拉出时波形反向2、调节输出幅度大小1450Ω输出信号输出主信号波形由此输出,阻抗为50Ω1衰减输出衰减按下按键可产生-20dB/-40dB衰减516VmVp-p 电压LED1 7外测-20dB外接输入衰减-20dB1、频率计内测和外测频率(按下)信号选择2、外测频率信号衰减选择,按下是信号衰减20dB1 8 外测输入计数器外信号输入端外测频率时,信号由此输出1 9 50 Hz输出50 Hz固定信号输出50 Hz固定频率正弦波由此输出2AC220V 电源插座50 Hz 220V交流电源由此输出2 1 FUSE:0.5A电源保险丝盒安装电源保险丝2 2 标准输出10MHz标频输出10MHz标频信号由此输出二、函数信号发生器技术参数1函数发生器产生正弦波、三角波、方波、锯齿波和脉冲波。

函数信号发生器的实现方法和使用方法 信号发生器是如何工作的

函数信号发生器的实现方法和使用方法 信号发生器是如何工作的

函数信号发生器的实现方法和使用方法信号发生器是如何工作的函数信号发生器是一种可以供应精密信号源的仪器,也就是俗称的波形发生器,最基本的应用就是通过函数信号发生器产生正弦波/方波/锯齿波/脉冲波/三角波等具有一函数信号发生器是一种可以供应精密信号源的仪器,也就是俗称的波形发生器,最基本的应用就是通过函数信号发生器产生正弦波/方波/锯齿波/脉冲波/三角波等具有一些特定周期性(或者频率)的时间函数波形来供大家作为电压输出或者功率输出等,它的频率范围跟它本身的性能有关,一般情况上都是可以从几毫赫甚至几微赫,甚至还可以显示输出超低频直到几十兆赫频率的波形信号源。

下面,大家就和我来了解一下它吧!函数信号发生器的实现方法:(1)用分立元件构成的函数发生器:通常是单函数发生器且频率不高,其工作不很稳定,不易调试。

(2)可以由晶体管、运放IC等通用器件制作,更多的则是用专门的函数信号发生器IC产生。

早期的函数信号发生器IC,如L8038、BA205、XR2207/2209等,它们的功能较少,精度不高,频率上限只有300kHz,无法产生更高频率的信号,调整方式也不够快捷,频率和占空比不能独立调整,二者相互影响。

(3)利用单片集成芯片的函数发生器:能产生多种波形,达到较高的频率,且易于调试。

鉴于此,美国美信公司开发了新一代函数信号发生器ICMAX038,它克服了(2)中芯片的缺点,可以达到更高的技术指标,是上述芯片望尘莫及的。

MAX038频率高、精度好,因此它被称为高频精密函数信号发生器IC。

在锁相环、压控振荡器、频率合成器、脉宽调制器等电路的设计上,MAX038都是优选的器件。

(4)利用专用直接数字合成DDS芯片的函数发生器:能产生任意波形并达到很高的频率。

但成本较高。

产生所需参数的电测试信号仪器。

按其信号波形分为四大类:①正弦信号发生器。

紧要用于测量电路和系统的频率特性、非线性失真、增益及灵敏度等。

按其不同性能和用途还可细分为低频(20赫至10兆赫)信号发生器、高频(100千赫至300兆赫)信号发生器、微波信号发生器、扫频和程控信号发生器、频率合成式信号发生器等。

函数信号发生器的注意事项

函数信号发生器的注意事项

函数信号发生器的注意事项
在使用函数信号发生器时,有以下几点注意事项:
1. 输入电源稳定:函数信号发生器通常需要接受外部电源供电,为了保证信号的稳定性,输入电源必须稳定且符合设备的规格要求。

应确保输入电源的电压和频率符合要求,并避免电源的电压波动或频率变化。

2. 地线接法正确:函数信号发生器通常需要接地,确保正确连接地线可以减少对其他设备的干扰,并提高信号的质量。

接线时应按照设备的规格要求进行连接,避免错误地线接法导致信号的失真或干扰。

3. 避免过载操作:在使用函数信号发生器时,应注意其输出功率的限制。

过高的输出功率可能导致设备的烧毁,而过低的输出功率可能影响信号的质量。

在操作中应遵循设备的功率规格要求,并根据需要调整输出功率。

4. 频率范围和相位调节:函数信号发生器通常具有可调的频率和相位功能,操作时应根据需要进行调节。

注意调节范围内的频率和相位值,避免超出设备的限制。

在调节过程中,应注意适当的调节速度,避免频率或相位的快速变化对系统造成不良影响。

5. 信号质量监测:在使用函数信号发生器时,应注意监测信号的质量。

可以使用示波器或其他测量设备对输出信号进行测量和分析,以确保信号的稳定性和准
确性。

如果发现信号质量不理想,应及时调整设备参数,并检查输入电源和连接线路是否正常。

6. 保养和维护:定期进行设备的保养和维护,可以延长函数信号发生器的使用寿命,并保证其性能稳定。

应按照设备的说明书进行日常维护工作,例如清洁设备表面、检查连接线路是否松动等。

如发现设备故障或异常,应及时联系厂家进行维修或更换。

简易函数信号发生器的设计报告

简易函数信号发生器的设计报告

简易函数信号发生器的设计报告设计报告:简易函数信号发生器一、引言函数信号发生器是一种可以产生各种类型函数信号的设备。

在实际的电子实验中,函数信号发生器广泛应用于工程实践和科研领域,可以用于信号测试、测量、调试以及模拟等方面。

本文将着重介绍一种设计简易函数信号发生器的原理和方法。

二、设计目标本设计的目标是实现一个简易的函数信号发生器,能够产生包括正弦波、方波和三角波在内的基本函数信号,并能够调节频率和幅度。

同时,为了提高使用方便性,我们还计划增加一个显示屏,实时显示当前产生的信号波形。

三、设计原理1.信号源函数信号发生器的核心是信号发生电路,由振荡器和输出放大器组成。

振荡器产生所需的函数信号波形,输出放大器负责放大振荡器产生的信号。

2.振荡器为了实现多种函数波形的产生,可以采用集成电路作为振荡器。

例如,使用集成运算放大器构成的和差振荡器可以产生正弦波,使用施密特触发器可以产生方波,使用三角波发生器可以产生三角波。

根据实际需要,设计采用一种或多种振荡器来实现不同类型的函数信号。

3.输出放大器输出放大器负责将振荡器产生的信号放大到适当的电平以输出。

放大器的设计需要考虑到信号的频率范围和幅度调节的灵活性。

4.频率控制为了能够调节信号的频率,可以采用可变电容二极管或可变电阻等元件来实现。

通过调节这些元件的参数,可以改变振荡器中的RC时间常数或LC谐振电路的频率,从而实现频率的调节。

5.幅度控制为了能够调节信号的幅度,可以采用可变电阻作为放大电路的输入阻抗,通过调节电阻阻值来改变信号的幅度。

同时,也可以通过增加放大倍数或使用可变增益放大器来实现幅度的控制。

四、设计步骤1.确定电路结构和信号发生器的类型。

根据功能和性能需求,选择合适的振荡器和放大器电路,并将其组合在一起。

2.根据所选振荡器电路进行参数计算和元件的选择。

例如,根据需要的频率范围选择适合的振荡器电路和元件,并计算所需元件的数值。

3.设计输出放大器电路。

函数信号发生器(F05A)

函数信号发生器(F05A)

目 录第一章概述 1 第二章主要特征 1 第三章技术指标 2一、函数信号发生器 2二、计数器 5三、其它 6 第四章面板说明7一、显示说明7二、前面板说明8三、后面板说明13 第五章使用说明14一、测试前的准备工作14二、函数信号输出使用说明 14三、计数器使用说明 32 第六章遥控操作使用说明34 第七章B路信号说明 52 第八章功率放大模块说明 57第九章注意事项与检修58 第十章附录USB接口驱动安装59 第十一章仪器整套设备及附件63南京盛普仪器科技有限公司 1本仪器是一台精密的测试仪器,具有输出函数信号、调频、调幅、FSK 、PSK 、猝发、频率扫描等信号的功能。

此外,本仪器还具有测频和计数的功能。

本仪器是电子工程师、电子实验室、生产线及教学、科研的理想测试设备。

1、采用直接数字合成技术(DDS )。

2、主波形输出频率为1µHz ~ 20MHz 。

3、小信号输出幅度可达1mV 。

4、脉冲波占空比分辨率高达千分之一。

5、数字调频、调幅分辨率高、准确。

6、猝发模式具有相位连续调节功能。

7、频率扫描输出可任意设置起点、终点频率。

8、相位调节分辨率达0.1度。

9、调幅调制度1% ~ 100% 可任意设置。

10、输出波形达30余种。

11、具有频率测量和计数的功能。

12、机箱造型美观大方,按键操作舒适灵活。

13、具有第二路输出,可控制和第一路信号的相位差。

概述 12主要特征南京盛普仪器科技有限公司 2一、函数发生器1、波形特性主波形:正弦波、方波波形幅度分辨率:12 bits 采样速率:200Msa/s正弦波谐波失真:-50dBc (频率≤ 5MHz ) -45dBc (频率≤ 10MHz ) -40dBc (频率>10MHz )正弦波失真度: ≤0.2%(频率:20Hz ~ 100kHz )方波升降时间: ≤ 25ns (SPF05A ≤ 28ns )注:正弦波谐波失真、正弦波失真度、方波升降时间测试条件:输出幅度2Vp-p (高阻),环境温度25℃±5℃储存波形:正弦波,方波,脉冲波,三角波,锯齿波,阶梯波等26种波形,TTL 波形(仅F20A ,输出频率同主波形) 波形长度:4096点波形幅度分辨率:12 bits脉冲波占空系数:1.0% ~ 99.0%(频率≤10kHz ),10% ~ 90%(频率10kHz ~ 100kHz )脉冲波升降时间: ≤1uS直流输出误差:≤±10%+10mV (输出电压值范围10mV~10V ) TTL 波形输出:(F05A 、F10A )输出频率:同主波形输出幅度:低电平 < 0.5 V 高电平 > 2.5 V 输出阻抗:600 Ω2、频率特性频率范围:主波形:1µHz ~ 5MHz (SPF05A 型) 1µHz ~ 10MHz (SPF10A 型) 1µHz ~ 20MHz(SPF20A 型)储存波形: 1µHz ~ 100kHz3技术指标分辨率:1µHz频率误差:≤±5×10-4 频率稳定度:优于±5×10-53、幅度特性幅度范围:1mV ~ 20Vp-p(高阻),0.5mV ~ 10Vp-p(50Ω)最高分辨率:2µVp-p (高阻),1µVp-p(50Ω)幅度误差:≤±2%+1mV (频率1KHz正弦波)幅度稳定度:±1 % /3小时平坦度:±5%(频率≤5MHz正弦波), ±10% (频率>5MHz 正弦波)±5%(频率≤50 kHz其它波形), ±20% (频率>50 kHz 其它波形)输出阻抗:50Ω幅度单位:Vp-p,mVp-p,Vrms,mVrms,dBm4、偏移特性直流偏移(高阻):±(10V-Vpk ac),(偏移绝对值≤2×幅度峰峰值)最高分辨率:2µV(高阻),1µV(50Ω)偏移误差:≤±10% +20mV (高阻)5、调幅特性载波信号:波形为正弦波,频率范围同主波形调制方式:内或外调制信号:内部5种波形(正弦、方波、三角、升锯齿、降锯齿)或外输入信号调制信号频率:1Hz ~ 20kHz(内部)100Hz ~ 10kHz(外部)失真度:≤1% (调制信号频率1KHz正弦波)调制深度:1% ~ 100%相对调制误差:≤±5% +0.5 (调制信号频率1KHz正弦波)外输入信号幅度:3Vp-p(-1.5V~ +1.5V)6、调频特性载波信号:波形为正弦波,频率范围同主波形调制方式:内或外(外为选件)调制信号:内部5种波形(正弦、方波、三角、升锯齿、降锯齿))或外输入信号调制信号频率:1Hz ~ 10kHz(内部)100Hz ~ 10kHz(外部)南京盛普仪器科技有限公司 3频偏:内调频最大频偏为载波频率的50%,同时满足频偏加上载波频率不大于最高工作频率+100 kHz 失真度:≤1% (调制信号频率1KHz正弦波) 相对调制误差:≤±5%设置值±50Hz (调制信号频率1KHz正弦波)外输入信号幅度:3Vp-p(-1.5V~ +1.5V)FSK:频率1和频率2任意设定控制方式:内或外(外控:TTL电平,低电平F1;高电平F2)交替速率:0.1ms ~ 800s7、调相特性基本信号:波形为正弦波,频率范围同主波形PSK:相位1(P1)和相位2(P2)范围:0.1 ~ 360.0°分辨率:0.1°交替时间间隔:0.1ms ~ 800s控制方式:内或外(外控TTL电平,低电平P2,高电平P1)8、猝发基本信号:波形为正弦,频率范围同主波形猝发计数:1 ~ 30000个周期猝发信号交替时间间隔:0.1ms ~ 800s控制方式:内(自动)/外(单次手动按键触发、外输入TTL脉冲上升沿触发)9、频率扫描特性信号波形:正弦波扫描频率范围:扫描起始点频率:主波形频率范围扫描终止点频率主波形频率范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于labview的函数信号发生器的设计[摘要] 介绍一种基于labvIEW环境下自行开发的虚拟函数信号发生器,它不仅能够产生实验室常用的正弦波、三角波、方波、锯齿波信号,而且还可以通过输入公式,产生测试和研究领域所需要的特殊信号。

对任意波形的发生可实现公式输入;对信号频率、幅度、相位、偏移量可调可控;方波占空比可以调控;噪声任意可加、创建友好界面、信号波形显示;输出频谱特性;所有调制都可微调与粗调。

该仪器系统操作简便,设计灵活,功能强大,可以完成不同环境下的测量要求。

因此具有很强的实用性。

关键词:虚拟仪器,labvIEW,虚拟函数信号发生器,正弦波,三角波,方波,锯齿波,特殊信号。

引言:在有关电磁信号的测量和研究中,我们需要用到一种或多种信号源,而函数信号发生器则为我们提供了在研究中所需要的信号源。

它可以产生不同频率的正弦波,方波,三角波,锯齿波,正负脉冲信号,调频信号,调幅信号和随机信号等。

其输出信号的幅值也可以按需要进行调节。

传统信号发生器种类繁多,价格昂贵,而且功能固定单一,不具备用户对仪器进行定义及编程的功能,一个传统实验室很难拥有多类信号发生器。

然而,基于虚拟仪器技术的实验室均能满足这一要求。

1、虚拟仪器简介:自从1986年美国NI(National Instrument)公司提出虚拟仪器的概念以来,随着计算机技术和测量技术的发展,虚拟仪器技术也得到很快的发展。

虚拟仪器是指:利用现有的PC机,加上特殊设计的仪器硬件和专用软件,形成既有普通仪器的基本功能,又有一般仪器所没有的特殊功能的新型仪器。

与传统的仪器相比其特点主要有:具有更好的测量精度和可重复性;测量速度快;系统组建时间短;由用户定义仪器功能;可扩展性强;技术更新快等。

虚拟仪器以软件为核心,其软件又以美国NI公司的Labview虚拟仪器软件开发平台最为常用。

Labview是一种图形化的编程语言,主要用来开发数据采集,仪器控制及数据处理分析等软件,功能强大。

目前,该开发软件在国际测试、测控行业比较流行,在国内的测控领域也得到广泛应用。

函数信号发生器是在科学研究和工程设计中广泛应用的一种通用仪器。

下面结合一个虚拟函数信号发生器设计开发具体介绍基于图形化编程语言Labview的虚拟仪器编程方法与实现技术。

2、虚拟函数信号发生器的结构与组成2.1 虚拟函数信号发生器的前面板本虚拟函数信号发生器主要由一块PCI总线的多功能数据采集卡和相应的软件组成。

将它们安装在一台运行Windows95/98/2000/NT 以上版本的PC机上,即构成一台功能强大的函数信号发生器。

本虚拟函数信号发生器的设计参考了SG 1645功率函数信号发生器,前面板如图NI-1所示。

本函数信号发生器的前面板主要由以下几个部分构成:仪器控制按钮,输出频率控制窗口(包括频率显示单位),频率倍成控制,公式选择,波形选择(如AM波,DSB波),频率微调按钮,直流偏置,偏移量,初相位,采样信息,频谱分析,方波占空比调节,输出波形幅度控制按钮。

频率微调范围:0.1~1 Hz;直流偏置:-10~10V;方波占空比:0~100%;输出波形幅度:0~10V。

此外还增加了许多修饰性的元件如面板上的压控输入、记数输入、同步输出、电压输出等。

使用这些修饰性的元件的目的是为了增加仪器的美观性,并尽量与真实仪器的使用界面相一致。

图1 基于labvIEW函数信号发生器的前面板2.2 虚拟函数信号发生器的程序框图2.2.1 该程序框图的主要部分(1)控制启动和停止的Case条件结构;(2)偏移量控制模块;(3)频率控制模块;(4)幅度控制模块;(5)常用波形(正弦波,方波,三角波,公式波形)控制模块;(6)特殊波形(AM波,DSB波)控制模块;(7)相位控制模块;(8)占空比控制模块;(9)采样信息控制模块;(10)频谱分析模块;(11)其他的线路及模块。

图2 基于labvIEW函数信号发生器的程序框图2.1.2 主要部件介绍1.选择函数依据s的值,返回连线至t输入或f输入的值。

s为TRUE时,函数返回连线至t的值。

s 为FALSE时,函数返回连线至f的值。

连线板可显示该多态函数的默认数据类型。

2.正弦波形VI生成含有正弦波的波形。

正弦波形详细信息:如Y序列表示正弦波,则该VI依据下列等式生成波形。

y[i] = amp × sin(phase[i]),i = 0, 1, 2, …, n– 1,amp = 幅值,n = 采样数(#s),相位[i]为:初始相位+ 频率× 360.0 × i/Fs3.方波波形VI生成含有方波的波形。

-1.0,(0.01 × duty) × 360.0 pmod < 360.0 pmod = p modulo 360.0,duty = 占空比(%),相位[i]为:初始相位+ 频率× 360.0 × i/Fs4、三角波VI生成含有三角波的波形。

三角波形详细信息如Y序列表示三角波,则该VI依据下列等式生成波形。

y[i] = amp × tri(phase[i]),i = 0, 1, 2, …, n– 1,amp = 幅值,n = 采样数(#s),tri[p]为:2 × pmod/180.0,0 pmod < 90.0或2 × (1 – pmod/180.0),90.0 pmod < 270.0或2 × (pmod/180.0 – 2.0),270.0 pmod < 360.0 pmod = p modulo 360.0,相位[i]为:初始相位+ 频率× 360.0 × i/Fs锯齿波形详细信息如Y序列锯表示齿波,则该VI依据下列等式生成波形。

y[i] = amp ×锯齿波形(相位[i]),i = 0, 1, 2, …, n– 1,amp = 幅值,n = 采样数(#s),锯齿波形(相位[i])为:pmod/180.0,0 pmod < 180.05、公式波形VI通过公式字符串指定要使用的时间函数,创建输出波形。

6、均匀白噪声波形VI生成均匀分布的伪随机波形,值在[–a:a]之间。

a是幅值的绝对值。

4.频谱测量Express VI进行基于FFT的频谱测量(例如,信号的平均幅度频谱、功率谱、相位谱)。

2.2.2对各个模块进行分析①波形选择模块通过布尔控制选择器的输出值再对所有的选择器的输出进行累加得出最后的结果进入Case条件结构。

例如要输出正弦波:正弦波的布尔亮输出1;其他都输出0;累加以后还是1;通过这个“1”进入Case条件结构进行判断。

程序框图如图3:②Case条件结构在Labview程序框图的编程里面选择结构中的条件结构。

在各个分支中设置选择各种波形以及各种波形的参数、控件设置。

以方波为例:设置方波的偏移量、频率、幅度、初相位、占空比、采样信息等控件。

程序框图如图4图3 波形选择 图4 Case 条件结构③添加噪声利用布尔控件控制条件的分支是否添加噪声,并且控制噪声的幅度。

这儿用了加性噪声。

程序框图如图5④AM 波的产生根据AM 波的波形原理及特性。

AM 波的公式是:t t m U t U c a CM AM ωcos )cos 1()(Ω+= Ω 是调试波频率 c ω是载波频率 所以设置载波频率相对调试频率要高5~10倍,这里取40Hz 、幅度取1V 、相位为0、a m =1;在利用公式对载波和调试波执行整合。

程序框图如图6⑤DSB 波产生及滤波输出根据DSB 波的原理和特性。

其公式是:t t m U c a DSB ωcos cos )t (Ω= Ω 是调试波频率 c ω是载波频率 载波参数如同上面AM 波的参数。

滤波器:由加了噪声的DSB 波出了的波形经过海明窗在用FFT 滤波输出频谱波形。

如图7图5 噪声程序框图 图6 AM 波产生的程序框图图7 DSB波产生及滤波输出程序框图3 功能描述:(1)经过仿真实验表明,它能够产生实验室常用的正弦波、三角波、方波、锯齿波信号,而且还可以产生白噪声及多频波,并能通过输入公式, 产生测试领域的非周期特殊信号。

输出波形频率范围宽,具有相关参数可调、同步显示和幅度频谱分析功能。

(2)任意波形的发生,任意波可实现公式输入; 信号频率、幅度、相位、偏移量可调可控;方波占空比可调; 噪声任意可加、创建友好界面、信号波形显示; 输出频谱特性; 所有调制都可微调与粗调。

可以完成不同环境下的测量要求。

(3)接下来看几个实例,进一步了解它的功能。

例1 利用该虚拟函数信号发生器产生一个公式波形,以及对应的AM波、DSB波和频谱图。

如下图所示。

例2 不加噪声的输出波形与加噪声的输出波形的不同、以及对应频谱的分析未添加噪声的波形添加了加性噪声的波形1、上面两图相比较得出:加噪声相比未噪声的明显的波形波不光滑、有些起伏波动,频谱也有一些小偏差和波动。

2、频谱的分析:t t m U c a D S B ωc o s c o s )t (Ω= 例子中调试波频率 Ω为10Hz 、载波频率c ω是40Hz 所以双边带的左边的谱线对应的频率为:40-10=30Hz ;有边带谱线对应频率为:40+10=50HZ 。

由图中的X 轴的刻度是时间不是我们要求的频率。

解决方法如下:就是把波形图控件的属性里的缩放系数改为采样率除以采样数据长度,然后便可实现频率与频谱的坐标对应了....修改完之后结果如下图4、心得体会:这是一门实践性很强的课,很多知识是从书上看来的,而且看完之后,自己还觉的不错,觉得自己已经掌握的很好了,但真到实际做东西的时候,就会觉得困难重重,这时再去查书,便有了对知识的更深层次的理解,有任何问题,问问老师,同学商讨一下,很多问题都可以迎刃而解。

而且我们能感受到学院老师对这门课的重视,也能看到这门课的发展前景,即使我们在以后的工作中不在这方面发展,这门课留给我们的学习思想和技术技能都是很宝贵的。

学以促用,用以促学,我们感觉这也是这门课教给我们的重要知识。

带着问题学习才能学到真正的知识。

5、参考文献[1]杨乐平 李海涛 杨磊 Labview 程序设计与应用(第2版) 北京 电子工业出版社 2006[2]蔡建安 陈洁华 基于LabVIEW 的工程软件应用 重庆大学出版社 2006。

相关文档
最新文档