物化上册答案
物化1-4章练习题答案

第一章热力学第一定律1、热力学第一定律的数学表示式只能适用于(2)(1)理想气体(2)封闭体系(3)孤立体系(4)敞开体系2、一封闭体系,当状态从A到B发生变化时经历二条任意的不同途径,则(3)(1)Q1=Q2(2)W1=W21(3)Q1-W1=Q2-W2(4) ∆U=0 A 2 B3、25 C时有反应C6H6(l)+7.5O2=3H2O(l)+6CO2(g),若反应中各物质均可视为理想气体,则其 ∆H与 ∆U之差约为( 1 )(1)-3.7kJ (2)1.2 (3)-1.2 (4)3.74、若已知H2O(l)及CO(g)在298K时的标准生成焓 ∆fH o m分别为-242及111kJ.mol-1,则反应H2O(l)+C(s)=H2(g)+CO(g)的反应热为( 4 )kJ(1)-353 (2)-131 (3)131 (4)3535、已知25︒C时反应的½H2 (g)+½Cl2(g)=HCl(g) ∆H为-92.5kJ,则此时反应的∆U( 4 )(1)无法知道(2)一定大于∆ H (3)一定小于 ∆H (4)等于 ∆H6、1mol液体苯在298K时置于弹式量热计中完全燃烧,生成水和二氧化碳气体,同时放出热量3264kJ,则其等压燃烧热Qp约为( 4 )kJ(1)3268 (2)-3265(3)3265(4)-32687、已知反应H2(g)+½O2=H2O(g)+的∆ H,下列说法中,何者不正确?( 2 )(1) ∆H是H2O(g)的生成热(2) ∆ H是H2(g)的燃烧热(3)∆ H与反应的 ∆U数值不等(4) ∆H是负值8、已知反应CO(g)+ )+½O2=CO2(g)的 ∆H,下列说法中何者是不正确的?( 1 )(1) ∆H是CO2(g)的生成热(2) ∆H是CO(g)的燃烧热(3) ∆H与反应的 ∆U数值不等(4)∆ H是负值9、 H=Qp 的适用条件是( 4 )(1)可逆过程 (2) 理想气体(3) 等压的化学反应 (4)等压只作膨胀功10、反应在298K时CH3CHO(g)=CH4(g)+CO(g)的 ∆H为-16.74kJ.K-1,并从各物质的Cp值可知反应 ∆ Cp的值为16.74J.K-1,则该反应的反应热为零时,反应温度约为( 1 )(1)1298K (2)1000K (3)702K (4)299K11、3mol单原子理想气体,从初态T 1 =300K,P1=1atm反抗恒定的外压0.5atm作不可逆膨胀,至终态T2=300K,P2=0.5atm 。
物化第六章-答案

第六章相平衡练习题、是非题,下列各题的叙述是否正确,对的画V错的画X1、纯物质两相达平衡时,两相的吉布斯函数值一定相等。
()2、理想液态混合物与其蒸气达成气、液两相平衡时,气相总压力p与液相组成X B呈线性关系。
()3、已知Cu-Ni可以形成完全互溶固熔体,其相图如右图,理论上,通过精炼可以得到两个纯组分。
()4、二组分的理想液态混合物的蒸气总压力介于二纯组分的蒸气压之间。
()5、在一定温度下,稀溶液中挥发性溶质与其蒸气达到平衡时气相中的分压与该组分在液相中的组成成正比。
()6 恒沸混合物的恒沸温度与恒沸组成不随压力而改变。
()7、在一个给定的体系中,特种数可以分析问题的角度不同而不同,但独立组分数是一个确定的数。
()8、自由度就是可以独立变化的变量。
()9、单组分体系的相图中两相平衡线都可以用克拉贝龙方程定量描述。
()10、在相图中总可以利用杠杆规则计算两相平衡时两相的相对量。
()二、选择题1、在p下,用水蒸气蒸馏法提纯某不溶于水的有机物时,系统的沸点:()(1)必低于373.2 K;(2)必高于373.2 K;(3)取决于水与有机物的相对数量;(4)取决于有机物相对分子质量的大小。
2、已知A(l)、B(l)可以组成其t-x(y)图具有最大恒沸点的液态完全互溶的系统,则将某一组成的系统精馏可以得到:()。
(1)两个纯组分;(2)两个恒沸混合物;(3)一个纯组分和一个恒沸混合物。
3、已知A和B可构成固溶体,在组分A中,若加入组分B可使固溶体的熔点提高,则组B在此固溶体中的含量必__________ 分B在组分液相中的含量。
(1)大于;(2)小于;(3)等于;(4)不能确定。
4、硫酸与水可形成H2SO4H2OG), H2SO42H2OG), H2SO44H2OG)三种水合物,问在101325 Pa的压力下,能与硫酸水溶液及冰平衡共存的硫酸水合物最多可有多少种?()(1)3种;(2) 2种;(3) 1种;(4)不可能有硫酸水合物与之平衡共存5、对恒沸混合物的描写,下列各种叙述中哪一种是不正确的?(1)与化合物一样,具有确定的组成;(2)恒沸混合物的组成随压力的改变而改变;(3)平衡时,气相和液相的组成相同;(4)其沸点随外压的改变而改变。
物化作业课后答案

第一章 化学热力学基础1-1 气体体积功的计算式 dV P W e ⎰-= 中,为什么要用环境的压力e P ?在什么情况下可用体系的压力体P ? 答:在体系发生定压变化过程时,气体体积功的计算式 dV P W e ⎰-= 中,可用体系的压力体P 代替e P 。
1-2 298K 时,5mol 的理想气体,在(1)定温可逆膨胀为原体积的 2 倍; ( 2 )定压下加热到373K ;(3)定容下加热到373K 。
已知 C v,m = 28.28J·mol -1·K -1。
计算三过程的Q 、W 、△U 、△H 和△S 。
解 (1) △U = △H = 0 kJ V V nRT W Q 587.82ln 298314.85ln12=⨯⨯==-= 11282.282ln 314.85ln-⋅=⨯==∆K J V V nR S (2) kJ nC Q H m P P 72.13)298373(,=-==∆ kJ nC U m V 61.10)298373(,=-=∆ W = △U – Q P = - 3.12 kJ112,07.41298373ln )314.828.28(5ln-⋅=+⨯==∆K J T T nC S m P (3) kJ nC Q U m V V 61.10)298373(,=-==∆ kJ nC H m P 72.13)298373(,=-=∆ W = 0112,74.31298373ln 28.285ln-⋅=⨯==∆K J T T nC S m V 1-3 容器内有理想气体,n=2mol , P=10P θ,T=300K 。
求 (1) 在空气中膨胀了1dm 3,做功多少? (2) 膨胀到容器内压力为 lP θ,做了多少功?(3)膨胀时外压总比气体的压力小 dP , 问容器内气体压力降到 lP θ时,气体做多少功?dVp dl A p dl f W ⋅=⋅⋅=⋅=外外外δ解:(1)此变化过程为恒外压的膨胀过程,且Pa P e 510=J V P W e 1001011035-=⨯⨯-=∆-=- (2)此变化过程为恒外压的膨胀过程,且Pa P e 510=n R T P n R T P n R T P V V P V P W e 109)10()(12-=--=--=∆-=θθ J 6.4489300314.82109-=⨯⨯⨯-= (3) Vn R TP dP P P e =≈-=1221ln ln 12121P P nRT V V nRT dV V nRT dV P W V V V V e ==-=-=⎰⎰ kJ PP 486.11101ln 300314.82-=⨯⨯⨯=θ1-4 1mol 理想气体在300K 下,1dm 3定温可逆地膨胀至10dm 3,求此过程的 Q 、W 、△U 及△H 。
物化一、二章自测题库及答案

物理化学一、二章小测题库及答案一、填空题。
在题中“____”处填上答案。
1、已知水在(25~100)℃之间平均摩尔热C P,m= 75.48J·K-1·mol-1,则在101.3kPa下,将1kg水从25℃加热至100℃所需的热为3.142×105J。
2、25℃时H2O(l)及H2O(g)的标准摩尔生成焓分别为-286 kJ·mol-1及-242 kJ·mol-1。
则水在25℃时的摩尔气化焓∆vap H m= 44KJ·mol-1。
3、已知∆f H(C6H5Cl , l , 298 K) = -10.65 kJ·mol-1;∆f H(NH3 , g , 298 K) = -46.19 kJ·mol-1;∆f H(C6H5NH2 , l , 298 K) = -29.7 kJ·mol-1;∆f H(NH4Cl , s , 298 K) = -315.39 kJ·mol-1;则反应C6H5Cl(l) + 2NH3(g) == C6H5NH2(l) + NH4Cl(s)在298.15K时的标准摩尔反应焓∆r H(298 K) = -242.06KJ·mol-1。
4、在图中,途径Ⅲ是等温过程,对理想气体而言,过程Ⅲ的∆UⅢ=0,∆HⅢ=0。
(选填>、=、< 号)5、把100kPa,400cm3的气体A与300kPa,200cm3的气体B等温混合放入800cm3的容器内。
混合物中两气体的分压力分别为p A= 50KPa,p B= 75KPa,总压力为p= 125KPa 。
6、已知反应:( 1 ) CO(g )+ H2O (g) −→−CO2(g) + H2(g),∆r H(298 K) = -41.2 kJ·mol-1;( 2 ) CH4(g)+ 2 H2O(g) −→−CO2(g) + 4H2(g),∆r H(298 K) = 165.0 kJ·mol-1;则下列反应:CH4(g) + H2O (g) −→−CO(g) + 3H2(g),的∆r H(298 K) = 206.2KJ·mol-1。
物化实验思考题答案上

一.恒温槽装配和性能测试1.恒温槽主要由哪几个部分组成,各部分作用是什么答:①浴槽:盛装介质②加热器:加热槽内物质③搅拌器:迅速传递热量,使槽内各部分温度均匀④温度计:观察槽内物质温度⑤感温元件:感应温度,指示加热器工作⑥温度控制器:温度降低时,指示加热器工作,温度升高时,只是加热器停止工作;2.为什么开动恒温槽之前,要将接触温度计的标铁上端面所指的温度调节到低于所需温度处,如果高了会产生什么后果答:由于这种温度控制装置属于“通”“断”类型,当加热器接通后传热质温度上升并传递给接触温度计,使它的水银柱上升;因为传质、传热都有一个速度,因此,出现温度传递的滞后;即当接触温度计的水银触及钨丝时,实际上电热器附近的水温已超过了指定温度;因此,恒温槽温度必高于指定温度;同理,降温时也会出现滞后状太;3.对于提高恒温槽的灵敏度,可以哪些方面改进答:①恒温槽的热容要大些,传热质的热容越大越好;②尽可能加快电热器与接触温度计间传热的速度,为此要使感温元件的热容尽量小,感温元件与电热器间距离要近一些,搅拌器效率要高;③做调节温度的加热器功率要小;4.如果所需恒定的温度低于室温如何装备恒温槽答:通过辅助装臵引入低温,如使用冰水混合物冰水浴,或者溶解吸热的盐类盐水浴冷却硝铵,镁盐等二.络合物组成和不稳定常数的测定—等摩尔系列法老师发的卷子,题目不知道了1.答:计算溶剂体积→取溶质→溶解→转移→定容M++A+不变,取相同浓度M和A配成一系列CM /CM+CA不同的溶液;2.答:M+A不变,改变M,A当MAn 浓度最大时,n=CA/Cn,通过测定某一络合物含量发生相应变化的物量光密度D=ad,D-CM /CM+CA求极大值点n.3.答:分别配制只有金属离子以及只有配体,且PH与络合物相同的标准溶液,测两者吸光度,在坐标系两点上作直线,求出该直线方程,取测得络合物的吸光度,再减去直线再此浓度的直线对应吸光度,则为真实络合物的吸光度;4.答:因为当一个反应只有按原子个数比进行时,生成MAn的浓度最大;三.中和焓的测定1.本实验是用电热法标定热量计的热容C,能否改用其他方法请设计出一个实验方案来;答:实验前十分钟,用较小的功率搅拌蒸馏水后,再用远大于之前的功率搅拌蒸馏水,待温度升高℃左右,再转为较小功率,作图得出△T,根据K=PT/△T求出K值;2.试分析影响本实验结果的因素有哪些答:系统保温效果要好,保温装臵要干燥,电流电压值高低,即引入系统热量不要太高太低,同时升温速度不易太快,酸碱充分快速混合3.中和焓除了与温度、压力有关外,还与浓度有关,如何测量无限稀释时的中和焓答:在一定的温度下,测得不同浓度的中和热,再做温度与中和热的曲线,通过取极限的方式,测得无线稀释时的中和热;四.燃烧热的测定的测定1.说明恒容热效应QV和恒压热效应QP的差别和相互关系;答:恒容燃烧热在数值上等于燃烧过程中系统内能的变化值,恒压燃烧热在数值上等于燃烧过程中系统地焓变,Qp=Qv+ΔnRT2.2.简述装置氧弹和拆开氧弹的操作过程;答:1装氧弹:拧开氧弹盖,将其内壁擦干净,特别是电极下端的不锈钢接柱更应该擦干净;接着小心将压好的片状试样的点火丝两端分别紧绕在电极的下端,然后旋转氧弹盖;2拆开氧弹的出气口打开,放出余气,然后才慢慢旋开盖子;3.为什么实验测量得到的温度差值要经过作图法校正答:由于存在热漏现象以及搅拌机功率过大引进的热量,所以要用雷诺图解校正法对实验数据进行处理;这样才能真实地代表被测样品燃烧热引起卡计温度升高的数值△T;4.使用氧气刚瓶和减压阀时有哪些注意事项答:氧气瓶是高压气体容器,使用时一定注意安全;首先要弄清楚怎么使用:连接好氧弹后,旋紧减压阀,使压力表上读数为15atm,充气3分钟,然后旋松减压阀,取下氧弹,关闭气钢瓶上端的阀门,操作完毕;五.液体饱和蒸气压的测定1.在实验过程中为什么要防止空气倒灌如果在等压计Ⅰ球与Ⅲ 球间有空气,对测定沸点有何影响其结果如何怎么判断空气已被赶净答:1实验中应严防空气倒灌,是因:①空气会进入Ⅰ球与Ⅲ管之间的空间,影响测量;②会使Ⅱ、Ⅲ组成U型管内液体进入Ⅰ球内;2在Ⅰ球与Ⅲ管间有空气会使所测蒸汽压降低,导致所测沸点降低;3应使Ⅰ球内液体沸腾3--5分钟,可认为其中空气已被赶净;2.能否在加热情况下检查是否漏气解:不能;因为温度升高,使气体的压力增大因体系的体积不变,会弥补因漏气使压力的减小,造成假不漏气或漏气程度很小;3.本实验主要误差来源是什么装置的密闭性是否良好,水本身是否含有杂质等;六.凝固点降低法测相对分子质量1.凝固点降低法测相对分子质量的公式,在什么条件下才能适用答:非挥发性溶质的稀溶液,适用于稳定的大分子化合物,浓度不能太大也不能太小;2.什么原因可能造成过冷太甚若过冷太甚,所测溶液凝固点偏低还是偏高由此所得的摩尔质量偏低还是偏高答:A.寒剂温度过低会造成过冷太甚;B.若过冷太甚,则所测溶液凝固点偏低;C.溶液凝固点偏低,则ΔTf偏大,由此所得相对分子质量偏低;3.在冷却过程中,冷冻管内固液相之间和寒剂之间有哪些热交换它们对凝固点的测定有何影响答:凝固点测定管内液体与空气套管、测定管的管壁、搅拌棒以及温差测量仪的传感器等存在热交换;因此,如果搅拌棒与温度传感器摩擦会导致测定的凝固点偏高;测定管的外壁上粘有水会导致凝固点的测定偏低;4.加入溶剂在溶质的量应如何确定加入量过多或过少将会有如何影答:加入的溶质的量约使溶液的凝固点降低℃左右;加入太多,会使溶液太快凝固;加入太少,会使溶液的凝固点降低不明显,测量误差会增大;5.当溶质在溶液中有离解,缔合和生成络合物的情况时,对相对分子质量测定值的影响如何答:溶质在溶液中有解离、缔合、溶剂化和形成配合物时,凝固点降低法测定的相对分子质量为溶质的解离、缔合、溶剂化或者形成的配合物相对分子质量,因此凝固点降低法测定出的结果反应了物质在溶剂中的实际存在形式;6.影响凝固点精确测量的因素有哪些答:影响测定结果的主要因素有控制过冷的程度和搅拌速度、寒剂的温度等;本实验测定凝固点需要过冷出现,过冷太甚会造成凝固点测定结果偏低,因此需要控制过冷程度,只有固液两相的接触面相当大时,固液才能达到平衡;实验过程中就是采取突然搅拌的方式和改变搅拌速度来达到控制过冷程度的目的;寒剂的温度,寒剂温度过高过低都不利于实验的完成;七.金属相图1.试从相律阐明各步冷曲线的形状,并标出相图中各区域的相态;答:对定压下的二组分体系,根据相律可知,;因此,当出现“拐点”时,,则,表明温度可变;当出现“平阶”时,则=0,表明温度和各相组成均不变;对于纯物质,,根据相律可知,当出现“平阶”时,,对单组分体系,没有“拐点”存在;2.为什么制备焊锡时,组成选择在含锡%左右在焊锡中含锡%左右时,焊锡的熔点183℃,这还是焊锡的最低熔点,而液态变成固态的温度也是183℃,这个温度我们称为共晶点,共晶焊锡的特点是在一定温度作用下,由固态到液态,再由液态到固态变化,期间没有固液共存的半融状态;3.各样品的步冷曲线的平台长短为什么不同组成不同,熔化热不同;融化热越多,放热越多,随时间增长温度降低的越迟缓;故融化热越大,样品的步冷曲线水平段越长;4.为什么要缓慢冷却样品作冷不曲线使温度变化均匀,接近平衡态;因为被测体系必须时时处于或接近于相平衡状态才能得到较好的结果;八.双液系气液相图1.操作步骤中,在加入不同数量的各组分时,如发生了微小的偏差,对相图的绘制有无影响为什么答:加入各组分时,如发生了微小的偏差,对相图的绘制无影响,因为最终液体的组成是通过对折光率的测定,在工作曲线上得出,所以无影响2.折射率的测定为什么要在恒定温度下进行答:因为折射率与温度有关,所以在测量时要在两棱镜的周围夹套内通入恒温水,保持恒温;3.影响实验精度的因素之一是回流的好坏;如何使回流进行好它的标志是什么答:要使回流进行好,必须使气液多次充分接触,所以玻璃陶管不可缺,这样沸腾时才能不断撞击水银球,使气液两相平衡;首先保证装置的设计合理,使冷凝管与蒸馏瓶的间距尽可能短些,其次在回流时调整合适的加热状态,使蒸气冷凝的最高部位保持在冷凝管的中间位置上;最后一点是装置的密封性要好;回流效果好的重要标志是在回流状态下温度保持不变,气相冷凝液的组成恒定4.对应某一组成测定沸点及气相冷凝液和液相折射率,如因某中原因缺少其中某一个数据,应如何处理它对相图的绘制是否有影响答:沸点的数据不能少,其它可以少;对于缺少的数据,可由它们的趋势找出其它点;5.正确使用阿贝折射仪要注意些什么答:1将超级恒温槽调到测定所需要之温度20,并将此恒温水通入阿贝折射计的两棱镜恒温夹套中,检查棱镜上的温度计的读数;如被测样品浑浊或有较浓的颜色时,视野较暗,可打开基础棱镜上的圆窗进行测量;2阿贝折射计置于光亮处,但避免阳光直接照射,调节反射镜,使白光射入棱镜;3打开棱镜,滴1~2滴无水乙醇或乙醚在镜面上,用擦镜纸轻轻擦干镜面,再将棱镜轻轻合上;4测量时,用滴管取待测试样,由位于两棱镜上方的加液孔将此被测液体加入两棱镜间的缝隙间,旋紧锁钮,务使被测物体均匀覆盖于两棱镜间镜面上,不可有气泡存在,否则重新取样进行操作;5转棱镜使目镜中能看到半明半暗现象,让明暗界线落在目镜里交叉法线交点上,如有色散现象,可调节消色补偿器,使色散消失,得到清晰的明暗界限;6测完后用擦镜纸擦干棱镜面;6.由所得相图,讨论某一组成的溶液在简单蒸馏中的分离情况答:若组成在0~x之间,蒸馏会得到A和C;若组成在x~1之间,蒸馏将会得到C和B;若组成为x,则蒸馏只会得到恒沸混合物C;。
物化答案

2-18 在一带活塞的绝热容器中有一绝热隔板,隔板的两侧分别为2mol ,0℃的单原子理想气体A 及5mol ,100℃的双原子理想气体B ,两气体的压力均为100 kPa 。
活塞外的压力维持 100kPa 不变。
今将容器内的绝热隔板撤去,使两种气体混合达到平衡态。
求末态温度T 及过程的W ,△U 。
解:单原子理想气体A 的RC mp 25,=,双原子理想气体B 的R C mp 27,=因活塞外的压力维持 100kPa 不变,过程绝热恒压,Q=Q p =△H=0,于是有)15.373(5.17)15.273(50)15.373(275)15.273(2520)15.373)(()()15.273)(()(,,=-⨯+-⨯=-⨯+-⨯=-+-K T K T K T R K T R K T B C B n K T A C A n m p m p于是有 22.5T=7895.875K 得 T=350.93KW -369.3J 2309.4-1940.1J )15.37393.350(23145.855)15.27393.350(23145.832 )15.373)(()()15.273)(()(,,===-⨯⨯⨯+-⨯⨯⨯=-+-=∆J J K T B C B n K T A C A n U m V m V2-34 甲烷与过量50%的空气混合,为使恒压燃烧的最高温度能达2000℃,求燃烧前混合气体应预热到多少摄氏度?计算中N 2、O 2、H 2O (g )、CH 4(g )、CO 2平均定压摩尔热容m p C ,分别为33.47、33.47、41.84、75.31、54.39J 〃mol -1〃K -1,所需其他数据见附录。
1134.802)}81.74()82.241(251.393{)15.298,,()15.298(--⋅-=⋅---+-=∆⋅=∆∑m olkJ m ol kJ K B H K H m f B m r βνθθ11,,,,,,1)/K 15.298(45.553 )}/15.298)(47.332179347.33331.75{( T /K)-15.298()217933(224--⋅-=⋅-⨯+⨯+=⋅++=∆m ol J K T m ol J K T C C C H N m p O m p CH m p298.15)-15.2273()217932(2222,,,,)(,,,,2⋅+++=∆N m p O m p g O H m p CO m p C C C C H 1298.15)}-15.2273()47.332179347.3384.41239.54{( -⋅⋅⨯++⨯+=mol J 181.1084 -⋅=mol kJ0)15.298(H H 21=∆+∆+∆=∆H K H m r θ即 553.45(298.15-T/K )×10-3+(-802.34)+1084.81=0 所以 T=808.15K 或t=535℃。
物化答案

28.314298(0.07110)ln(0.110.910)0.189396500V ⨯=--⨯=20.189396500365r m G nEF J ∆=-=-⨯⨯=- 020.071196500e x p ()e x p ()e x p ()254.38.314298r m G nE FK RTRT∆⨯⨯=-===⨯ 由于365350r m G J ∆=- ,电池反应能够自发。
(2)如果反应为:021AgBr(s)H (p )Ag (s)H Br(0.11m ,0.910)2γ±+=+=则:2200/1/()2ln()ln ()H Br AgBr Ag H Br H Hg H RT a RT E E a p FFpϕϕ+=-=--28.314298(0.07110)ln(0.110.910)0.189396500V ⨯=--⨯=0.18939650018267.5r m G nEF J ∆=-=-⨯=-0.071196500exp()exp()exp()15.958.314298r m G nE F KRTRT∆⨯=-===⨯(3)电池电动势E 是强度性质的物理量,和方程式写法无关,不变;r m G ∆是容量性质的物理量,和反应进度有关,是原来的一半;标准平衡常数是和方程式写法有关的物理量。
1. 在压力为101.325kPa 下,反应)s (Th )s (CaO 2)s (ThO )l (Ca 22+=+在电池中进行时,在1375K 和1275K 的m r G ∆分别是—20.92和—28.48kJ.mol -1。
(1)计算电池反应在1375K 的0K 、0m r G ∆、0m r H ∆和0m r S ∆,并计算电池在该温度恒温可逆操作时的可逆Q 和电功W 。
(2)计算在101.325kPa 时)l (Ca 还原)s (ThO 2所需的最低温度。
解:(1)1375K 时: 00ln 20.92r m r m a r m G G RT Q G kJ ∆=∆+=∆=-331(20.9210)(28.4810)()75.6.13751275r mr mG SJ KT-∂∆-⨯--⨯∆=-=-=-∂-000320.92101375(75.6)124.87r m r m r m H G T S kJ ∆=∆+∆=-⨯+⨯-=-3(20.9210)e x p ()e x p ()6.2348.3141375r m G K RT∆-⨯=-=-=⨯ (2)000r m r m r m G H T S ∆=∆-∆000r m r m r m G H T S ∆≈∆-∆≤3124.8710165275.6r m r mH T K S ∆-⨯≥==∆-第九章 不可逆电极过程1. 当电流通过电池或电解池时,电极将因偏离平衡而发生极化。
物化作业答案

气体的pVT 关系1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:1-5 两个体积均为V 的玻璃球泡之间用细管连接, 泡内密封着标准状况条件下的空气。
若将其中一个球加热到100℃, 另一个球则维持0℃, 忽略连接管中气体体积, 试求该容器内空气的压力。
解:方法一:在题目所给出的条件下, 气体的量不变。
并且设玻璃泡的体积不随温度而变化, 则始态为终态(f )时 ⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=+=f f ff f f f f f f T T T T R Vp T V T V R p n n n ,2,1,1,2,2,1,2,1 kPaT T T T T p T T T T VR n p f f f f i i ff ff f 00.117)15.27315.373(15.27315.27315.373325.1012 2,2,1,2,1,2,1,2,1=+⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=1-7 今有20℃的乙烷-丁烷混合气体, 充入一抽真空的200 cm3容器中, 直至压力达101.325kPa, 测得容器中混合气体的质量为0.3879g 。
试求该混合气体中两种组分的摩尔分数及分压力。
解:设A 为乙烷, B 为丁烷。
mol RT pV n 008315.015.293314.8102001013256=⨯⨯⨯==-B A B B A A y y mol g M y M y n m M 123.580694.30 867.46008315.03897.01+=⋅==+==- (1) 1=+B A y y (2)联立方程(1)与(2)求解得401.0,599.0==B B y ykPap y p kPa p y p B B A A 69.60325.101599.063.40325.101401.0=⨯===⨯==1-11 25℃时饱和了水蒸汽的乙炔气体(即该混合气体中水蒸汽分压力为同温度下水的饱和蒸气压)总压力为138.7kPa, 于恒定总压下泠却到10℃, 使部分水蒸气凝结成水。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 气体的pVT 关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1TT p V p V V T V V ⎪⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系?解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯==每小时90kg 的流量折合p 摩尔数为 133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H Cn/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CH ρ1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm V l O H ==-=ρn=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接管中气体体积,试求该容器内空气的压力。
解:方法一:在题目所给出的条件下,气体的量不变。
并且设玻璃泡的体积不随温度而变化,则始态为 )/(2,2,1i i i i RT V p n n n =+=终态(f )时 ⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=+=f f ff f ff f f f T T T T R Vp T V T V R p n n n ,2,1,1,2,2,1,2,1kPaT T T T T p T T T T VR n p f f f f i i ff f f f 00.117)15.27315.373(15.27315.27315.373325.1012 2,2,1,2,1,2,1,2,1=+⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=1-6 0℃时氯甲烷(CH 3Cl )气体的密度ρ随压力的变化如下。
试作ρ/p —p 图,用外推法求氯甲烷的相对分子质量。
解:将数据处理如下:P/kPa 101.32567.550 50.663 33.77525.331 (ρ/p)/(g ·dm -3·kPa ) 0.022770.02260 0.022500.022420.02237作(ρ/p)对p图当p →0时,(ρ/p)=0.02225,则氯甲烷的相对分子质量为()10529.5015.273314.802225.0/-→⋅=⨯⨯==mol g RT p M p ρ1-7 今有20℃的乙烷-丁烷混合气体,充入一抽真空的200 cm 3容器中,直至压力达101.325kPa ,测得容器中混合气体的质量为0.3879g 。
试求该混合气体中两种组分的摩尔分数及分压力。
解:设A 为乙烷,B 为丁烷。
mol RT pV n 008315.015.293314.8102001013256=⨯⨯⨯==- B A B B A A y y mol g M y M y n m M 123.580694.30 867.46008315.03897.01+=⋅==+==- (1) 1=+B A y y (2)联立方程(1)与(2)求解得401.0,599.0==B B y ykPap y p kPa p y p B B A A 69.60325.101599.063.40325.101401.0=⨯===⨯==1-8 如图所示一带隔板的容器中,两侧分别有同温同压的氢气与氮气,二者均克视为理想气体。
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽去前后,H 2及N 2的摩尔体积是否相同?(3)隔板抽去后,混合气体中H 2及N 2的分压力之比以及它们的分体积各为若干? 解:(1)抽隔板前两侧压力均为p ,温度均为T 。
p dmRT n p dm RT n p N N H H ====33132222 (1) 得:223N H n n =而抽去隔板后,体积为4dm 3,温度为,所以压力为3331444)3(2222dmRT n dm RT n dm RT n n V nRT p N N N N ==+==(2) 比较式(1)、(2),可见抽去隔板后两种气体混合后的压力仍为p 。
(2)抽隔板前,H 2的摩尔体积为p RT V H m /2,=,N 2的摩尔体积p RT V N m /2,=抽去隔板后22222222223n 3 /)3(/H ,,N N N N N N m N H m H n pRT n pRT n p RT n n p nRT V n V n V =+=+==+=Θ总所以有 p RT V H m /2,=,p RT V N m /2,= 可见,隔板抽去前后,H 2及N 2的摩尔体积相同。
(3)41 ,433322222==+=N N N N H y n n n y p p y p p p y p N N H H 41;432222==== 所以有 1:341:43:22==p p p p N H33144134432222dm V y V dm V y V N N H H =⨯===⨯== 1-9 氯乙烯、氯化氢及乙烯构成的混合气体中,各组分的摩尔分数分别为0.89、0.09和0.02。
于恒定压力101.325kPa 条件下,用水吸收掉其中的氯化氢,所得混合气体中增加了分压力为2.670 kPa 的水蒸气。
试求洗涤后的混合气体中C 2H 3Cl 及C 2H 4的分压力。
解:洗涤后的总压为101.325kPa ,所以有kPa p p H C Cl H C 655.98670.2325.1014232=-=+ (1) 02.0/89.0///423242324232===H C Cl H C H C Cl H C H C Cl H C n n y y p p (2)联立式(1)与式(2)求解得kPa p kPa p H C Cl H C 168.2 ;49.964232==1-10 室温下一高压釜内有常压的空气。
为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下向釜内通氮直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。
这种步骤共重复三次。
求釜内最后排气至年恢复常压时其中气体含氧的摩尔分数。
设空气中氧、氮摩尔分数之比为1∶4。
解: 高压釜内有常压的空气的压力为p 常,氧的分压为常p p O 2.02=每次通氮直到4倍于空气的压力,即总压为p=4p 常,第一次置换后釜内氧气的摩尔分数及分压为常常常常p y p p p p pp y O O O O ⨯=⨯=====05.005.042.042.01,1,1,2222 第二次置换后釜内氧气的摩尔分数及分压为常常常常p y p p p p pp y O O O O ⨯=⨯====405.0405.0405.02,2,1,2,2222所以第三次置换后釜内氧气的摩尔分数%313.000313.01605.04)4/05.0(2,3,22=====常常p p pp y O O 1-11 25℃时饱和了水蒸汽的乙炔气体(即该混合气体中水蒸汽分压力为同温度下水的饱和蒸气压)总压力为138.7kPa ,于恒定总压下泠却到10℃,使部分水蒸气凝结成水。
试求每摩尔干乙炔气在该泠却过程中凝结出水的物质的量。
已知25℃及10℃时水的饱和蒸气压分别为 3.17kPa 和1.23kPa 。
解:p y p B B =,故有)/(///B B A B A B A B p p p n n y y p p -=== 所以,每摩尔干乙炔气含有水蒸气的物质的量为 进口处:)(02339.017.37.13817.3222222mol p p n n H C O H H C O H =-=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛进进 出口处:)(008947.01237.138123222222mol p p n n H C O H H C O H =-=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛出出 每摩尔干乙炔气在该泠却过程中凝结出的水的物质的量为 0.02339-0.008974=0.01444(mol )1-12 有某温度下的2dm 3湿空气,其压力为101.325kPa ,相对湿度为60%。
设空气中O 2和N 2的体积分数分别为0.21和0.79,求水蒸气、O 2和N 2的分体积。
已知该温度下水的饱和蒸气压为20.55kPa (相对湿度即该温度下水蒸气分压与水的饱和蒸气压之比)。
解:水蒸气分压=水的饱和蒸气压×0.60=20.55kPa ×0.60=12.33 kPa O 2分压=(101.325-12.33 )×0.21=18.69kPa N 2分压=(101.325-12.33 )×0.79=70.31kPa 33688.02325.10169.18222dm V p p V y V O O O =⨯===33878.12325.10131.70222dm V pp V y V N N N =⨯===32434.02325.10133.12222dm V pp V y V OH O H O H =⨯===1-13 一密闭刚性容器中充满了空气,并有少量的水,当容器于300K 条件下达到平衡时,器内压力为101.325kPa 。
若把该容器移至373.15K 的沸水中,试求容器中达到新的平衡时应有的压力。