螺纹强度计算.

合集下载

螺纹强度计算

螺纹强度计算

这个与螺丝的材料、性能等级、热处理是有关的。

如果按粗牙、碳钢:M4 2900- 4500 NM5 4600- 7300 NM8 12000-19000 NM10 19000-30000 NM12 27000-43000 NM14 38000-59000 NM16 51000-81000 N这是常见螺丝的抗拉强度。

钢结构连接用螺栓性能等级分3.6、4.6、4.8、5.6、6.8、8.8、9.8、10.9、12.9等10余个等级,其中8.8级及以上螺栓材质为低碳合金钢或中碳钢并经热处理(淬火、回火),通称为高强度螺栓,其余通称为普通螺栓。

螺栓性能等级标号有两部分数字组成,分别表示螺栓材料的公称抗拉强度值和屈强比值。

例如:性能等级4.6级的螺栓,其含义是:1、螺栓材质公称抗拉强度达400MPa级;2、螺栓材质的屈强比值为0.6;3、螺栓材质的公称屈服强度达400×0.6=240MPa级性能等级10.9级高强度螺栓,其材料经过热处理后,能达到:1、螺栓材质公称抗拉强度达1000MPa级;2、螺栓材质的屈强比值为0.9;3、螺栓材质的公称屈服强度达1000×0.9=900MPa级螺栓性能等级的含义是国际通用的标准,相同性能等级的螺栓,不管其材料和产地的区别,其性能是相同的,设计上只选用性能等级即可。

强度等级所谓8.8级和10.9级是指螺栓的抗剪切应力等级为8.8GPa和10.9GPa8.8 公称抗拉强度800N/MM2 公称屈服强度640N/MM2一般的螺栓是用"X.Y"表示强度的,X*100=此螺栓的抗拉强度,X*100*(Y/10)=此螺栓的屈服强度(因为按标识规定:屈服强度/抗拉强度=Y/10)如4.8级。

螺栓强度计算方法(附公式)

螺栓强度计算方法(附公式)

螺栓强度计算方法详解螺栓强度计算方法详解((附公式附公式))
螺栓强度计算是利用公式对螺栓连接强度进行有效计算,确定螺栓的受力状况。

不同的螺栓强度计算的方法和公式也不相同。

下面,世界泵阀网为大家汇总螺栓强度计算方法公式。

以供学习参考。

螺栓强度计算,主要是根据联接的类型、联接的装配情况(是否预紧)和受载状态等条件,确定螺栓的受力;然后按相应的强度条件计算螺栓危险截面的直径(螺纹小径)或校核其强度。

螺栓强度计算:
承载力=强度 x 面积;
螺栓有螺纹,以M24螺栓为例,其横截面面积不是24直径的圆面积,而是353平方毫米,称之为有效面积。

普通螺栓C 级(4.6和4.8级)抗拉强度是170N/平方毫米。

那么承载力就是:170x353=60010N 。

换算一下,1吨相当于1000KG ,相当于10000N ,那么M24螺栓也就是可以承受约6吨的拉力。

紧螺栓强度校核与设计计算式:
松螺栓强度计算:
危险截面拉伸强度条件为:
d1——螺纹小径,mm; F——螺栓承受的轴向工作载荷,N:;[σ]——松螺栓联接的许用应力,N/m㎡。

螺纹牙强度校核计算

螺纹牙强度校核计算
原始三角形高度H(mm)
普通螺纹螺栓拉断截面dc(mm)
H 3p 2
dc
d1
H 6
2 3 2.598076211
1.566987298
安全系数S
S=3~5
3
材料的屈服强度 s (MPa)
许用拉应力 (MPa)
计算拉应力 计算结果
s / S
4
F
d1
H 6
2

若< ,则合格,
反之不合格
4 1.333333333 0.518799311
计算值 28.58 28.52 24.22 26.82
弯曲力臂L(mm)
单圈外螺纹截面抗弯模量W(mm) 螺纹牙底宽度b(mm) 轴向力F(N) 螺距p(mm) 螺纹工作高度h(mm) 连接螺纹牙数z 安全系数S
材料的屈服强度 s(MPa)
许用拉应力 (MPa)
对螺杆,计算弯曲应力 b(Mpa)
235260
38
4.23
50
z=l/p
11.82033097
h=0.541p
2.28843
A=π*d2*h*z
3227.606
p F/A p s / n
72.88993762 345
如果p p ,则合格,
合格
反之则不合格
项目 轴向力F(N) 公扣时使用螺纹小径d1(mm) 母扣时使用螺纹大径D(mm) 连接螺纹牙数z
s / S
F d1bz
F Dbz
0.6
1.5 4.23 3.1725 517.5 345 56.28061362
207
计算结果
如果螺杆和螺母 ,则合格,
反之则不合格
项目 螺母大径D(mm) 螺杆大径d(mm) 公扣时使用螺纹小径d1(mm) 外螺纹中径d2(mm)

螺纹强度计算公式

螺纹强度计算公式

螺纹强度计算公式螺纹强度计算公式是指计算螺纹连接件的强度,以确保其安全使用的公式。

在机械制造和装配中,螺纹连接是一种常见的连接方式,用于连接螺纹孔和螺纹支柱。

螺纹连接的强度取决于许多因素,如螺纹类型、材料强度、尺寸和几何形状等。

螺纹连接的强度通常是按照最小截面的强度进行计算。

最小截面是指螺纹连接件的有效截面,包括螺纹节距处的截面和棱角处的截面。

螺纹强度计算公式一般包括以下几个关键因素:1. 螺纹形状:螺纹形状是螺纹连接件的主要特征之一,包括螺纹角度、螺纹节距、螺纹高度等。

不同形状的螺纹对螺纹连接件的强度产生不同的影响。

2. 材料强度:材料的强度是螺纹连接件的另一个重要因素。

通常情况下,螺纹连接件使用的材料应该具有足够的强度和硬度,以承受连接所需要的力和扭矩。

3. 螺纹尺寸:螺纹连接件的尺寸也是螺纹强度计算公式中的一个关键因素。

螺纹连接件的尺寸应该满足实际应用中的需求,同时也要考虑强度和刚度等因素。

根据以上几个关键因素,螺纹强度计算公式可以表示为:P=SfAs或P=T/J其中P表示螺纹连接件的最大允许载荷,Sf表示螺纹连接件疲劳极限强度,As表示螺纹连接件最小截面面积,T表示螺纹连接所承受的最大扭矩,J表示螺纹连接件的极径转动惯量。

以上两个公式分别适用于拉伸载荷和扭转载荷的情况。

在拉伸载荷情况下,螺纹连接件的最大允许载荷应该小于其疲劳极限强度乘以最小截面面积。

在扭转载荷情况下,螺纹连接件的最大扭矩应该小于其极径转动惯量除以螺纹连接件的极半径。

总之,螺纹强度计算公式是确保螺纹连接件安全使用的重要工具。

将各种关键因素综合考虑,可以准确地计算螺纹连接件的强度,并根据计算结果做出相应的设计和选择决策。

这样可以大大提高机械制造和装配的可靠性和安全性。

螺纹连接强度计算

螺纹连接强度计算
5)导程(S)——同一螺旋线上相邻两牙在中径圆柱面的母线 上的对应两点间的轴向距离
6)线 数 n ——螺纹螺旋线数目,一般为便于制造n≤4 螺距、导程、线数之间关系:S=nP
螺纹连接强度计算
7)螺旋升角ψ——中径圆柱面上螺旋线的切线与垂直于螺旋
8)牙型角α ——螺线a纹r轴c轴t线g向L的平平/面面d内的2螺夹纹角a牙rc型tg两侧ndP 边2的夹角
a)减载销 b)减载套筒 c)减载键
螺纹连接强度计算
(2)、轴向载荷受拉紧螺栓联接强度计算 ①工作特点:工作前拧紧,有F’;工作后加上工作载荷F 工作前、工作中载荷变化 ②工作原理:靠螺杆抗拉强度传递外载F
③解决问题: a) 保证安全可靠的工作,F’=? b) 工作时螺栓总载荷, F0=? ④分析: 图1,螺母未拧紧 螺栓螺母松驰状态
9)牙型斜角β——螺纹牙的侧边与螺纹轴线垂直平面的夹角
ddd dd2d22 dd1d11
PPP LL=L=n=nPnP(P(n(n=n2=)2=)2) LLL
ddddd2d22dd1d11
hhh
螺纹连接强度计算
§6—1 螺纹联接的类型及螺纹联接件
一、螺纹联接主要类型
1、螺栓联接 a) 普通螺栓联接(受拉螺栓连接)——被联接件不太厚,螺杆带
10 12200° C° C11 1 15 5° °
bb
3 30 0° °应槽用中时,b b带外d翅舌d0D0D垫嵌11 圈入内圆舌螺1155° 嵌母°入的轴槽
H
3 内30 0° ° ,螺3300° 母°即被锁bb 紧
HH
3300°°
斜斜 垫垫 圈圈
平 h 平 h 垫垫圈圈
斜斜垫垫圈圈
hh
d1 d1

螺纹强度计算

螺纹强度计算

第三章 螺纹联接(含螺旋传动)3-1 基础知识 一、螺纹的主要参数现以圆柱普通螺纹的外螺纹为例说明螺纹的主要几何参数,见图3-1,主要有:1)大径d ——螺纹的最大直径,即与螺纹牙顶重合的假想圆柱面的直径,在标准中定为公称直径。

2)小径1d ——螺纹的最小直径,即与螺纹牙底相重合的假想圆柱面的直径,在强度计算中常作为螺杆危险截面的计算直径。

3)中径2d ——通过螺纹轴向界面内牙型上的沟槽和突起宽度相等处的假想圆柱面的直径,近似等于螺纹的平均直径,2d ≈11()2d d +。

中径是确定螺纹几何参数和配合性质的直径。

4)线数n ——螺纹的螺旋线数目。

常用的联接螺纹要求自锁性,故多用单线螺纹;传动螺纹要求传动效率高,故多用双线或三线螺纹。

为了便于制造,一般用线数n ≤4。

5)螺距P ——螺纹相邻两个牙型上对应点间的轴向距离。

6)导程S ——螺纹上任一点沿同一条螺旋线转一周所移动的轴向距离。

单线螺纹S =P ,多线螺纹S =n P 。

7)螺纹升角λ——螺旋线的切线与垂直于螺纹轴线的平面间的夹角。

在螺纹的不同直径处,螺纹升角各不相同。

通常按螺纹中径2d 处计算,即22arctanarctanSnPd d λππ== (3-1)8)牙型角α——螺纹轴向截面内,螺纹牙型两侧边的夹角。

螺纹牙型的侧边与螺纹轴线的垂直平面的夹角称为牙侧角,对称牙型的牙侧角β=α/2。

9)螺纹接触高度h ——内外螺纹旋合后的接触面的径向高度。

二、螺纹联接的类型螺纹联接的主要类型有:图3-11、螺栓联接常见的普通螺栓联接如图3-2a所示。

这种联接的结构特点是被联接件上的通孔和螺栓杆间留有间隙。

图3-2b是铰制孔用螺栓联接。

这种联接能精确固定被联接件的相对位置,并能承受横向载荷,但孔的加工精度要求较高。

图3-22、双头螺柱联接如图3-3a所示,这种联接适用于结构上不能采用螺栓联接的场合,例如被联接件之一太厚不宜制成通孔,且需要经常拆装时,往往采用双头螺柱联接。

螺纹强度计算方法

螺纹强度计算方法
第三章 螺纹联接(含螺旋传动)
3-1 基础知识
一、螺纹的主要参数
现以圆柱普通螺纹的外螺纹为例说明螺纹的主要几 何参数,见图 3-1,主要有:
1)大径 d ——螺纹的最大直径,即与螺纹牙顶重
合的假想圆柱面的直径,在标准中定为公称直径。
2)小径 d1 ——螺纹的最小直径,即与螺纹牙底相
重合的假想圆柱面的直径,在强度计算中常作为螺杆危 险截面的计算直径。
通常规定,拧紧后螺纹联接件的预紧应力不得超过其材料的屈服极限σ S 的 80%。对于
一般联接用的钢制螺栓联接的预紧(0.6 ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

螺纹牙强度校核计算

螺纹牙强度校核计算

螺纹牙强度校核计算螺纹牙强度校核计算是机械设计中的重要内容之一,它用于确定螺纹牙在受到负载时的强度是否满足设计要求。

螺纹牙强度的校核计算涉及到许多因素,包括材料的强度、螺纹几何参数以及载荷的大小。

本文将从这些方面详细介绍螺纹牙强度校核计算的方法和步骤。

螺纹牙的强度主要取决于材料的强度。

常见的螺纹牙材料有普通碳钢、合金钢和不锈钢等。

这些材料的强度参数可以通过实验或查阅相关资料得到。

在校核计算中,需确定螺纹牙材料的屈服强度(yield strength)和抗拉强度(ultimate strength)。

螺纹牙的几何参数对其强度也有重要影响。

螺纹牙的几何参数包括螺纹直径、螺距和牙型等。

校核计算中,需要确定螺纹牙的剖面形状(如三角形、矩形等)以及螺纹的尺寸参数(如螺纹高度、螺纹深度等)。

这些参数可以通过螺纹测量仪器或螺纹规进行测量和计算得到。

载荷的大小对螺纹牙的强度校核也至关重要。

螺纹牙通常承受拉伸力、剪切力或扭矩等载荷。

在校核计算中,需要确定螺纹牙所受到的最大载荷,并将其转化为应力值。

应力值的计算可以通过应力公式和载荷分析等方法得到。

根据上述要点,进行螺纹牙强度校核计算的一般步骤如下:1. 确定螺纹牙材料的强度参数。

根据设计要求和所使用的材料,确定螺纹牙的屈服强度和抗拉强度。

2. 测量和计算螺纹牙的几何参数。

使用螺纹测量仪器或螺纹规测量螺纹牙的剖面形状和尺寸参数。

3. 确定螺纹牙所受到的最大载荷。

根据具体的设计情况和工作条件,确定螺纹牙所承受的最大拉伸力、剪切力或扭矩。

4. 根据材料的强度参数和载荷的大小,计算螺纹牙的应力值。

根据应力公式和载荷分析,将最大载荷转化为螺纹牙的应力值。

5. 比较螺纹牙的应力值和材料的强度参数。

根据设计要求,比较螺纹牙的应力值与材料的屈服强度和抗拉强度,判断螺纹牙的强度是否满足设计要求。

以上是螺纹牙强度校核计算的一般步骤,根据具体的设计要求和工作条件,可以进行相应的修正和调整。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M24螺纹轻度 计算 P=70Mpa Pmax=105Mpa
材料 60K [σs]≥414 [σb]≥586
螺栓受力分析:
设环境:当进行轻度试验时 液体进入阀体中,闸板密封作用。

关闭时阀杆中作用 在开启状态下,阀板关闭时的受力分析:
在开启状态时,介质通过进口端阀座受压端面作用在阀板的作用力为F1,通过出口端阀座受压端面作用在阀板的作用力为F2,由于进出口端阀座结构及尺度完全一致,而此时两阀座所受的液体压力衡定,即进出口端阀座所受的轴向压力相等,则:F1=F2。

当要关闭闸阀,阀板下行时,必须克服阀板两密封面所产生的摩擦力,阀板才能运动。

此时阀杆受压。

从以上两种受力分析可以看出,关闭闸阀时,阀板所承受的作用力比开启闸阀所承受的作用力小。

所以在进行阀杆校核时,用关闭状态时,打开阀板产生的力作用在阀板的作用力为F1 F1=7004
)2.72.8(14.34)
(2222⨯-=⨯-P d D πkg/cm2 =8462kg 机械设计手册 介质直接对阀板的作用力为F2
F2= kg cm kg P d 4.36948/70042.814.34222
=⨯⨯=⨯π 表 5-88 序号2 《阀门设计手册》第2版
出口端阀座承受的作用力为F1+F2:F1+F2=8426+36948.4=45374kg
当要开启闸阀使阀板上行时,必须克服阀板两面的摩擦力F 。

F=[F1+(F1+F2)]f 表 3-26 密封面摩擦因素 《阀门设计手册》第2版
式中f 为阀板与阀座的摩擦系数取 f=0.06
F=[F1+(F1+F2)]f=[8426+45374] ×0.06=3228.34kg
阀杆与密封填料间的摩擦力Qr (N )
Qr=πdF1hR μP
μ ——阀杆与密封调料间的摩擦系数。

对于橡胶填料,取μ=0.1
dF1 ——接触介质阀杆直径(mm )设:dF1=35(mm )。

hR ——填料层高度(mm )。

由于阀杆、尾杆均有橡胶圈密封,hR=20(mm )
Qr=3.14×3.5×2.0×0.1×700kg/cm2=1536.6kg
开启阀门使阀板下行时,必须克服阀板两面的摩擦力F 和阀杆与密封填料间的摩擦力Qr 。

其总轴向力为:
Q=F+Qr=3228.34+1536.6=4764.02(kg)
同上 按 105MPA 算的的 Q ′=7972.1kg=71460N
在112mm 处受力 F 2
2221
/10504
2.1114.34cm kg P d ⨯⨯=⨯π=10339
3.92 kg 螺栓受力 F max =F 1+F 2
=7972+103393.92=111365.92 kg
单个螺栓受拉力
σ=F/A=111365.92×4×/(8×3.14×d l 2)
=4433.35 2/cm kg
=443.335 Mpa
本体强度验算 :
D:Dmin ≥1.2 厚壁公式 计算 S o =Dn/2(Ko+1) , K 0=p 3-σσ
σ=σs /2.3 ,σb /4.25 取其 小者 σs =414 Mpa σb =586 Mpa
σ=137.88 Mpa , Dn=60
S o = 34.47。

相关文档
最新文档