有机物极性及溶解性解读

合集下载

有机溶剂的极性与溶解度的计算

有机溶剂的极性与溶解度的计算

有机溶剂的极性与溶解度的计算在化学领域中,溶解度是指在一定温度和压力下溶液中最大能溶解的物质量,常用质量分数或摩尔分数来表示。

溶解度的计算对于化学实验、工业生产以及药物研发具有重要意义。

本文将探讨有机溶剂的极性与溶解度之间的关系,并介绍一些计算溶解度的方法。

有机溶剂的极性是指溶剂分子中极性键的数量和强度。

极性键是由原子间的电荷差异引起的化学键,如两个原子间的电负性差异较大。

一般来说,带有电子云分布不均匀的分子更加极性。

极性溶剂可以与带电离子或者带电部分形成静电相互作用,从而溶解离子化合物或极性化合物。

相反,非极性溶剂则倾向于溶解非极性或者低极性的物质。

当我们需要计算有机溶剂的溶解度时,可以考虑以下几个因素:1. 溶剂极性与溶质极性的匹配:通常来说,极性溶剂更适合溶解极性溶质,而非极性溶剂更适合溶解非极性溶质。

这是因为溶剂和溶质之间极性相近时,静电相互作用更强,有利于溶解。

2. 溶剂分子的结构:溶剂分子的结构也会影响其溶解能力。

在一般情况下,较大的溶剂分子对溶解性的提高有利,因为它们具有更多的接触面积,可以与更多的溶质分子发生相互作用。

3. 温度和压力:温度和压力是影响溶解度的重要因素。

温度升高会增加溶质的动力学能量,有利于其在溶剂中溶解。

而压力的增加可以促进溶质与溶剂间的相互作用,从而提高溶解度。

在计算有机溶剂的溶解度时,可以使用一些常见的方法:1. 溶解度参数法:溶解度参数法是一种基于物质属性的经验方法,通过实验数据拟合得到溶剂和溶质的参数,从而预测溶解度。

这些参数包括极性参数、氢键参数和键键参数等。

2. 分子力场模拟:分子力场模拟是使用计算机模拟方法研究溶质和溶剂之间相互作用的方法。

通过构建溶质和溶剂分子的三维结构,并根据它们之间的相互作用力场进行计算,可以预测溶解度。

3. 溶解度预测软件:目前,有一些商业软件可以根据分子结构,使用量化构效关系(QSAR)的方法预测化合物的溶解度。

这些软件使用了大量的实验数据和统计学算法,提供了便捷且准确的溶解度预测。

有机化学基础知识点有机物的溶解性和溶解度

有机化学基础知识点有机物的溶解性和溶解度

有机化学基础知识点有机物的溶解性和溶解度有机化学基础知识点:有机物的溶解性和溶解度有机化学是研究含有碳元素的化合物的科学,是化学中的重要分支之一。

在有机化学中,有机物的溶解性和溶解度是两个重要的概念。

本文将介绍有机物的溶解性和溶解度的定义、影响因素以及实际应用。

一、有机物的溶解性有机物的溶解性是指有机物能否溶解于某一给定溶剂中的性质。

溶解性的大小取决于溶剂和溶质之间的相互作用力。

如果有机物和溶剂之间的相互作用力较强,溶解性就较大;相反,如果相互作用力较弱,溶解性就较小。

溶解性常用溶解度来表示,即单位溶剂中能溶解单位溶质的物质的量。

溶解度的大小与溶剂和溶质的性质有关,通常采用摩尔溶解度(mol/L)或质量溶解度(g/L)来表示。

二、影响有机物溶解性的因素1. 分子极性:极性溶质通常易溶于极性溶剂,而非极性溶质倾向于溶解于非极性溶剂。

这是由于极性分子之间的吸引力较强,有利于溶解。

2. 温度:一般情况下,溶解度随温度的升高而增加。

这是因为温度升高会增加分子间的热运动,从而使溶质分子能够克服相互作用力更容易进入溶液。

3. 压力:对固体或气体溶质来说,压力对溶解度影响较大。

根据Henry定律,气体的溶解度随压力的增加而增加,固体溶质的溶解度一般不受压力的影响。

4. 溶剂的选择:不同的有机物需要选择适合其溶解的溶剂。

例如,极性有机物通常溶解于极性溶剂(如水、乙醇等),而非极性有机物溶解于非极性溶剂(如石油醚、甲醇等)。

三、有机物的溶解度有机物的溶解度是指在一定温度下,有机物在溶剂中能达到的最大溶解度。

溶解度可用实验测定或计算得出,通过溶解度可以了解有机物的溶解特性,预测其在溶液中的行为。

不同有机物的溶解度差异较大,主要与分子结构相关。

常用的溶解度规律包括:"相似溶剂溶解相似溶质"原则、"极性溶剂溶解极性溶质"原则以及"类似结构的有机物溶解性相似"原则。

有机物溶于水的判断

有机物溶于水的判断

有机物溶于水的判断有机物是大自然中的一种有机化合物,其分子中含有碳、氢和氧原子,是生物体内、石油和天然气中的重要成分。

由于有机物分子结构的复杂性和多样性,它们在水中的溶解性也是各不相同的,一些有机物可以完全溶于水,而其他有机物却难以溶解。

本文将对有机物在水中溶解的判断方法进行介绍,希望对读者有所帮助。

有机物在水中溶解的影响因素1.分子的极性。

与水分子形成氢键的极性分子具有较好的水溶性,无极性分子和非极性分子则溶解度较差。

2.分子的大小和形状。

相对较小的分子和形状相对规则的分子容易溶解于水中,而过大或者过于复杂的分子则会降低其水溶性。

3.分子中含有的官能团。

如羟基、羰基、酸基等极性官能团,容易与水分子发生作用而有较好的溶解性。

基于以上因素,有机物在水中的溶解度可分为以下几类:可溶性:分子中含有较多的水溶性官能团,如醇、羧酸、酯等。

这些物质能很快地溶解于水中,且溶解度随温度升高而增加。

难溶性:分子中只含有部分极性官能团,如醛、酮等,其在水中的溶解度相对较低。

1.完全溶于水的有机物。

一般来说,这类有机物的分子中含有多种极性官能团,如乙醇、甲醛等,能够与水分子形成较强的氢键而容易溶解于水中。

这类物质通常具有较好的水溶性,且能够形成均相透明的溶液。

3.不溶于水的有机物。

这类有机物的分子中没有极性官能团,如矿物油、硅油等,其在水中难以溶解,即使是搅拌或加热也很难使其分散于水中形成均相溶液。

判断有机物在水中的溶解性,需要根据化合物的分子结构进行综合分析。

一般来说,具有氧、氮、硫等元素官能团的分子具有较好的水溶性。

而具有较长的碳链或不含官能团的分子则较难溶解于水中。

总之,有机物在水中的溶解度与其分子中含有的官能团、分子的大小和形状等因素密切相关。

我们可以通过观察化合物的性质和结构来判断有机物在水中的溶解性。

由于有机物的种类繁多,因此正确判断有机物的溶解性需要对化学专业知识有一定了解。

有机化学基础知识点整理有机分子的溶解度和极性的关系研究

有机化学基础知识点整理有机分子的溶解度和极性的关系研究

有机化学基础知识点整理有机分子的溶解度和极性的关系研究有机化学基础知识点整理——有机分子的溶解度和极性的关系研究有机化学是研究有机化合物的结构、性质、合成和反应的一门学科。

其中,有机分子的溶解度和极性是非常重要的性质之一。

本文将对有机分子的溶解度和极性之间的关系进行研究和整理,以加深我们对有机分子性质的认识。

一、有机分子溶解度的影响因素有机分子的溶解度受到多种因素的影响,包括分子的结构、极性和溶剂性质等。

下面我们将从这几个方面对其影响因素进行具体讨论。

1. 分子的结构分子的结构对其溶解度有着重要的影响。

一般来说,极性大的分子更容易溶解在极性溶剂中,而非极性的分子则更容易溶解在非极性溶剂中。

这是因为溶质和溶剂之间会发生相互作用,如极性分子与极性溶剂之间会发生静电引力作用,而非极性分子则会通过分子间力(如范德华力)与非极性溶剂发生相互作用。

2. 分子的极性分子的极性是其溶解度的另一个重要因素。

极性分子通常具有极性键或偶极矩,如醇类、酮类、羧酸等。

这些极性分子通常可以形成氢键或离子键等强相互作用,从而提高其在极性溶剂中的溶解度。

而非极性分子如烃类、醚类等则通常溶解度较低。

3. 溶剂性质溶剂的性质也会对有机分子的溶解度产生影响。

极性溶剂如水、醇类溶剂等通常溶解度较高,而非极性溶剂如烃类溶剂、醚类溶剂等溶解度较低。

然而,并非所有情况下溶质只溶解在极性溶剂中,非极性溶剂也可以适用于一些非极性分子的溶解。

二、溶解度与分子结构的关系了解有机分子的溶解度与其分子结构之间的关系对于合理选择溶剂以及进行有机化合物的分离和提纯具有重要意义。

1. 极性和溶解度极性是有机分子溶解度的重要判据之一。

通常来说,具有较高极性的有机分子更容易溶解于具有相似极性的溶剂中。

例如,极性较大的醇类化合物,由于其具有氢键和偶极矩等特性,常溶解于极性较高的溶剂如水和醇类溶剂中。

2. 溶质和溶剂之间的相互作用溶质和溶剂之间的相互作用对溶解度也有重要影响。

有机化合物的溶解度与分子极性的关系

有机化合物的溶解度与分子极性的关系

有机化合物的溶解度与分子极性的关系
溶解度是指某物质可以溶解在某种溶剂中的能力。

有机化合物的溶解性与其分子极性有关。

一般来说,极性的分子能够与极性的溶剂(比如水)结合,从而使得它们易于溶解。

而非
极性的分子(比如烃类分子)则不能与极性的溶剂结合,所以溶解度较低。

由此可见,有
机分子极性(正负电荷分配)与其在溶剂中的溶解性有关。

极性分子能够与极性溶剂结合,因为它们之间存在置换作用(氢相互作用),这就使得它们在溶剂中溶解。

这种吸附作用由氢键及其它类似的化学作用构成,是水分子之间形成的。

由此,水分子可以与带正电荷的基团分子成氢键,而极性有机分子(如糖、醇、酸、羧酸
基团等)也能与水分子形成氢键,从而使得某种有机化合物能溶于水中。

相反,烃类分子
由于其分子组成均为非极性,暂时没有氢键形成的可能性,所以它们在水溶液中的溶解度
比较低。

总的来说,有机化合物的溶解度与其分子极性密切相关。

极性分子的溶解度比非极性分子要高得多,因为它们能够与极性溶剂(水)结合,形成氢键。

而非极性分子(烃类)则没
有形成氢键的可能,所以它们所溶解的能力较差。

因此,有机化合物的溶解度与分子极性
密切相关,也就是说,有机分子的极性越强,其溶解度也就越高。

有机物的溶解性规律解读

有机物的溶解性规律解读

有机物的溶解性规律一、相似相溶原理1.极性溶剂(如水)易溶解极性物质(离子晶体、分子晶体中的极性物质如强酸等);2.非极性溶剂(如苯、汽油、四氯化碳、酒精等)能溶解非极性物质(大多数有机物、Br2、I2等);3.含有相同官能团的物质互溶,如水中含羟基(—OH)能溶解含有羟基的醇、酚、羧酸。

二、有机物的溶解性与官能团的溶解性1.官能团的溶解性:(1)易溶于水的官能团(即亲水基团)有—OH、—CHO、—COOH、—NH2。

(2)难溶于水的官能团(即憎水基团)有:所有的烃基(—CnH2n+1、—CH=CH2、—C6H5等)、卤原子(—X)、硝基(—NO2)等。

2.分子中亲水基团与憎水基团的比例影响物质的溶解性:(1)当官能团的个数相同时,随着烃基(憎水基团)碳原子数目的增大,溶解性逐渐降低;例如,溶解性:CH3OH>C2H5OH>C3H7OH>……,一般地,碳原子个数大于5的醇难溶于水。

(2)当烃基中碳原子数相同时,亲水基团的个数越多,物质的溶解性越大;例如,溶解性:CH3CH2CH2OH<CH3CH(OH)CH2OH<CH2(OH)CH(OH)CH2OH。

(3)当亲水基团与憎水基团对溶解性的影响大致相同时,物质微溶于水;例如,常见的微溶于水的物质有:苯酚C6H5—OH、苯胺C6H5—NH2、苯甲酸C6H5—COOH、正戊醇CH3CH2CH2CH2CH2—OH(上述物质的结构简式中“—”左边的为憎水基团,右边的为亲水基团);乙酸乙酯CH3COOCH2CH3(其中—CH3和—CH2CH3为憎水基团,—COO—为亲水基团)。

(4)由两种憎水基团组成的物质,一定难溶于水。

例如,卤代烃R-X、硝基化合物R-NO2 ,由于其中的烃基R—、卤原子—X 和硝基—NO2均为憎水基团,故均难溶于水。

三、液态有机物的密度1.难溶于水,且密度小于水的有机物例如,液态烃(乙烷、乙烯、苯、苯的同系物……),液态酯(乙酸乙酯、硬脂酸甘油酯……),一氯卤代烷烃(1-氯乙烷……),石油产品(汽油、煤油、油脂……)注:汽油产品分为直馏汽油和裂化汽油(含不饱和烃)。

有机物的溶解性规律

有机物的溶解性规律

有机物的溶解性规律一、相似相溶原理1.极性溶剂(如水)易溶解极性物质(离子晶体、分子晶体中的极性物质如强酸等);非极性溶剂(有机溶剂如苯、汽油、四氯化碳、酒清等)能溶解非极性物质(大多数有机物、Br2、I2等);2.含有相同官能团的物质互溶,如水中含羟基(—OH)能溶解含有羟基的醇、酚、羧酸。

二、有机物的溶解性与官能团的溶解性1.官能团的溶解性:(1)易溶于水的官能团(即亲水基团)有:—OH、—CHO、—COOH、、—NH2。

(2)难溶于水的官能团(即憎水基团)有:所有的烃基(—CnH2n+1、—CH=CH2、—C6H5等)、卤原子(—X)、硝基(—NO2)等。

2.分子中亲水基团与憎水基团的比例影响物质的溶解性:(1)当官能团的个数相同时,随着烃基(憎水基团)碳原子数目的增大,溶解度逐渐降低;例如,溶解度CH2OH>C2H5OH>C3H7OH>……,一般地,碳原子个数大于5的醇难溶于水。

(2)当烃基中碳原子数相同时,亲水基团的个数越多,物质的解度越大;。

例如,溶解度:CH3CH2CH2OH<CH3CH(OH)CH2OH<CH2(OH)CH(OH)CH2OH(3)当亲水基团与憎水基团的对溶解度的影响大致相同时,物质微溶于水;例如,常见的微溶于水的物质有:苯酚C6H5—OH、苯胺C6H5—NH2、安息香酸(苯甲酸)C6H5—COOH、正戊醇CH3CH2CH2CH2CH2—OH(上述物质的结构简式中“—”左边的为憎水基团,右边的为亲水基团);乙酸乙酯CH3COOCH2CH3(其中—CH3和—CH2CH3为憎水基团,为亲水基团)。

(4)由两种憎水基团组成的物质,一定难溶于水。

例如,卤代烃R-X、硝基化合物R-NO2,由于其中的烃基R&shy;—、卤原子—X和硝基—NO2均为憎水基团,故均难溶于水一:溶剂极性参数表,方便以下比较展开剂。

环已烷:-0.2、石油醚(Ⅰ类,30~60℃)、石油醚(Ⅱ类,60~90℃)、正已烷:0.0、甲苯:2.4、二甲苯:2.5、苯:2.7、二氯甲烷:3.1、异丙醇:3.9、正丁醇:3.9、四氢呋喃:4.0、氯仿:4.1、乙醇:4.3、乙酸乙酯:4.4、甲醇:5.1、丙酮:5.1、乙腈:5.8、乙酸:6.0、水:10.2 数值越大,极性越大二:常用溶剂的沸点、溶解性和毒性溶剂名称沸点℃(101.3kPa) 溶解性毒性液氨-33.35 能溶解碱金属和碱土金属剧毒性、腐蚀性液态二氧化硫-10.08 溶解胺、醚、醇苯酚、有机酸、芳香烃、溴、二硫化碳,多数饱和烃不溶剧毒甲胺-6.3 是多数有机物和无机物的优良溶剂,液态甲胺与水、醚、苯、丙酮、低级醇混溶,其盐酸盐易溶于水,不溶于、醚、酮、氯仿、乙酸乙酯中等毒性,易燃二甲胺7.4 是有机物和无机物的优良溶剂,溶于水、低级醇、醚、低极性溶剂强烈刺激性石油醚不溶于水,与丙酮、乙醚、乙酸乙酯、苯、氯仿及甲醇以上高级醇混溶与低级烷相似乙醚34.6 微溶于水,易溶与盐酸.与醇、醚、石油醚、苯、氯仿等多数有机溶剂混溶麻醉性戊烷36.1 与乙醇、乙醚等多数有机溶剂混溶低毒性二氯甲烷39.75 与醇、醚、氯仿、苯、二硫化碳等有机溶剂混溶低毒,麻醉性强二硫化碳46.23 微溶与水,与多种有机溶剂混溶麻醉,强刺激性丙酮56.12 与水、醇、醚、烃混溶低毒,类乙醇,但较大1,1-二氯乙烷57.28 与醇、醚等大多数有机溶剂混溶低毒、局部刺激性氯仿61.15 与乙醇、乙醚、石油醚、卤代烃、四氯化碳、二硫化碳等混溶中等毒性,强麻醉性甲醇64.5 与水、乙醚、醇、酯、卤代烃、苯、酮混溶中等毒性,麻醉性四氢呋喃66 优良溶剂,与水混溶,很好的溶解乙醇、乙醚、脂肪烃、芳香烃、氯化烃吸入微毒,经口低毒己烷68.7 甲醇部分溶解,比乙醇高的醇、醚丙酮、氯仿混溶低毒,麻醉性,刺激性三氟代乙酸71.78 与水,乙醇,乙醚,丙酮,苯,四氯化碳,己烷混溶,溶解多种脂肪族,芳香族化合物1,1,1-三氯乙烷74.0 与丙酮、甲醇、乙醚、苯、四氯化碳等有机溶剂混溶低毒四氯化碳76.75 与醇、醚、石油醚、石油脑、冰醋酸、二硫化碳、氯代烃混溶氯代甲烷中,毒性最强乙酸乙酯77.112 与醇、醚、氯仿、丙酮、苯等大多数有机溶剂溶解,能溶解某些金属盐低毒,麻醉性乙醇78.3 与水、乙醚、氯仿、酯、烃类衍生物等有机溶剂混溶微毒类,麻醉性丁酮79.64 与丙酮相似,与醇、醚、苯等大多数有机溶剂混溶低毒,毒性强于丙酮苯80.10 难溶于水,与甘油、乙二醇、乙醇、氯仿、乙醚、、四氯化碳、二硫化碳、丙酮、甲苯、二甲苯、冰醋酸、脂肪烃等大多有机物混溶强烈毒性环己烷80.72 与乙醇、高级醇、醚、丙酮、烃、氯代烃、高级脂肪酸、胺类混溶低毒,中枢抑制作用乙睛81.60 与水、甲醇、乙酸甲酯、乙酸乙酯、丙酮、醚、氯仿、四氯化碳、氯乙烯及各种不饱和烃混溶,但是不与饱和烃混溶中等毒性,大量吸入蒸气,引起急性中毒异丙醇82.40 与乙醇、乙醚、氯仿、水混溶微毒,类似乙醇1,2-二氯乙烷83.48 与乙醇、乙醚、氯仿、四氯化碳等多种有机溶剂混溶高毒性、致癌乙二醇二甲醚85.2 溶于水,与醇、醚、酮、酯、烃、氯代烃等多种有机溶剂混溶, 能溶解各种树脂,还是二氧化硫、氯代甲烷、乙烯等气体的优良溶剂吸入和经口低毒三氯乙烯87.19 不溶于水,与乙醇、乙醚、丙酮、苯、乙酸乙酯、脂肪族氯代烃、汽油混溶有机有毒品三乙胺89.6 水:18.7以下混溶,以上微溶, 易溶于氯仿、丙酮,溶于乙醇、乙醚易爆,皮肤黏膜刺激性强丙睛97.35 溶解醇、醚、DMF、乙二胺等有机物,与多种金属盐形成加成有机物高毒性,与氢氰酸相似庚烷98.4 与己烷类似低毒,刺激性、麻醉性水100 略略硝基甲烷101.2 与醇、醚、四氯化碳、DMF、等混溶麻醉性,刺激性1,4-二氧六环101.32 能与水及多数有机溶剂混溶,仍溶解能力很强微毒,强于乙醚2~3倍甲苯110.63 不溶于水,与甲醇、乙醇、氯仿、丙酮、乙醚、冰醋酸、苯等有机溶剂混溶低毒类,麻醉作用硝基乙烷114.0 与醇、醚、氯仿混溶,溶解多种树脂和纤维素衍生物局部刺激性较强吡啶115.3 与水、醇、醚、石油醚、苯、油类混溶, 能溶多种有机物和无机物低毒,皮肤黏膜刺激性4-甲基-2-戊酮115.9 能与乙醇、乙醚、苯等大多数有机溶剂和动植物油相混溶毒性和局部刺激性较强乙二胺117.26 溶于水、乙醇、苯和乙醚,微溶于庚烷刺激皮肤、眼睛丁醇117.7 与醇、醚、苯混溶低毒,大于乙醇3倍乙酸118.1 与水、乙醇、乙醚、四氯化碳混溶,不溶于二硫化碳及C12以上高级脂肪烃低毒,浓溶液毒性强乙二醇一甲醚124.6 与水、醛、醚、苯、乙二醇、丙酮、四氯化碳、DMF等混溶低毒类辛烷125.67 几乎不溶于水,微溶于乙醇,与醚、丙酮、石油醚、苯、氯仿、汽油混溶低毒性,麻醉性乙酸丁酯126.11 优良有机溶剂,广泛应用于医药行业,还可以用做萃取剂一般条件毒性不大吗啉128.94 溶解能力强,超过二氧六环、苯、和吡啶,与水混溶,溶解丙酮、苯、乙醚、甲醇、乙醇、乙二醇、2-己酮、蓖麻油、松节油、松脂等腐蚀皮肤,刺激眼和结膜,蒸汽引起肝肾病变氯苯131.69 能与醇、醚、脂肪烃、芳香烃、和有机氯化物等多种有机溶剂混溶低于苯,损害中枢系统乙二醇一乙醚135.6 与乙二醇一甲醚相似,但是极性小,与水、醇、醚、四氯化碳、丙酮混溶低毒类,二级易燃液体对二甲苯138.35 不溶于水,与醇、醚和其他有机溶剂混溶一级易燃液体二甲苯138.5~141.5 不溶于水,与乙醇、乙醚、苯、烃等有机溶剂混溶,乙二醇、甲醇、2-氯乙醇等极性溶剂部分溶解一级易燃液体,低毒类间二甲苯139.10 不溶于水,与醇、醚、氯仿混溶,室温下溶解乙睛、DMF等一级易燃液体醋酸酐140.0邻二甲苯144.41 不溶于水,与乙醇、乙醚、氯仿等混溶一级易燃液体N,N-二甲基甲酰胺153.0 与水、醇、醚、酮、不饱和烃、芳香烃烃等混溶,溶解能力强低毒环己酮155.65 与甲醇、乙醇、苯、丙酮、己烷、乙醚、硝基苯、石油脑、二甲苯、乙二醇、乙酸异戊酯、二乙胺及其他多种有机溶剂混溶低毒类,有麻醉性,中毒几率比较小环己醇161 与醇、醚、二硫化碳、丙酮、氯仿、苯、脂肪烃、芳香烃、卤代烃混溶低毒,无血液毒性,刺激性N,N-二甲基乙酰胺166.1 溶解不饱和脂肪烃,与水、醚、酯、酮、芳香族化合物混溶微毒类糠醛161.8 与醇、醚、氯仿、丙酮、苯等混溶,部分溶解低沸点脂肪烃,无机物一般不溶有毒品,刺激眼睛,催泪N-甲基甲酰胺180~185 与苯混溶,溶于水和醇,不溶于醚一级易燃液体苯酚(石炭酸)181.2 溶于乙醇、乙醚、乙酸、甘油、氯仿、二硫化碳和苯等,难溶于烃类溶剂,65.3℃以上与水混溶,65.3℃以下分层高毒类,对皮肤、黏膜有强烈腐蚀性,可经皮吸收中毒1,2-丙二醇187.3 与水、乙醇、乙醚、氯仿、丙酮等多种有机溶剂混溶低毒,吸湿,不宜静注二甲亚砜189.0 与水、甲醇、乙醇、乙二醇、甘油、乙醛、丙酮乙酸乙酯吡啶、芳烃混溶微毒,对眼有刺激性邻甲酚190.95 微溶于水,能与乙醇、乙醚、苯、氯仿、乙二醇、甘油等混溶参照甲酚N,N-二甲基苯胺193 微溶于水,能随水蒸气挥发,与醇、醚、氯仿、苯等混溶,能溶解多种有机物抑制中枢和循环系统,经皮肤吸收中毒乙二醇197.85 与水、乙醇、丙酮、乙酸、甘油、吡啶混溶,与氯仿、乙醚、苯、二硫化碳等难溶,对烃类、卤代烃不溶,溶解食盐、氯化锌等无机物低毒类,可经皮肤吸收中毒对甲酚201.88 参照甲酚参照甲酚N-甲基吡咯烷酮202 与水混溶,除低级脂肪烃可以溶解大多无机,有机物,极性气体,高分子化合物毒性低,不可内服间甲酚202.7 参照甲酚与甲酚相似,参照甲酚苄醇205.45 与乙醇、乙醚、氯仿混溶,20℃在水中溶解 3.8%(wt) 低毒,黏膜刺激性甲酚210 微溶于水,能于乙醇、乙醚、苯、氯仿、乙二醇、甘油等混溶低毒类,腐蚀性,与苯酚相似甲酰胺210.5 与水、醇、乙二醇、丙酮、乙酸、二氧六环、甘油、苯酚混溶,几乎不溶于脂肪烃、芳香烃、醚、卤代烃、氯苯、硝基苯等皮肤、黏膜刺激性、经皮肤吸收硝基苯210.9 几乎不溶于水,与醇、醚、苯等有机物混溶,对有机物溶解能力强剧毒,可经皮肤吸收乙酰胺221.15 溶于水、醇、吡啶、氯仿、甘油、热苯、丁酮、丁醇、苄醇,微溶于乙醚毒性较低六甲基磷酸三酰胺(HMTA)233 与水混溶,与氯仿络合,溶于醇、醚、酯、苯、酮、烃、卤代烃等较大毒性喹啉237.10 溶于热水、稀酸、乙醇、乙醚、丙酮、苯、氯仿、二硫化碳等中等毒性,刺激皮肤和眼乙二醇碳酸酯238 与热水,醇,苯,醚,乙酸乙酯,乙酸混溶,干燥醚,四氯化碳,石油醚,CCl4中不溶毒性低二甘醇244.8 与水、乙醇、乙二醇、丙酮、氯仿、糠醛混溶,与乙醚、四氯化碳等不混溶微毒,经皮吸收,刺激性小丁二睛267 溶于水,易溶于乙醇和乙醚,微溶于二硫化碳、己烷中等毒性环丁砜287.3 几乎能与所有有机溶剂混溶,除脂肪烃外能溶解大多数有机物甘油290.0 与水、乙醇混溶,不溶于乙醚、氯仿、二硫化碳、苯、四氯化碳、石油醚食用对人体无毒三、试剂极性从小到大:烷、烯、醚、酯、酮、醛、胺、醇和酚、酸(己烷-石油醚、苯、乙醚、氯仿、乙酸乙酯、正丁醇、丙酮、乙醇、甲醇、水)。

常用有机溶剂性质(极性、沸点、溶解性等)

常用有机溶剂性质(极性、沸点、溶解性等)

常用有机溶剂性质粘度(20℃)/mPa·s; —介电常数名称沸点密度粘度波长极性E T(30) 介电分子量溶解性水100 1 1 268 10.2 63.1 58.8 18二甲亚砜189 2.24 268 7.2 45 48.9 78.14 DMSO能与水、醇、醚、丙酮、乙醛、吡啶、乙酸乙酯等混溶,不溶于乙炔以外的脂肪烃化合物乙二醇197 1.1155 19.9 210 6.9 56.3 26.33 62.07 与水/乙醇/丙酮/醋酸甘油吡啶等混溶,微溶于醚等,不溶于石油烃及油类.能够溶解氯化锌/氯化钠/碳酸钾/氯化钾/碘化钾/氢氧化钾等无机物.甲醇64.9 0.7914 0.6 210 6.6 55.5 32.6 32.04 溶于水、乙醇、乙醚、苯等二甲基甲酰胺152.8 0.92 270 6.4 43.8 36.71 73.10 能和水及大部分有机溶剂互溶,是高沸点的极性(亲水性)非质子性溶剂,能促进SN2反应机构的进行苯胺184 4.4 - 6.3 44.3 6.98乙酸118 1.28 230 6.2 51.9 6.19乙腈81.1 0.37 210 6.2 46 37.5 41.05 相对密度0.79,与水混溶,溶于醇等多数有机溶剂硝基甲烷101 0.67 330 6 46.3 38.6丙酮56.5 0.32 330 5.4 42.2 20.5 58.08 与水、乙醇、氯仿、乙醚及多种油类混溶吡啶115 0.97 305 5.3 40.2 12.3二恶烷; 二氧六环102 1.04 1.54 220 4.8 36 2.21 88.11 与水混溶,可混溶于多数有机溶剂2-丁酮80 0.8054 0.43 330 4.5 72.11 甲基乙基酮能溶于4份水中,但温度升高时溶解度降低,20℃时,水中溶解度26.8%(w),水在2-丁酮中的溶解度11.8%(w)。

溶于乙醇和乙醚,可与油混溶。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课外毒物
有机物极性及溶解性的教学讨论
有机化合物大多难溶于水,易溶于汽油、苯、酒精等有机溶剂。

原因何在?
中学课本、大学课本均对此进行了解释。

尽管措词不同,但中心内容不外乎是:有机化合物一般是非极性或弱极性的,它们难溶于极性较强的水,易溶于非极性的汽油或弱极性的酒精等有机溶剂。

汽油的极性在课本中均未做详细说明,故而在教学中常常做如下解释:所有的烷烃,由于其中的O键的极性极小,以及结构是对称的,所以其分子的偶极矩为零,它是一非极性分子。

烷烃易溶于非极性溶剂,如碳氢化合物、四氯化碳等。

以烷烃为主要成分的汽油也就不具有极性了。

确切而言,上述说法是不够严格的。

我们知道,分子的极性(永久烷极)是由其中正、负电荷的“重心”是否重合所引起的。

根据其分子在空间是否绝对对称来判定极性,化学键极性的向量和——弱极矩μ则是其极性大小的客观标度. 常见烷烃中,CH4、C2H6分子无极性,C3H8是折线型分子,键的极性不能相互完全抵消,其μ≠为0.084D。

至于其它不含支链的烷烃,分子中碳原子数为奇数时,一定不完全对称而具有极性;分子中碳原子数为偶数时,仅当碳原子为处于同一平面的锯齿状排布的反交叉式时,分子中键的极性才能相互完全抵消,偶极矩为零,但由于分子中C—C键可以旋转,烷烃分子(除
CH4)具有许多构象,而上述极规则的锯齿状反交叉式仅是其无数构象“平衡混合物”中的一种,所以,从整体来说,除CH4、C2H6外,不带支链的烷烃均有极性。

带有支链的烷烃,也仅有CH4、C2H6等分子中H原子被—CH3完全取代后的产物尽其用,2—二甲基丙烷、2,2,3,3—四甲基丁烷等少数分子不显极性,余者绝大多数都有一定的极性。

由于烷烃中碳原子均以SP3杂化方式成键,键的极性很小,加上其分子中化学键的键角均接近于109°28′,有较好的对称性(但非绝对对称)故分子的极性很弱,其偶极矩一般小于0.1D. 烷烃中,乙烯分子无极性,丙烯分子,1—丁烯分子均不以双键对称,μ分别为0.336D、0.34D。

2—丁烷,顺—2—丁烯的μ=0.33D,反—2—丁烯的偶极矩为零,即仅以C=C对称的反式烯烃分子偶极矩为零(当分子中C原子数≥6时,由于C-CO键旋转,产生不同的构象,有可能引起μ的变化),含奇数碳原子的烯径不可能以C=C绝对对称,故分子均有极性。

二烯烃中,丙二烯(通常不能稳定存在)、1、3一丁二烯分子无极性,1、2一丁二烯分子μ为0.408D,2—甲基一1,3—丁二烯(异戊二烯)分子也为极性分子。

炔烃中,乙炔、2—丁炔中C原子均在一条直线上,分子以C—C对称,无极性,但丙炔、1—丁炔分子不对称,其极性较大,μ分
课外毒物
别为0.78D和0.80D。

芳香烃中,苯无极性,甲苯、乙苯有极性,μ分别为0.36D、0.59D;二甲苯中除对一二甲苯外的另两种同分异构体分子不对称,为极性分子,显而易见,三甲苯中之间一三甲苯分子的μ为零,联苯、萘的分子也无极性。

综上所述,烃的分子有无极性仍是取决于各自的对称程度是否将键的极性完全抵消。

当某分子并不因其中C—CO键的旋转而引起碳干排布不同的构象时,构型则绝对对称,分子无极性。

将其分子中H原子全部用——CH3所替代,分子的偶极矩仍为零。

作为以烷烃为主要成分的汽油、石蜡,其中可能含有非极性的分子构象,但从整体来说,同绝大多数烃的分子一样,它们也是具有极性的,只是由于其中C—H键的极性极弱,其偶极矩极小。

烃类的偶极矩一般小于1D,在不饱和烃中尚有以
Sp2、Sp杂化方式成键的碳原子,键的极性及分子的极性均较相应的饱和烃强,炔烃的极性较烯烃强。

至于烃的衍生物,常见的除四卤化碳,六卤乙烷、四卤乙烷、对一二卤苯、对一二硝基苯、间一三卤苯等非极性的烃分子中氢原子或—CH3被其它原子或原子团全部或部分以完全对称的方式所取代的产物等少数物质外,多数都具有极性,分子的偶极矩较相应的烃大,一般大于1D。

由此可见,有机物的分子除少数为非极性分子外,大多数是具有极性的。

其偶极矩不小还比水大,如一氯甲烷为1.87D、一氯乙烷为2.05D、溴苯为
1.70D、乙醛为
2.69D、丙酮为2.88D、硝基酸为4.22D、乙醇为16.9D,有机物的极性并不都很弱。

当然,与无机物相比较,有机物是弱极性,作为常见的有机物之一的汽油,尽管其主要成分的偶极矩不大,在教学中往往将汽油及烷烃等视为非极性的。

但烷烃等有无极性是个是非问题,在教学中尤其在师范除校化学专业的教学中,不宜进行如此处理而不加任何说明。

否则,容易引起学生错觉,往往不加考虑地认为烷及烃的分子都绝对对称的、均无极性,而将问题简单化、绝对化、对本身的业务进修及今后的教学工作都会带来一些不必要的麻烦。

所以,不管因为什么原因在教学中至少都必须明确说明有机物的弱极性与非极性的前提是与无机物整体相比较,汽油等物质因主要成分的极性很弱,通常视为非极性。

CH3CI、硝基苯等极性较强,为何它们不溶于水?有些教科书上将相似相溶规律中的相似仅提及溶质、溶剂的极性是很不够的。

尽管溶质溶剂极性的相似是其能否相互溶解的一个重要因素,但并不是唯一的。

物质的溶解性还取决于它们分子结构、分子间作用力的类型与大小的相似。

例如,水和乙醇可以无限制的相互混溶、煤油与乙醇只是有限度地相互溶解,而水和煤油几乎完全不相溶。

对于这些事实,如果只从分子极性的角度来考虑是难以令人满意的,但我们可以从分子结构上得到解释。

水和乙醇的分子都是由一个一OH与一个小的原子或原子团结合而成,其结构很相似,分子间都能形成氢键,因此能无限制地相互相混。

无疑,随着醇分子中烃基的增大,它与水
课外毒物
分子结构上的相似程度将降低,醇在水中的溶解度也将随之减小。

煤油主要是分子中含有8—16个碳原子的烷烃的混和物,因乙醇分子中含有一个烷烃的烃基,结构上有相似之处,它们能互溶,但乙醇分子中含有一个跟烃基毫不相干的—OH。

因此,它们的相互溶解是有一个的限度的。

水的分子结构与煤油毫无相似之处,煤油不溶于水、极性较强的CH3CI、溴苯、硝基苯不溶于水也就不奇怪了。

至于低分子量的羧、酸、醇、醛、酮等易溶于水,则可以从其分子的极性及其分子与水分子能形成氢键得到解释。

由此可见,对于相似相溶这条经验规则的应用,我们应从溶质、溶剂的分子结构、分子间作用力的类型和大小及其偶极矩等多个方面来考虑,忽视哪一点,都可能带来一些不必要的疑惑,这无论在中学还是大学的教学中都应引起足够的重视。

附:有机物在水中的溶解性规律
一、相似相溶原理
1.极性溶剂(如水)易溶解极性物质(离子晶体、分子晶体中的极性物质如强酸等);
2.非极性溶剂(如苯、汽油、四氯化碳、酒精等)能溶解非极性物质(大多数有机物、Br2、I2等);
3.含有相同官能团的物质互溶,如水中含羟基(—OH)能溶解含有羟基的醇、酚、羧酸。

二、有机物的溶解性与官能团的溶解性
1.官能团的溶解性:
(1)易溶于水的官能团(即亲水基团)有—OH、—CHO、—COOH、—NH2。

(2)难溶于水的官能团(即憎水基团)有:所有的烃基(—CnH2n+1、—
CH=CH2、—C6H5等)、卤原子(—X)、硝基(—NO2)等。

2.分子中亲水基团与憎水基团的比例影响物质的溶解性:
(1)当官能团的个数相同时,随着烃基(憎水基团)碳原子数目的增大,溶解性逐渐降低;
例如,溶解性:CH3OH>C2H5OH>C3H7OH>……,一般地,碳原子个数大于5的醇难溶于水。

(2)当烃基中碳原子数相同时,亲水基团的个数越多,物质的溶解性越大;
例如,溶解性:
CH3CH2CH2OH<CH3CH(OH)CH2OH<CH2(OH)CH(OH)CH2OH。

(3)当亲水基团与憎水基团对溶解性的影响大致相同时,物质微溶于
课外毒物
水;
例如,常见的微溶于水的物质有:苯酚 C6H5—OH、苯胺 C6H5—NH2、苯甲酸C6H5—COOH、正戊醇
CH3CH2CH2CH2CH2—OH(上述物质的结构简式中“—”左边的为憎水基团,右边的为亲水基团);乙酸乙酯
CH3COOCH2CH3(其中—CH3和—CH2CH3为憎水基团,—COO—为亲水基团)。

(4)由两种憎水基团组成的物质,一定难溶于水。

例如,卤代烃 R-X、硝基化合物R-NO2 ,由于其中的烃基R—、卤原子—X和硝基—NO2均为憎水基团,故均难溶于水。

三、液态有机物的密度
1.难溶于水,且密度小于水的有机物
例如,液态烃(乙烷、乙烯、苯、苯的同系物……),液态酯(除乙酸乙酯和甲酸甲酯是可以溶于水外如硬脂酸甘油酯……),一氯卤代烷烃(1-氯乙烷……),石油产品(汽油、煤油、油脂……)
注:汽油产品分为直馏汽油和裂化汽油(含不饱和烃)。

2.难溶于水,且密度大于水的有机物
例如:四氯化碳、氯仿、溴苯、二硫化碳。

相关文档
最新文档